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1 Introduction

We present our detailed network architecture, details on our multi-scale post-processing step, and
additional analysis and results on the KITTI [4], CityScapes [1] and Make3D [13] datasets in
the present supplementary materials. Additionally, we provide animated camera trajectories of
four textured point-clouds generated from our FAL-netB49 depth estimates to show our method’s
accuracy and consistency. These animations are provided as .gif files compressed along with these
supplementary materials.

2 Additional notes on our Mirrored Occlusion Module

In our main paper, we suggest that our Mirrored Occlusion Module (MOM) does not impose a burden
on our FAL-net. The reason for this is that our FAL-net does not need to separately infer the occlusion
masks, as the MOM can extract them from the MED probability volumes of the given image pairs
during training time. To complement this, it is worth mentioning that the operations in our MOM
are performed without gradients; in other words, the automatic differentiation is turned-off. This
can be easily achieved by calling the detach() or stop_gradient methods in PyTorch or TensorFlow
respectively. If gradients are not disabled for the computation of the occlusion masks in our MOM, it
is easy for the network to generate MED probability volumes that give rise to "unreal occlusions",
minimizing most of the reconstruction errors in Eq. (6) in our main paper, and preventing the FAL-net
from learning.

3 Detailed Network Architecture

The detailed network architectures of our light, medium, and heavy (A, B, and C, respectively)
FAL-net are described in Table 1. Our FAL-net is an auto-encoder with skip connections kind-of-
architecture that takes as input a left view IL and outputs a N -channel disparity logit volume DL

L.
Inspired by the success of residual connections [12], we adopt residual blocks after each strided
convolution in the encoder side. The residual blocks (Resi-Blocks) in our FAL-netB(and C) and
FAL-netA are depicted in Figure 1-(a) and (b) respectively. The light version of our FAL-net, the
6.6M parameters FAL-netA, incorporates separable convolutions to reduce its number of parameters
further. It can be noted in Table 1 that in the decoder side of our FAL-net, instead of the traditional
2× nearest up-scaling, we use nearest interpolation to the shape of the corresponding encoder skip
connection. This makes it easier to test our FAL-net on any input image size without the need for
cropping feature map borders, which could cause feature map misalignments during test time. In
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Figure 1: Residual blocks in our FAL-netB(and C) and FAL-netA respectively.

Table 1: Detailed network architecture. Conv2d: 3x3 Convolutional layer with a stride of 1, otherwise
specified. s2: Stride of 2. Nearest: Nearest upsampling to the size of the skip connection. ELU:
Exponential Linear Unit. Ch. A B C: number of channels in FAL-netA, B, and C respectively

Output Layer description Input Ch. A Ch. B Ch. C Size
IL Input image - 3 3 3 H×W
Conv0 Conv2d + ELU + Resi-Block IL 32 32 32 H×W
Conv1 Conv2d(s2) + ELU + Resi-Block Conv0 64 64 64 H//2×W//2
Conv2 Conv2d(s2) + ELU + Resi-Block Conv1 128 128 128 H//4×W//4
Conv3 Conv2d(s2) + ELU + Resi-Block Conv2 128 256 256 H//8×W//8
Conv4 Conv2d(s2) + ELU + Resi-Block Conv3 256 256 256 H//16×W//16
Conv5 Conv2d(s2) + ELU + Resi-Block Conv4 256 256 512 H//32×W//32
Conv6 Conv2d(s2) + ELU + Resi-Block Conv5 256 512 512 H//64×W//64
Dec6 Nearest + Conv2d + ELU Conv6 128 256 256 Conv5
iConv6 Concat + Conv2d + ELU Dec6, Conv5 256 256 512 Conv5
Dec5 Nearest + Conv2d + ELU iConv6 128 128 256 Conv4
iConv5 Concat + Conv2d + ELU Dec5, Conv4 256 256 256 Conv4
Dec4 Nearest + Conv2d + ELU iConv5 128 128 128 Conv3
iConv4 Concat + Conv2d + ELU Dec4, Conv3 128 256 256 Conv3
Dec3 Nearest + Conv2d + ELU iConv4 64 128 128 Conv2
iConv3 Concat + Conv2d + ELU Dec3, Conv2 128 128 128 Conv2
Dec2 Nearest + Conv2d + ELU iConv3 64 64 64 Conv1
iConv2 Concat + Conv2d + ELU Dec2, Conv1 64 64 64 Conv1
Dec1 Nearest + Conv2d + ELU iConv2 64 64 64 Conv0
DL

L Concat + Conv2d Dec1, Conv0 N N N IL

contrast with most previous works, our FAL-net does not provide a multi-scale output or outputs at
multiple decoder stages. We observed better performance with only one output at the target resolution.

4 Multi-Scale Post-Processing

We define a multi-scale post-processing (PP) step that is less expensive than the PP step proposed
in [6]. Our PP involves running the network twice, once for the original image, and a second time
on a flip-downscaled image, whose output is unflipped and up-scaled back to target resolution via
bilinear interpolation. Processing the same input at a lower resolution allows the receptive field of
the FAL-net to cover a larger area, which often results in slightly better predictions for the very
close-by objects. However, the processing of a downscaled input also results in a lower quality of
depth predictions for far-away objects. To overcome this, instead of naive element-wise averaging
between the normal D′L and the flip-downscaled Dfd

L depth estimates, we blend them weighted by
the normalized disparity D̃L. The final post-processed depth D∗L is given by

D∗L = (1− D̃L)� D′L + D̃L � Dfd
L (1)

where the normalized disparity D̃L is given by

D̃L = max
D′L

ptile(D′L, 95)
, 1 (2)
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Figure 2: Effects of our depth-guided multi-scale post-processing (PP) step.

where ptile(D′L, 95) returns the 95th percentile. The use of the percentile instead of the plain
max value is adopted to reduce the effects of outliers and noise in the depth estimates. The flip-
downscaled disparity is obtained from a 2/3 resolution input image, which is approximately 60%
less computationally expensive than running the network on a full-resolution input image as in
previous works that incorporate [6]’s post-processing. A qualitative comparison of our models with
and without our multi-scale post-processing step is shown in Figure 2 for the FAL-netA33 and the
FAL-netB33. A close look at the depth estimates shows that our proposed PP helps in alleviating the
discretization artifacts present in homogeneous areas, providing smoothness without degrading the
quality of the thin objects and structures.

5 Inference times and number of parameters

Table 2 shows a comparison of the number of parameters, inference times on a full-resolution KITTI
image, and SqRel between our FAL-netA33, B33, B49, and the previous state-of-the-art (SOTA).
Our FAL-netA33 and FAL-netB33 achieve the fastest inference times with 15ms on a full-resolution
KITTI image and relatively low SqRel. Our FAL-netB33 already outperforms previous methods in
terms of SqRel. Our FAL-netB49 achieves the lowest SqRel, and still, 3× faster inference times than
the recent SOTA of PackNet [10]. The robust SqRel metric penalizes more relatively larger errors.
Even when the inference times of [5, 16] are not provided in their respective papers, we can assume
they are similar to our networks, due to their relatively small network sizes. However, the SqRel
errors of [5, 16] are considerably higher than the SqRel of our FAL-netB33 and B49. It is worth
noting that the increase in the number of parameters from FAL-netA to the FAL-netB seems not to
contribute in the inference time, at least for the TitanXP GPU on which it was measured.

6 Multi-Dataset Training

Similar to [8,9], we perform multi-dataset training with the KITTI [4] and the CityScapes [1] datasets
concurrently. We adopt the technique in [8], which sets the maximum disparity hyper-parameter
for the CityScapes dataset proportional to the KITI maximum disparity, multiplied by the camera
baseline ratio between the CityScapes and the KITTI datasets. The KITTI dataset has a distance
between cameras (baseline) of 54cm approx. The CityScapes has a baseline of 22cm. Then, the
minimum and maximum disparity hyper-parameters used for the CityScapes images are given by

dcsmin = 2
22

54
(3)

dcsmax = 300
22

54
(4)
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Table 2: Comparison of our proposed method versus the recent SOTA single image depth estimators
in terms of inference times, numbers of parameters, and SqRel (relative squared error from metrics
in [2]) on the original [2] and improved [15] KITTI Eigen Test Split. Inference times in milliseconds
for a full-resolution KITTI image, otherwise specified

Method #Par Time [ms] SqRel Original [2] SqRel Improved [15] Device
Monodepth2 [5] 14 - 0.802 0.536 -
Monodepth2-s [5] 14 - - 0.503 -
DepthHints [16] 35 - 0.710 0.364 -
Guizilini et al. [11] ∼140 ∼60 0.761 - TitanV100
PackNet [10] 120 60 0.758 0.359 TitanV100
Tosi et al. [14] 43 160 0.673 - TitanX
DORN [3] 51 500 - 0.307 GPU 2.5 Ghz
FAL-netA33 6.6 11 0.723 0.367 TitanXP
FAL-netB33 17 11 0.633 0.304 TitanXP
FAL-netB49 17 19 0.562 0.287 TitanXP

Figure 3: Additional results on ablation studies.

where 2 and 300 are the minimum and maximum disparity hyper-parameters used for the KITTI
dataset, respectively. It is shown in Table 1 of our main paper that the concurrent K+CS training
achieves much better performance than the widely used CS pre-training in [6].

7 Additional Results

We provide additional results for the ablation studies, the KITTI [4] dataset, the CityScapes [1]
dataset, and the Make3D [13] dataset.

7.1 Additional Results on Ablation Studies

Figure 3 depicts the depth estimates from our FAL-net trained with various settings (please see
Table 1 of our main paper). Quantitatively, the lightweight FAL-netA33 with 6.6M parameters
under-performs the heavier FAL-netB49 model. However, the FAL-netA33 still manages to provide
decent enough depth estimates, preserving most thin structures. As expected, the models with more
quantization levels (49) exhibit fewer discretization artifacts that the sparser models with 33 planes.
Overall, as also shown in Tables 1 and 2 of our main paper, our FAL-netB49 trained with KITTI +
CityScapes (K+CS) concurrently performs the best among all existing methods.

7.1.1 Results without Perceptual Loss

The effect of disabling the perceptual component of our reconstruction loss (αp = 0 in Eq. (6) in
our main paper) is shown in Figure 4. Even when the depth estimates of the FAL-netB33 without
perceptual loss are still plausible, they suffer from discontinuities in the homogeneous regions, such
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Figure 4: (Left) Additional results of our model trained without perceptual loss. (Right) Additional
results of our model trained on CityScapes [1] and evaluated on the KITTI Eigen test split [2]

as roads and buildings. This is because the pure l1 loss does not penalize the relationships between
neighboring pixels, which allows the depth discontinuities to minimize the photometric reconstruction
errors.

7.2 Additional Results on the Eigen Test Split

Additional qualitative comparisons between our FAL-netB49 and the recent state-of-the-art methods
of PackNet [10] and DepthHints [16] are presented in Figure 5. It is shown that our FAL-netB49
performs estimates more consistently on thin and complex structures. It is worth noting that our
FAL-netB49 has half the number of parameters of DepthHints [16] and seven times fewer parameters
than PackNet [10]. Additionally, our proposed method does not require the use of semi-global
matching as in DepthHints [16].

7.3 Additional Results on CityScapes

Additional results on CityScapes [1] are presented in this Supplemental. Firstly, on the right side of
Figure 4 we show that our model trained on CityScapes (CS) and evaluated on the KITTI Eigen test
split [2] generalizes well. It can be noted that the FAL-netB49 (CS) generates very plausible depths,
perceptually very similar to the FAL-netB49 trained on the KITTI Eigen train split [2] (K). Secondly,
in Figure 6, we show depth estimates of our method trained with and without the CityScapes [1]
dataset and evaluated on the eval folder of CityScapes, which was excluded from the training data.
Our models trained without CS generate plausible depth estimates when fed with 60% re-scaled CS
images, which is reasonable as the resolution of CityScapes is larger than the KITTI’s. Our methods
trained with CS, and concurrent K+CS are fed with full-resolution CityScapes images and generate
very realistic depths. Moreover, our method trained with K+CS shows that it can generalize the
best not only on KITTI, as shown in Table 2 of our main paper, but also on CS, suggesting that the
concurrent K+CS training not only improves the performance on KITTI but also on CityScapes.

7.4 Additional Results on Make3D

Results on the Make3D [13] dataset are depicted in Figure 7 on a center crop following the protocol
in [6]. Among the methods of [6, 7] and ours, our FAL-netB49 (K+CS) shows the closer-to-the-
ground-truth estimates (please refer to Table 3 of our main paper for the quantitative comparison).
Note that the ground-truths provided in Make3D are of very low-resolution and not aligned precisely
with the input images. Interestingly, the FAL-netB49 (K+CS) estimates (in particular those in rows
1, 2, and 8) appear to be a combination of the result presented by the FAL-netB49 (K) and the
FAL-netB49 (CS), which is the desired effect when training with additional data.
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Figure 5: Qualitative comparison versus the resent state-of-the-art methods on the KITTI Eigen Test
Split [2].
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Figure 6: Qualitative comparison of our method trained with and without the CityScapes [1] dataset
on the eval directory of the CityScapes dataset.

Figure 7: Qualitative comparisons on the Make3D [13] dataset.
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