
A Additional experimental details

Sample path visualization

Here, we further explore the example of a Gaussian process on the dragon manifold. Figure 6 presents
nine additional samples from Gaussian process posterior. Note that the we change the color palette in
order to cover samples’ value range. We repeat the first row of Figure 6 with the new color palette.

To define a Matérn kernel on the dragon manifold, we employ a re-parametrized version of (18),
which is

kν(x, x′) = σ2
∞∑
n=0

(
1

κ2
+ λn

)−ν− d2
fn(x)fn(x′). (23)

Here, we need to compute eigenvalues and eigenfunctions of the Laplace–Beltrami operator. We do so
using the Galerkin finite element method (FEM), and approximate the manifold as a triangular mesh
with K = 100179 vertices. This involves solving a Helmholtz equation, which is a far easier problem
than solving the SPDE 6, since, among other reasons, the equation is a standard deterministic second-
order linear PDE that only needs to be solved once, rather than once-per-sample. Each vertex vk,
k = 1, . . . ,K is associated with a piecewise-linear basis function φk, such that φk(vl) = δkl where
δ is the Kronecker delta. This leads to a discrete Laplace-Beltrami operator ∆, as a discretization of
the Laplace-Beltrami ∆g on the manifold. Finally, the eigenproblem is stated as follows: find λn, fn,
such that

〈∆fn, φk〉 = λn〈fn, φk〉 k = 1, . . . ,K (24)

where we regard the functions fn, φk as K-dimensional vectors: (fn)k = fn(vk). Since the resulting
eigenproblem (24) is finite-dimensional, it can be solved using standard numerical approaches. Note
that the discrete Laplacian cannot have more than K eigenvalues. In our experiments, we use the
Firedrake software package [30], which provides a high-level domain-specific language for computing
discrete Laplacians and related tasks. We use Arnoldi method with shift-invert spectral transform to
compute the first N = 500 (smallest magnitude) eigenvalues and corresponding eigenfunctions on
the dragon mesh, using numerical routines from the PETSc package, which Firedrake calls. This
allows us to approximate the formula (18) with the first N components of the sum, given by

kν(x, x′) ≈ σ2
N∑
n=0

(
1

κ2
+ λn

)−ν− d2
fn(x)fn(x′). (25)

The formula also leads to a Fourier approximation of the prior:

f(x) ≈ σ
N∑
n=0

wn

(
1

κ2
+ λn

)− ν2− d4
fn(x) wn ∼ N(0, 1). (26)

Once these expressions are obtained, standard GP training techniques are utilized to compute the
posterior distribution using path-wise sampling, given by equation (2). In the experiments we set the
smoothness parameter ν to be 3/2, and Gaussian noise variance to be 10−15. We obtain σ2 and κ by
gradient descent optimization of the marginal likelihood.
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(a) Ground truth (b) Mean (c) Standard deviation

Figure 6: Visualization of a Matérn Gaussian process posterior on the dragon. We plot the true
function values, posterior mean, marginal posterior standard deviation, and nine random function
draws from the posterior. Here, black dots denote training locations, and color represents value of
the corresponding functions. The color palette is changed slightly compared to Figure 5 in order to
represent the range of the samples more effectively.
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Dynamical system prediction

Here we describe the setup in the dynamical systems predictions experiment in more detail. Our
system is an ideal pendulum, parameterized by angle and angular momentum which lie on the
cylinder S1 × R1, and which we denote by (θ, pθ). The true equations of motion are given by
Hamilton’s equations

θ̇ =
∂H

∂pθ
ṗ = −∂H

∂θ
(27)

with

H(θ, pθ) =
p2
θ

2ml2
+mgl(1− cos(θ)) (28)

where (m, g, l) are the mass, gravitational constant, and length of the pendulum. We set m = 1,
g = 9.8, l = 2.

Training data is obtained as follows. We do not observe the Hamiltonian: instead, we observe its
partial derivative pairs (∂H∂θ ,

∂H
∂pθ

). In a reinforcement learning setting, following Deisenroth and
Rasmussen [11], these can be obtained by backward integration of observed trajectories. In our
simplified setting, we generate training data by computing said partial derivatives at random locations,
sampled uniformly on the rectangle (0, 2π)× (−20, 20), generating 1000 total training points.

To obtain the model, we first place a Gaussian process prior directly on the Hamiltonian. To ensure
that (a) θ is supported on [0, 2π), rather than [0, 1), and (b) a unified random Fourier feature expansion
for the prior is possible for both the θ and pθ components, we use a re-parameterized form for the
kernel and spectral measure. These are given by

kθ(θ, θ
′) =

∑
n∈2πZd

exp

(
−
∥∥∥∥θ − θ′ + n

2π
√

2κ

∥∥∥∥2
)

=
∑

n∈2πZd
exp

(
−
∥∥∥∥θ − θ′ + n

κθ

∥∥∥∥2
)

(29)

ρθ(n) =
√

2π2−3/2π−1κθ exp(−2π22−3π−2κ2
θn

2) = 2−1π−1/2κθ exp(−2−2κ2
θn

2) (30)

which from the kernel and spectral measure introduced in the manuscript by defining θ = 2πx, θ′ =
2πx′, and κθ = 23/2πκ so that κ = 2−3/2π−1κθ. For the pθ component, we use the re-normalized
squared exponential kernel

kpθ (pθ, p
′
θ) = exp

(
−
∥∥∥∥pθ − p′θκpθ

∥∥∥∥2
)

(31)

and denote the corresponding spectral measure by ρpθ . The full kernel on (θ, pθ) is given by

k
(
(θ, pθ), (θ

′, p′θ)
)

= σ2kθ(θ, θ
′)kpθ (pθ, p

′
θ). (32)

Similarly, denote the full spectral measure over Z×R by ρ. Sampling from the posterior is performed
by sampling from the prior using a random Fourier feature approximation and transforming the
resulting draws into posterior draws using (2).

Unfortunately, since the spectral measure for this kernel is the product of a discrete measure for the
θ component, and absolutely continuous measure for the pθ component, the resulting optimization
objective is not (automatically) differentiable with respect to κpθ . To enable use of automatic relevance
determination, we develop an importance-sampling-based reparametrization trick by employing the
generalized random Fourier feature expansion

f(θ, pθ) ≈ σ
√

2

`

∑̀
j=1

γjwj cos

(〈
ωj ,

(θ, pθ)

λ

〉
+ βj

)
(33)

where division by λ = (1, κpθ ) is performed element-wise, and

ωj ∼ ρ̂ βj ∼ U(0, 2π) wj ∼ N(0, 1) (34)

where ρ̂ is the standard spectral measure, which is equal to ρ except with κθ and κpθ fixed to
reference values, in our case κθ = κpθ = 1. The importance weights γj are given by

γj =

√
ρθ(ωjθ)/Cθ

ρ̂θ(ωjθ)/Ĉθ
=

√
ρθ(ωjθ)Ĉθ
ρ̂θ(ωjθ)Cθ

(35)
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where ωjθ is the θ-component of ωj and Cθ =
∑
n∈Z ρθ(n) and Ĉθ =

∑
n∈Z ρ̂θ(n) are their

respective normalizing constants. Using this more general random Fourier feature approximation, the
training objective becomes differentiable with respect to κpθ .

Since we do not observe the Hamiltonian, but rather its partial derivatives (∂H∂θ ,
∂H
∂pθ

), as our full
model we employ the gradient of the Gaussian process developed above, which yields a vector-valued
Gaussian process. The kernel of said process is obtained by differentiating the kernels above.

To complete the model, we now introduce the inducing point approximation. We use a total of 35
vector-valued inducing points, which are initialized on an evenly-spaced grid over the domain of the
training data. For the prior approximation, we use a total of 128 random Fourier features.

Following Titsias [41] and Hensman et al. [21], training proceeds by minimizing Kullback-Leibler
divergence between the inducing point GP and the true posterior GP. We optimize the inducing points,
inducing covariance, and all model hyperparameters. For the loss, in addition to the KL divergence,
we include `2 regularization terms corresponding to log-normal hyperpriors for the hyperparameters.
For the kernel, these are given as σ2 ∼ LN(0, 1), κθ ∼ LN(0, 1) and lnκpθ ∼ LN(1.5, 1). For
the GP, the error variance hyperprior τ2 ∼ LN(10−12, 1). All parameters are initialized at their
hyperprior’s mean. The jitter term is set to ς = 10−5.

Optimization is performed by the ADAM algorithm, with learning rate set to η = 0.01 and default
values for the other hyperparameters. We use a mini-batch size of 128, and train until convergence.

To generate trajectories of the dynamical system under the learned Hamiltonian, following Wilson
et al. [43], we use (2) to draw a set of basis coefficients from the posterior distribution, and form
a basis function approximation of our posterior GP. We plug this function back into Hamilton’s
equations, and solve them numerically by employing a Störmer-Verlet integrator. The step size is
tuned for each initial condition to ensure all trajectories in Figure 4 cross each other on the rear side
of the cylinder at approximately the same time when using the true Hamiltonian after 50 time steps,
and range from 0.02 to 0.031. These step sizes are then used to produce error bars for the learned
Hamiltonian.

To generate the error bars on the cylinder Figure 4, we first compute the mean trajectory under the GP
model for each time step. Then, for each time step, we project the trajectories onto the tangent plane
on the cylinder located at the mean, using the cross product identity. In this tangent plane, we then
project the trajectory points onto a line perpendicular to the tangent vector pointing in the direction of
the mean trajectory obtained by backwards integration. We calculate 95% intervals over this line,
and plot them projected back from the tangent plane onto the surface of the cylinder. The error bars
for the positions and momenta of the distinguished trajectory on the right-hand-side of Figure 4,
which are not plotted on the surface of the cylinder, are obtained by re-parameterizing ϑ = ((θ + π)
mod 2π)− π to ensure ϑ ∈ [−π, π), and calculating 2.5% and 97.5% quantiles in the standard way.

B Additional examples and expressions

Circle

Here we discuss closed-form expressions for Matérn and squared exponential kernels on circle S1 = T.
These kernels are given in (9) and (10) respectively, with d = 1 in our setting. Applying the
generalized Poisson summation formula [39, Chapter VIII] to these expressions gives

kν(x, x′) =
∑
n∈Z

Sν(n)

C ′ν
e2πin(x−x′), k∞(x, x′) =

∑
n∈Z

S∞(n)

C ′∞
e2πin(x−x′), (36)

where Sν and S∞ are precisely the spectral densities of the standard Matérn and squared exponential
kernels over R. The specific formulas for Sν , S∞ are given in Rasmussen and Williams [29, Section
4.2.1]:

Sν(ξ) = σ2 2π
1
2 Γ(ν + 1

2 )(2ν)ν

Γ(ν)κ2ν

(
2ν

κ2
+ 4π2ξ2

)−(ν+ 1
2 )
, (37)

S∞(ξ) = σ2(2πκ2)1/2e−2π2κ2ξ2 , (38)
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where the cumbersome constants ensure that the original GP over R has variance equal to σ2. Periodic
summation does not preserve variance, thus requiring additional constants C ′(·) to recover variance
σ2. This makes the original constants redundant, so we instead consider

k̃ν(x, x′) =
∑
n∈Z

(
2ν

κ2
+ 4π2n2

)−(ν+ 1
2 )
e2πin·(x−x′), (39)

k̃∞(x, x′) =
∑
n∈Z

e−2π2κ2n2

e2πin·(x−x′). (40)

For ν =∞ the right-hand side is precisely one of the classical Jacobi theta functions, ϑ3(z, q) (see
definition in Abramowitz and Stegun [1, equation 16.27.3]), with parameters z = π(x − x′) and
q = exp(−2π2κ2), giving

k̃∞(x, x′) = ϑ3(π(x− x′), exp(−2π2κ2)). (41)

To obtain k∞ from k̃∞ we need to find C∞ such that k̃∞(x, x)/C∞ = σ2. Obviously, C∞ =

k̃∞(x, x)/σ2, where the right hand side does not depend on x, so the constant is well-defined. Hence

k∞(x, x′) =
σ2

ϑ3(0, exp(−2π2κ2))
ϑ3(π(x− x′), exp(−2π2κ2)). (42)

Returning to the periodic summation of the original normalized kernel, we obtain

C ′∞ = C∞σ
2(2πκ2)1/2 = ϑ3(0, exp(−2π2κ2))(2πκ2)1/2. (43)

Summarizing, we obtain the following.
Example 7 (Squared exponential kernel on S1). The squared exponential kernel, normalized to have
variance σ2, and the corresponding spectral density, are given by

k∞(x, x′) =
σ2

ϑ3(0, exp(−2π2κ2))
ϑ3(π(x− x′), exp(−2π2κ2)), (44)

ρ∞(n) =
σ2

ϑ3(0, exp(−2π2κ2))
exp(−2π2κ2n2), n ∈ Z. (45)

Now we turn our attention to kernels kν . After an appropriate mutatis mutandis applied to the
closed-form of the Fourier series

α sinh(απ)

π

∞∑
k=−∞

exp(ikθ)

(α2 + k2)n
(46)

provided in the supplementary material of Guinness and Fuentes [19] we get the following.
Example 8 (Matérn kernel on S for half-integer ν). Let ν = 1/2 + s, s ∈ N. The Matérn kernel,
normalized to have variance σ2, and the corresponding spectral density, are given by

kν(x, x′) =
σ2

Cν

s∑
k=0

as,k

(√
2ν · |x− x

′| − 1/2

κ

)k
hypk

(√
2ν · |x− x

′| − 1/2

κ

)
(47)

ρν(n) =
2σ2
√

2ν sinh
(√

2ν
2κ

)
Cν(2π)1−2νκ

(
2ν

κ2
+ 4π2n2

)−ν−1/2

, n ∈ Z (48)

where various components of the expression are defined as follows.

1. hypk(·) is defined as cosh(·) when k is odd and sinh(·) when k is even.

2. Cν is chosen so that kν(x, x) = σ2.

3. as,k are constants defined as follows, following a modification of the derivation given by
Guinness and Fuentes [19].
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(a) First, for the special case k = s, define

as,s =
((
− ν

π2κ2

)s
(s)!
)−1

. (49)

(b) Next, define the constants hrk as

hrk =

2r+1∑
j=0

(
2r + 1

j

)
(k)j

(√
2ν

2κ

)k−j
· hypk−j+1

(√
2ν

2κ

)
(50)

for r = 0, . . . , s− 1 and k = 0, . . . , s, where (k)j is the falling factorial

(k)j =


1, when j = 0,

0, when j > k,

k(j − 1) . . . (k − j + 1), otherwise.
(51)

(c) Finally, define the matrix

Hs = (hrk)k=0,...,s−1
r=0,...,s−1 , (52)

and a vector hs = [h0,s, . . . hs−1,s]
>. Then the remaining constants as,k for k 6= s

are given as

[as,0, . . . , as,s−1]> = −as,sH−1
s hs. (53)

For ν = 1/2 the above formulae reduce to

k1/2(x, x′) =
σ2

cosh
(

1
2κ

) cosh

(
|x− x′| − 1/2

κ

)
, (54)

ρ1/2(n) =
σ22 sinh

(
1

2κ

)
κ cosh

(
1

2κ

) ( 1

κ2
+ 4π2n2

)−1

. (55)

For ν = 3/2,

k3/2(x, x′) =
σ2

C3/2

(
π2κ

3

(
2κ+

√
3 coth

(√
3

2κ

))
cosh(u)− 2π2κ2

3
u sinh(u)

)
, (56)

ρ3/2(n) =
σ2

C3/2

2
√

3 sinh
(√

3
2κ

)
(2π)−2κ

(
3

κ2
+ 4π2n2

)−2

, (57)

where u =
√

3
|x−x′|−1/2

κ .

For ν = 5/2, they reduce to

k5/2(x, x′) =
σ2

C5/2

(
a2,0 cosh(u) + a2,1u sinh(u) + a2,2u

2 cosh(u)
)
, (58)

ρ5/2(n) =
σ2

C5/2

2
√

5 sinh
(√

5
2κ

)
(2π)−4κ

(
5

κ2
+ 4π2n2

)−3

, (59)

where u =
√

5
|x−x′|−1/2

κ and

a2,0 = −π
4κ2

50

−5 + 12κ2 + 6
√

5κ coth

(√
5

2κ

)
+ 10 coth

(√
5

2κ

)2
, (60)

a2,1 =
2π4κ3

25

(
3κ+

√
5 coth

(√
5

2κ

))
, a2,2 = −2π4κ4

25
. (61)
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Finally, we discuss Fourier feature approximations. The main ingredient of these approximations is
the formula

k(·)(x, x
′) =

∑
n∈Z

ρ(·)(n)e2πin(x−x′) = ρ(·)(0) + 2
∑
n∈N

ρ(·)(n) cos(2πn(x− x′)). (62)

The sum on the right hand side can be approximated either deterministically by truncating the series,
or randomly with Monte Carlo techniques. This corresponds respectively to the following two
approximations of the process

fD(·)(x) =

N∑
n=−N

√
ρ(·)(n)

(
wn,1 cos(2πnx) + wn,2 sin(2πnx)

)
, wn,j ∼ N(0, 1), (63)

and

fR(·)(x) =
σ√
N

N−1∑
k=0

(
wn,1 cos(2πnkx) + wn,2 sin(2πnkx)

)
, nk ∼

ρ(·)(n)

σ2
, (64)

where wn,j is defined identically. Note that the kernel discussed here is defined via periodic summa-
tion defined in Section 3.

Sphere

The presentation here is based on De Vito et al. [9, Section 7.3]. Assume d > 1 and take M = Sd,
where Sd is d-dimensional sphere Sd ⊆ Rd+1. The 1-dimensional case discussed in the previous
section can be handled similarly but requires some additional care.

The eigenvalues of ∆Sd are λn = n(n+ d− 1), n ∈ Z+. The eigenspaceHn corresponding to λn
has dimension dn = (2n+ d− 1) Γ(n+d−1)

Γ(d)Γ(n+1) and consists of spherical harmonics of degree n. The
addition formula for spherical harmonics yields that for any orthonormal basis fn,k of eigenspaceHn

dn∑
k=1

fn,k(x)fn,k(x′) = cn,dC(d−1)/2
n (cos(dM (x, x′))) (65)

where C(d−1)/2
n are Gegenbauer polynomials and the constant cn,d is defined by

cn,d =
dnΓ((d+ 1)/2)

2π(d+1)/2C(d−1)/2
n (1)

. (66)

From this we deduce that the formula for Matérn kernel on Sd is given by

kν(x, x′) =
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ λn

)−(ν+ d
2 )
(

dn∑
k=1

fn,k(x)fn,k(x′)

)
(67)

=
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ n(n+ d− 1)

)−(ν+ d
2 )
cn,dC(d−1)/2

n (cos(dM (x, x′))). (68)

Analogously for squared exponential kernel on Sd, we obtain

k∞(x, x′) =
σ2

C∞

∞∑
n=0

e−
κ2

2 λn

(
dn∑
k=1

fn,k(x)fn,k(x′)

)
(69)

=
σ2

C∞

∞∑
n=0

e−
κ2

2 n(n+d−1)cn,dC(d−1)/2
n (cos(dM (x, x′))). (70)

Summarizing the above, for the sphere Sd we obtain the following.
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Example 9 (Matérn and squared exponential kernels on Sd). The Matérn and squared exponential
kernels and the corresponding spectral densities are given as follows

kν(x, x′) =
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ n(n+ d− 1)

)−(ν+ d
2 )
cn,dC(d−1)/2

n (cos(dM (x, x′))), (71)

k∞(x, x′) =
σ2

C∞

∞∑
n=0

e−
κ2

2 n(n+d−1)cn,dC(d−1)/2
n (cos(dM (x, x′))), (72)

ρν(n) =
σ2

Cν

(
2ν

κ2
+ n(n+ d− 1)

)−(ν+ d
2 )
, (73)

ρ∞(n) =
σ2

C∞
e−

κ2

2 n(n+d−1), (74)

where dM (x, x′) is the geodesic distance between x, x′ ∈ Sd, C(d−1)/2
n are Gegenbauer polynomials

and

cn,d =
dnΓ((d+ 1)/2)

2π(d+1)/2C(d−1)/2
n (1)

with dn = (2n+ d− 1)
Γ(n+ d− 1)

Γ(d)Γ(n+ 1)
. (75)

Note that for every n ∈ Z+ there are dn Laplace–Beltrami eigenfunctions. Thus, in the following
Fourier feature approximation, we cannot apply the combinatorial simplification that yields the
Gegenbauer polynomials, and instead work with spherical harmonics directly. The generalized
Fourier feature approximations, both deterministic and random, are given by

fD(·)(x) =

N−1∑
n=0

√
ρ(·)(n)

dn∑
j=1

wn,jfn,j(x), wn,j ∼ N(0, 1), (76)

and

fR(·)(x) =
σ√
N

N−1∑
k=0

dnk∑
j=1

wnk,jfnk,j(x), nk ∼
ρ(·)(n)

σ2
, wnk,j ∼ N(0, 1), (77)

where fn,k are the actual spherical harmonics forming the orthonormal basis of eigenspaceHn.

No closed form expressions for kν and k∞ are known to the authors. Nevertheless, approximating the
series defining kν and k∞ by truncation gives a practical approach with reasonable error control. Note
that the larger ν is, the faster these series converge, and the more accurate the resulting approximations
are.

C Proof of Proposition 2

Proposition 2. The Matérn (squared exponential) kernel k in (9) (resp. (10)) is the covariance kernel
of the Matérn (resp. squared exponential) Gaussian process in the sense of Whittle [42].

Proof. Following Section 4, the Matérn and square exponential kernels on a compact Riemannian
manifold in the sense of Whittle [42] are given by (18) and (19). For the sake of this proof we denote
these kernels by k(w)

(·) and the kernels defined by periodic summation (equations (9), (10)) by k(p)
(·) .

We prove here that k(p)
(·) are equal to k(w)

(·) .

To make equations (18) and (19) explicit for Td = Rd/Zd, we need to compute the eigenfunctions
and eigenvalues of Laplace–Beltrami operator ∆g on Td. This is not difficult, since Td is equipped
with the quotient metric, which is flat. In particular, this amounts to considering the eigenfunctions
of Euclidean Laplacian, which are sines and cosines (complex exponentials), and leaving only
those which are 1-periodic. The procedure is described in detail in Gordon [16], and yields the
following. For τ ∈ Zd+, τ 6= 0 the pair of functions fτ,1(x) =

√
2 cos(2πτ · x) and fτ,2(x) =√

2 sin(2πτ · x) are eigenfunctions of the Laplace–Beltrami operator, corresponding to the eigenvalue
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λτ = 4π2|τ |2. It is important to note that τ and −τ correspond to the same (up to a sign change) pair
of eigenfunctions. Together with the function f0(x) = 1 corresponding to the eigenvalue λ0 = 0,
they form the orthonormal basis of L2(Td). To unify notation, we write f0,1(x) = 1 and f0,2(x) = 0.

Since the series defining k(w)
(ν) is unconditionally convergent [9], we obtain

k(w)
ν (x, x′) =

σ2

Cν

∑
τ∈I

(
2ν

κ2
+ 4π2|τ |2

)−ν− d2
(fτ,1(x)fτ,1(x′) + fτ,2(x)fτ,2(x′)), (78)

where I ⊆ Zd is a maximal subset of Zd such that τ ∈ I and τ 6= 0 implies −τ 6∈ I. This, using
identities cos(x−y) = cos(x) cos(y)+sin(x) sin(y) and cos(x) = (cos(x) + cos(−x))/2, becomes

k(w)
ν (x, x′) =

σ2

Cν

∑
τ∈Zd

(
2ν

κ2
+ 4π2|τ |2

)−ν− d2
cos(2πτ · (x− x′)). (79)

At the same time, the generalized Poisson summation formula gives

k(p)
ν (x, x′) =

σ2

C ′ν

∑
n∈Zd

S(n)e2πin·(x−x′) =
σ2

C ′ν

(∑
τ∈Zd

S(τ) cos(2πτ · (x− x′))
)
, (80)

where S is the spectral density of Matérn kernel on Rd. This is given by [29, Section 4.2.1]

S(ξ) =
2dπ

d
2 Γ(ν + d

2 )(2ν)ν

Γ(ν)κ2ν

(
2ν

κ2
+ 4π2|ξ|2

)−(ν+ d
2 )
. (81)

Thus for finite ν we have

k(p)
ν (x, x′) =

Cν2dπ
d
2 Γ(ν + d

2 )(2ν)ν

C ′νΓ(ν)κ2ν
k(w)
ν (x, x′). (82)

Recalling that Cν and C ′ν are chosen so that k(p)
ν (x, x) = σ2 = k

(w)
ν (x, x), we see that k(p)

ν (x, x′) =

k
(w)
ν (x, x′), which gives the claim.

The argument for squared exponential kernel (ν =∞) is essentially the same. In this case we have

k(w)
∞ (x, x′) =

σ2

C∞

∑
τ∈Zd

exp
(
−2π2κ2|τ |2

)
cos(2πτ · (x− x′)), (83)

k(p)
∞ (x, x′) =

σ2

C ′∞

(∑
τ∈Zd

S(τ) cos(2πτ · (x− x′))
)
, (84)

but this time with
S(ξ) = σ2(2πκ2)d/2e−2π2κ2|ξ|2 . (85)

This gives

k(p)
∞ (x, x′) =

C∞(2πκ2)d/2

C ′∞
k(w)
∞ (x, x′), (86)

which translates into k(p)
∞ (x, x′) = k

(w)
∞ (x, x′) with our specific choice of constants C∞ and C ′∞,

and thus completes the proof.

D Theory: compact Riemannian manifolds without boundary

Here we introduce an appropriate formalism for the stochastic partial differential equations (6) and
(7) and prove that their solutions are the reproducing kernels of the Sobolev and diffusion spaces
given by De Vito et al. [9].

Let (M, g) be a compact connected Riemannian manifold without boundary,4 and let ∆g be the
Laplace–Beltrami operator defined on the space C∞(M) of smooth functions on M . Let L2(M)
denote the space of (almost everywhere equal equivalence classes of) functions on M which are
square integrable with respect to the Riemannian volume measure.

4Such a manifold is automatically complete, since a compact metric space is always complete.
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Theorem 11. The operator−∆g : C∞(M)→ L2(M) uniquely extends to a self-adjoint unbounded
operator from some domain D(∆g) ⊆ L2(M) to L2(M), and this extension, denoted again by −∆g ,
is a positive operator.

Proof. Strichartz [40, Theorem 2.4].

This allows one to apply the spectral theorem for self-adjoint unbounded operators, which, loosely
speaking, diagonalizes such operators and enables us to introduce a functional calculus for them.
The general statement of the spectral theorem for unbounded self-adjoint operators can be found
in various textbooks—see, for instance, Lang [23, Chapters XIX and XX] or Reed and Simon [31,
Chapter VIII]. For our setting, we do not need this general statement, as there is a separate theorem
for the special case of the Laplace–Beltrami operator on a compact manifold, commonly referred to
as the Sturm-Liouville decomposition.
Theorem 12 (Sturm–Liouville decomposition). Let (M, g) be a compact Riemannian manifold
without boundary. Then there exists an orthonormal basis {fn}n∈Z+

, of L2(M) such that −∆gfn =
λnfn with 0 = λ0 < λ1 ≤ .. ≤ λn and λn → ∞ as n → ∞. Moreover, −∆g admits the
representation

−∆gf =

∞∑
n=0

λn〈f, fn〉fn, (87)

which converges unconditionally in L2(M) for all f ∈ D(∆g).

Proof. See Chavel [7, page 139] or Canzani [6, Theorem 44].

This allows one to define a (possibly unbounded) operator Φ(−∆g) for any Borel measurable function
Φ : [0,+∞)→ R by

Φ(−∆g)f =

∞∑
n=0

Φ(λn)〈f, fn〉fn (88)

with domain given by

D(Φ(−∆g)) =

{
f ∈ L2(M)

∣∣∣∣∣
∞∑
n=0

|Φ(λn)|2|〈f, fn〉|2 <∞

}
. (89)

This idea is called the functional calculus for the operator −∆g. It allows us to formally define
operators from the SPDEs under consideration with(

2ν

κ2
−∆g

) ν
2 + d

4

f =

∞∑
n=0

(
2ν

κ2
+ λn

) ν
2 + d

4

〈f, fn〉fn, using Φ(λ) =

(
2ν

κ2
+ λ

) ν
2 + d

4

, (90)

e−
κ2

4 ∆f =

∞∑
n=0

e
κ2λn

4 〈f, fn〉fn, using Φ(λ) = e
κ2λ
4 . (91)

Denote these operators by L. We now proceed to define an appropriate formalism for the SPDEs

Lf =W. (92)

We start by introducing a notion of generalized Gaussian random fields.
Definition 13 (Definition 3.2.10 of Lototsky and Rozovsky [26]). A zero-mean generalized Gaussian
field F over a Hilbert space H is a collection of Gaussian random variables {F(h)}h∈H with the
properties

1. E(F(h)) = 0 for all h ∈ H ,

2. There exists a bounded, linear, self-adjoint, non-negative operator K on H (called the
covariance operator of F) such that

E(F(h) F(g)) = 〈Kh, g〉H (93)

for all h, g ∈ H .
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A zero-mean generalized Gaussian fieldW over a Hilbert space H with identity I : H → H serving
as covariance operator is called the standard Gaussian white noise over H .

LetW be said white noise over L2(M). Up to a normalizing constant which ensures that the solution
has the right variance, this is equal to the right hand side of equation (92). We do not dwell on this
constant until the very end of this section, where it appears naturally as the normalizing constant of
the resulting kernel.

It is easy to see that the generalized Gaussian field which we have just defined can be thought of as
an operator from H to the space L2(Ω) of zero mean random variables with finite variance. From
this view, the Gaussian white noiseW is an isometric embedding.

To give more intuition, we explicitly consider how the usual concept of a Gaussian process embeds
into this generalization. Let f ∼ GP(0, k(x, x′)) be a Gaussian process over a manifold M with
covariance function k(x, x′). Assume that k is regular enough to consider samples of f as elements of
L2(M). Almost every practically reasonable covariance function will be regular enough in this sense,
so this assumption is not restrictive. The generalized Gaussian field over L2(M) corresponding to f
will be the operator Ff (g) = 〈f, g〉L2(M) for which

E(Ff (h) Ff (g)) = E
(
〈f, h〉L2(M)〈f, g〉L2(M)

)
= E

∫
M

∫
M

f(x)h(x)f(y)g(y)dxdy (94)

=

∫
M

∫
M

E(f(x)f(y))h(x)g(y)dxdy =

∫
M

∫
M

k(x, y)h(x)g(y)dxdy = 〈Kh, g〉L2(M), (95)

where K : L2(M)→ L2(M) is an operator defined by (Kh)(x) =
∫
M
k(x, y)h(y)dy. Note thatW

is much less regular and cannot be represented this way.

Now we are ready to introduce the formal meaning of the SPDEs.
Definition 14 (Definition 4.2.1 of Lototsky and Rozovsky [26]). Let H be a Hilbert space and let
L : H → L2(M) be a bounded linear operator. The zero-mean generalized Gaussian random field F
over H is a solution of the equation

LF =W (96)
if for every g ∈ L2(M)

F(L∗g) =W(g). (97)
Theorem 15 (Theorem 4.2.2 of Lototsky and Rozovsky [26]). If L from definition 14 is invertible,
then a zero-mean generalized Gaussian field F over H defined by

F(h) =W
((
L−1

)∗
h
)

(98)

is the unique solution of the equation (96).

Informally, this means that F = L−1W is the solution of LF = W . The operator L−1IL−1 = L−2

is the covariance operator of F, which is an integral operator with some kernel k, which in its turn is
the covariance function of F when viewed as an ordinary Gaussian process over the manifold M . The
kernel k is easily derived from formulas (90) and (91)—in the following, we will rigorously arrive at
this result.

First, we need to introduce appropriate spaces H to make L : H → L2(M) into a bounded linear
bijection.

To better fit our presentation into the existing mathematical framework, we would like the operator (90)
to have 2ν/κ2 = 1. The next statement shows that this assumption does not lead to any loss of
generality.
Proposition 16. Consider a manifold (M, g̃) with g̃ = 2ν

κ2 g, then for F and G satisfying(
2ν

κ2
−∆g

) ν
2 + d

4

F =W, (1−∆g̃)
ν
2 + d

4 G =Wg̃, (99)

it is true that F =
(
κ2

2ν

) ν+d
2

G.
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We postpone the proof until after we have introduced the remaining formalism. For the time being,
we assume 2ν/κ2 = 1 when dealing with operator (90).

We proceed to define Sobolev spaces onM which will serve as an appropriateH for the operator (90).

Definition 17. Consider s ∈ (0,+∞). Define the operator (1 − ∆g)
− s2 via (88). We say that a

distribution f ∈ D′(M) belongs to the Sobolev space Hs(M) if and only if there exists g ∈ L2(M)
such that f = (1−∆g)

− s2 g. We define the norm with ‖f‖Hs = ‖g‖L2(M), and the inner product
with 〈f, h〉Hs(M) = 〈g, u〉L2(M), if h = (1−∆g)

− s2u ∈ Hs(M).

This is one of several equivalent definition of Sobolev spaces on Riemannian manifolds, other
definitions could be found in De Vito et al. [9, Theorem 3] along with a proof of their equivalence. It
can be seen, thanks to our assumption 2ν/κ2 = 1, that these spaces are particularly suitable domains
for this operator 90, because these spaces are image of the inverse operator acting on L2(M).

In addition, following De Vito et al. [9], we introduce diffusion spaces, which will be suitable for (91).

Definition 18. Consider t ∈ (0,+∞). Define operator e
t
2 ∆g via (88). We say that a distribution

f ∈ D′(M) belongs to the diffusion space Ht(M) if and only if there exists g ∈ L2(M) such that
f = e

t
2 ∆gg. We define the norm with ‖f‖Ht = ‖g‖L2(M) and the inner product with 〈f, h〉Ht(M) =

〈g, u〉L2(M), if h = e
t
2 ∆gu ∈ Ht(M).

Both of these types of spaces are Hilbert spaces [9]. This gives the following.

Theorem 19. The operators

(1−∆g)
ν
2 + d

4 : Hν+ d
2 → L2(M) e−

κ2

4 ∆ : H κ2

2 → L2(M) (100)

are bounded and invertible.

Proof. Immediate by definition of Hν+ d
2 andH κ2

2 .

Now, we suppose that L is one of the operators from (100) and H is the corresponding space such
that L : H → L2(M). Since the conditions of Theorem 15 are satisfied, the solution of (96) is a
zero-mean generalized Gaussian field F defined by (98). We now compute the covariance operator
of F, which is

E(F(h) F(g)) = E
(
W
((
L−1

)∗
h
)
W
((
L−1

)∗
g
))

=
〈(
L−1

)∗
h,
(
L−1

)∗
g
〉
L2(M)

, (101)

and since 〈a, b〉H = 〈La,Lb〉L2(M) is clear from definitions 17 and 18, we have for every h ∈ H
and u ∈ L2(M)〈(

L−1
)∗
h, u

〉
L2(M)

=
〈
h,L−1u

〉
H

=
〈
Lh,LL−1u

〉
L2(M)

= 〈Lh, u〉L2(M). (102)

This means that
(
L−1

)∗
= L and thus

E(F(h) F(g)) =
〈(
L−1

)∗
h,
(
L−1

)∗
g
〉
L2(M)

= 〈Lh,Lg〉L2(M) = 〈h, g〉H , (103)

so F is a Gaussian white noise over H .

We now want to obtain a Gaussian process indexed by M from the generalized Gaussian field F.
That is, we want to define F(x) for x ∈M and to compute covariance function of such F. This can
be easily done thanks to the fact that H is a reproducing kernel Hilbert space, which was proven in
De Vito et al. [9, Theorem 8, Proposition 2]—note that for the Sobolev spacesHs under consideration
we always have s > d/2 since s = ν + d/2, ν > 0.

Let k(x, x′) be the reproducing kernel of H . It is natural to define F(x) = F(k(x, ·)) for x ∈ M .
This F(x) will be a Gaussian random variable by Definition 13. Moreover,

E(F(x) F(x′)) = 〈k(x, ·), k(x′, ·)〉H = k(x, x′) (104)
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by the definition of a reproducing kernel. It follows that {F(x)}x∈M is a Gaussian process in the
standard sense with zero mean and covariance function k which is the reproducing kernel of H .5

The reproducing kernels for Sobolev spaces are given in De Vito et al. [9, Proposition 2] as

k(x, x′) =

∞∑
n=0

(1 + λn)
−ν− d2 fn(x)fn(x′). (105)

An analogous statement is true for the Diffusion spaces, giving

k(x, x′) =

∞∑
n=0

e−
κ2

2 λnfn(x)fn(x′) (106)

with the proof repeating the proof of [9, Proposition 2] mutatis mutandis.

Thus, the kernels normalized to have average variance σ2 are given by

kν(x, x′) =
σ2

Cν

∞∑
n=0

(1 + λn)
−ν− d2 fn(x)fn(x′) (107)

k∞(x, x′) =
σ2

C∞

∞∑
n=0

e−
κ2

2 λnfn(x)fn(x′), (108)

where the constant C(·) is chosen so that volg(M)−1
∫
k(·)(x, x)dx = σ2. In some cases, for

instance when M is a homogeneous manifold, k(·)(x, x) will not depend on x, so k(x, x) = σ2 can
be satisfied.6

Note that throughout the above, we still assumed κ is chosen such that 2ν/κ2 = 1. To show this
assumption was indeed taken without loss of generality, we prove the following.
Proposition 20. Consider a manifold (M, g̃) with g̃ = 2ν

κ2 g, then for F and G satisfying(
2ν

κ2
−∆g

) ν
2 + d

4

F =W, (1−∆g̃)
ν
2 + d

4 G =Wg̃, (99)

it is true that F =
(
κ2

2ν

) ν+d
2

G.

Proof. First, let us verify that the equation to the left is well-defined. To do this, we must check that
operator (90) is bounded and invertible for general κ, ν > 0. Fix f ∈ Hν+ d

2 and find g ∈ L2(M)

such that f = (1−∆g)
− ν2−

d
4 g. Write g =

∑∞
n=0 αnfn using the basis {fn} consisting of Laplacian

eigenfunctions, so f =
∑∞
n=0(1 + λn)

− ν2−
d
4αnfn. Noting that

min

(
2ν

κ2
, 1

)
≤

2ν
κ2 + λn

1 + λn
≤ max

(
1,

2ν

κ2

)
(109)

we can write ∥∥∥∥∥
(

2ν

κ2
−∆g

) ν
2 + d

4

f

∥∥∥∥∥
2

L2(M)

=

∥∥∥∥∥
∞∑
n=0

(
2ν/κ2 + λn

1 + λn

) ν
2 + d

4

αnfn

∥∥∥∥∥
2

L2(M)

(110)

=

∞∑
n=0

(
2ν/κ2 + λn

1 + λn

)ν+ d
2

α2
n ≤

∞∑
n=0

max

(
1,

2ν

κ2

)ν+ d
2

α2
n (111)

= max

(
1,

2ν

κ2

)ν+ d
2

‖g‖2L2(M) = max

(
1,

2ν

κ2

)ν+ d
2

‖f‖2
Hν+

d
2
, (112)

5It is easy to see that BF(g) := 〈F, g〉H , where F is the Gaussian process on M , is the generalized Gaussian
field F we started with.

6It is not known to the authors if homogeneous manifolds are the only manifolds for which k(x, x) does not
depend on x. It seems like an interesting mathematical problem to describe manifolds with this property. It is
even more interesting to describe how the way k(x, x) changes depending on x is determined by the geometry
of M .
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which proves boundedness as well as f ∈ D
((

2ν
κ2 −∆g

) ν
2 + d

4

)
. To prove the operator is invertible,

write ∥∥∥∥∥
(

2ν

κ2
−∆g

) ν
2 + d

4

f

∥∥∥∥∥
2

L2(M)

=

∞∑
n=0

(
2ν/κ2 + λn

1 + λn

)ν+ d
2

α2
n (113)

≥ min

(
2ν

κ2
, 1

)ν+ d
2
∞∑
n=0

α2
n = min

(
2ν

κ2
, 1

)ν+ d
2

‖f‖2
Hν+

d
2
. (114)

Now, consider how a change of the metric from g to g̃ = 2ν
κ2 g changes the objects under consideration.

This is given by the standard expressions

∆g̃ =
κ2

2ν
∆g, d̃x =

(
2ν

κ2

)d/2
dx, (115)

which in turn gives

λ̃n =
κ2

2ν
λn, f̃n =

(
2ν

κ2

)−d/4
fn, 〈f, g〉g̃ =

(
2ν

κ2

)d/2
〈f, g〉, Wg̃ =

(
2ν

κ2

)d/4
W. (116)

With this, we have

(1−∆g̃)
ν
2 + d

4 G =

∞∑
n=0

(
1 + λ̃n

) ν
2 + d

4
〈

G, f̃n

〉
g̃
f̃n =

∞∑
n=0

(
1 +

κ2

2ν
λn

) ν
2 + d

4

〈G, fn〉fn (117)

=

(
κ2

2ν

) ν
2 + d

4 ∞∑
n=0

(
2ν

κ2
+ λn

) ν
2 + d

4

〈G, fn〉fn =

(
κ2

2ν

) ν
2 + d

4
(

2ν

κ2
−∆g

) ν
2 + d

4

G . (118)

This means that G is a solution of(
κ2

2ν

) ν
2 + d

4
(

2ν

κ2
−∆g

) ν
2 + d

4

G =

(
2ν

κ2

)d/4
W. (119)

Gathering all constants, we get that F =
(
κ2

2ν

) ν
2 + d

4 ( 2ν
κ2

)−d/4
G =

(
κ2

2ν

) ν+d
2

G is the solution to(
2ν

κ2
−∆g

) ν
2 + d

4

F =W (120)

which proves the statement.

This means that the kernel of a Gaussian process solving
(

2ν
κ2 −∆g

) ν
2 + d

4 F =W is proportional to

k(x, x′) =

∞∑
n=0

(
1 + λ̃n

)−ν− d2
f̃n(x)f̃n(x′) =

(
κ2

2ν

)−ν−d ∞∑
n=0

(
2ν

κ2
+ λn

)−ν− d2
fn(x)fn(x′).

(121)
Re-normalizing this kernel, we finally get

kν(x, x′) =
σ2

Cν

∞∑
n=0

(
2ν

κ2
+ λn

)−ν− d2
fn(x)fn(x′), (122)

where Cν is chosen as above and κ can now be any positive number. Together with

k∞(x, x′) =
σ2

C∞

∞∑
n=0

e−
κ2

2 λnfn(x)fn(x′) (123)

given in (108), this gives the kernels we sought, and concludes our presentation.
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