
Temporal Variability in Implicit Online Learning

Nicolò Campolongo∗
Università di Milano

nicolo.campolongo@unimi.it

Francesco Orabona
Boston University

francesco@orabona.com

Abstract

In the setting of online learning, Implicit algorithms turn out to be highly suc-
cessful from a practical standpoint. However, the tightest regret analyses only
show marginal improvements over Online Mirror Descent. In this work, we shed
light on this behavior carrying out a careful regret analysis. We prove a novel
static regret bound that depends on the temporal variability of the sequence of
loss functions, a quantity which is often encountered when considering dynamic
competitors. We show, for example, that the regret can be constant if the tempo-
ral variability is constant and the learning rate is tuned appropriately, without the
need of smooth losses. Moreover, we present an adaptive algorithm that achieves
this regret bound without prior knowledge of the temporal variability and prove a
matching lower bound. Finally, we validate our theoretical findings on classifica-
tion and regression datasets.

1 Introduction

The online learning paradigm is a powerful tool to model common scenarios in the real world
when the data comes in a streaming fashion, for example in the case of time series. In the last
two decades there has been a tremendous amount of progress in this field (see, e.g., [30, 13, 24],
for an introduction), which also led to advances in seemingly unrelated areas of machine learning
and computer science. In this setting, a learning agent faces the environment in a game played
sequentially. The protocol is the following: given a time horizon T , in every round t = 1, . . . , T the
agent chooses a model xt from a convex set V . Then, a convex loss function `t is revealed by the
environment and the agent pays a loss `t(xt). As usual in this setting, we do not make assumptions
about the environment, but allow it to be adversarial. The agent’s goal is to minimize her regret
against any decision maker, i.e., the cumulative sum of her losses compared to the losses of an agent
which always commits to the same choice u. So, formally the regret against any u ∈ V is defined
as

RT (u) ,
T∑
t=1

`t(xt)−
T∑
t=1

`t(u) .

Much of the progress in this field is driven by the strictly related model of Online Linear Opti-
mization (OLO): exploiting the assumption that the loss functions are convex, we can linearize them
using a first-order approximation through its (sub)gradient and subsequently minimize the linearized
regret. For example, the well-known Online Gradient Descent (OGD) [38] simply uses the direction
of the negative (sub)gradient of the loss function to update its model, multiplied by a given learning
rate. Usually, a properly tuned learning rate gives a regret bound of O(

√
T ), which is also optimal.

On the other hand, we can choose to not use any approximation to the loss function and instead up-
date our model using directly the loss function rather than its subgradient [17]. This type of update is
known as Implicit and algorithms designed in this way are known to have practical advantages [18].
Unfortunately, their theoretical understanding is still limited at this point.

∗Work done while visiting the OPTIMAL Lab at Boston University.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://sites.google.com/view/optimal-lab/home?authuser=0


Our first contribution (Section 5) in this paper is a refined analysis of Implicit algorithms in the
framework of Online Mirror Descent (OMD). Doing this allows us to understand why Implicit algo-
rithms might practically work better compared to algorithms which use (sub)gradients in the update.
In particular, we describe how these algorithms can potentially incur only a constant regret if the
sequence of loss functions does not vary with time. In particular, we measure the hardness of the
sequence of loss functions with its temporal variability, which is defined as

VT ,
T∑
t=2

max
x∈V

`t(x)− `t−1(x) . (1)

Our second contribution (Section 6) is a new adaptive Implicit algorithm, AdaImplicit, which retains
the worst-caseO(

√
T ) regret bound but takes advantage of a slow varying sequence of loss functions

and achieve a regret ofO(VT + 1). Also, we prove a lower bound which shows that our algorithm is
optimal. Finally, in order to show the benefits of using Implicit algorithms in practice, in Section 7
we conduct an empirical analysis on real-world datasets in both classification and regression tasks.

2 Related Work

Implicit Updates. The implicit updates in online learning were proposed for the first time by Kivi-
nen and Warmuth [17]. However, such update with the Euclidean divergence is the Proximal update
in the optimization literature dating back at least to 1965 [22, 19, 29, 27], and more recently used
even in the stochastic setting [33, 2]. Later, this idea was re-invented by Crammer et al. [11] for
the specific case of linear prediction with losses that have a range of values in which they are zero,
e.g., hinge loss and epsilon-insensitive loss. Implicit updates were also used for online learning
with kernels [9] and to deal with importance weights [16]. Kulis and Bartlett [18] provide the first
regret bounds for implicit updates that match those of OMD, while McMahan [20] makes the first
attempt to quantify the advantage of the implicit updates in the regret bound. Finally, Song et al.
[31] generalize the results in McMahan [20] to Bregman divergences and strongly convex functions,
and quantify the gain differently in the regret bound. Note that in [20, 31] the gain cannot be exactly
quantified, providing just a non-negative data-dependent quantity subtracted to the regret bound.

Adaptivity. Our new analysis hinges on the concept of temporal variability VT of the losses, a
quantity first defined in Besbes et al. [5] in the context of non-stationary stochastic optimization
and later generalized in Chen et al. [8]. In general, the temporal variability has been used in works
considering dynamic environments [e.g., 15, 37, 3, 36]. In particular, Jadbabaie et al. [15] consider
different notions of adaptivity at the same time: if we consider the static regret case with no op-

timistic updates, then their bound gives RT = Õ(
√∑T

t=1 ‖gt‖2? + 1), which is never better than
ours. At first sight, our algorithm seems to achieve the same constant regret bound of Optimistic
algorithms [10, 28] if the sequence of loss functions is such that VT = O(1). However, for this
result Optimistic algorithms need either smooth or linear loss functions. In contrast, our algorithm
does not need this assumption. Other examples of adaptivity to the sequence of loss functions can
be found in [14, 32], which consider bounds in terms of the variance of the sequence of linear losses.

Finally, it is worth mentioning that recently there have been attempts to analyze Implicit algorithms
in dynamic environments [see, e.g., 12, 1, 7]. Nevertheless, these works are not directly compa-
rable to ours since they either consider a different (noisy) setting and competitor or make stronger
assumptions (i.e. smoothness and/or strong convexity of the loss functions).

3 Definitions

For a function f : Rd → (−∞,+∞], we define a subgradient of f in x ∈ Rd as a vector g ∈ Rd
that satisfies f(y) ≥ f(x) + 〈g,y − x〉, ∀y ∈ Rd. We denote the set of subgradients of f in x by
∂f(x). The indicator function of the set V , iV : Rd → (−∞,+∞], is defined as

iV (x) =

{
0, x ∈ V,
+∞, otherwise.

We denote the dual norm of ‖ · ‖ by ‖ · ‖?. A proper function f : Rd → (−∞,+∞] is µ-strongly
convex over a convex set V ⊆ int dom f w.r.t. ‖ · ‖ if ∀x,y ∈ V and g ∈ ∂f(x), we have

2



Algorithm 1 Implicit Online Mirror Descent (IOMD)

Require: Non-empty closed convex set V ⊂ X ⊂ Rd, ψ : X → R, ηt > 0, x1 ∈ V
1: for t = 1, . . . , T do
2: Output xt ∈ V
3: Receive `t : Rd → R and pay `t(xt)
4: Update xt+1 = arg minx∈V Bψ(x,xt) + ηt`t(x)
5: end for

f(y) ≥ f(x) + 〈g,y − x〉 + µ
2 ‖x − y‖2. Let ψ : X → R be strictly convex and continuously

differentiable on intX . The Bregman Divergence w.r.t. ψ is Bψ : X × intX → R+ defined as
Bψ(x,y) = ψ(x) − ψ(y) − 〈∇ψ(y),x − y〉. We assume that ψ is strongly convex w.r.t. a norm
‖ · ‖ in intX . We also assume w.l.o.g. the strong convexity constant to be 1, which implies

Bψ(x,y) ≥ 1

2
‖x− y‖2, ∀x ∈ X,y ∈ intX . (2)

4 Online Mirror Descent with Implicit Updates

In this section, we introduce the Implicit Online Mirror Descent (IOMD) algorithm, its relationship
with OMD, and some of its properties.

Consider a set V ⊂ X ⊆ Rd. The Online Mirror Descent [35, 4] update over V is

xt+1 = arg min
x∈V

Bψ(x,xt) + ηt(`t(xt) + 〈gt,x− xt〉) = arg min
x∈V

Bψ(x,xt) + ηt〈gt,x〉,

for gt ∈ ∂`t(xt) received as feedback. In words, OMD updates the solution minimizing a first-order
approximation of the received loss, `t, around the predicted point, xt, constrained to be not too far
from the predicted point measured with the Bregman divergence. It is well-known, [e.g. 24], that
the regret guarantee for OMD for a non-increasing sequence of learning rates (ηt)

T
t=1 is

RT (u) ≤
T∑
t=1

Bψ(u,xt)−Bψ(u,xt+1)

ηt
+

T∑
t=1

ηt
2
‖gt‖2?, ∀u ∈ V . (3)

This gives a O(
√
T ) regret with, e.g., maxx,y∈V Bψ(x,y) <∞, Lipschitz losses, and ηt ∝ 1/

√
t.

A natural variation of the classic OMD update is to use the actual loss function `t, rather than its
first-order approximation. This is called implicit update [17] and is defined as

xt+1 = arg min
x∈V

Bψ(x,xt) + ηt`t(x) . (4)

Note that, in general, this update does not have a closed form, but for many interesting cases it is still
possible to efficiently compute it. Notably, for ψ = 1

2‖ · ‖
2
2 and linear prediction with the square,

absolute, and hinge loss, these updates can all be computed in closed form when V = Rd [see, e.g.,
11, 18]. This update leads to the Implicit Online Mirror Descent (IOMD) algorithm in Algorithm 1.

We next show how the update in Eq. (4) yields new interesting properties which are not shared with
its non-implicit counterpart. Their proofs can be found in Appendix B.
Proposition 4.1. Let xt+1 be defined as in Eq. (4). Then, there exists g′t ∈ ∂`t(xt+1) such that

`t(xt)− `t(xt+1)−Bψ(xt+1,xt)/ηt ≥ 0, (5)

〈ηtg′t +∇ψ(xt+1)−∇ψ(xt),u− xt+1〉 ≥ 0 ∀u ∈ V, (6)

〈g′t,xt+1 − xt〉 ≥ 〈gt,xt+1 − xt〉 . (7)

The first property implies that, in contrast to OMD, the value of the loss function in xt+1 is always
smaller than or equal to its value in xt. This means that, if `t = `, the value `(xt) will be mono-
tonically decreasing over time. The second property gives an alternative way to write the update
rule expressed in Eq. (4). In particular, using ψ(x) = 1

2‖x‖
2
2 and V = Rd the update becomes

xt+1 = xt−ηtg′t, motivating the name “implicit”. Using this fact in the last property,2 we have that
with L2 regularization, the dual norm of g′t is smaller than the dual norm of gt, i.e. ‖g′t‖2 ≤ ‖gt‖2.

2Eq. (7) is nothing else than the fact that subgradients are monotone operators.

3



Let’s gain some additional intuition on the implicit updates. Consider the case of V = Rd and
ψ(x) = 1

2‖ · ‖
2
2. We have that xt+1 = xt − ηtg

′
t, where g′t ∈ ∂`t(xt+1). Now, if `t+1 ≈ `t,

we would be updating the algorithm approximately with the next subgradient. On the other hand,
knowing future gradients is a safe way to have constant regret. Hence, we can expect IOMD to have
low regret if the functions are slowly varying over time. In the next sections, we will see that this is
indeed the case.

5 Two Regret Bounds for IOMD

In the following, we will present a new regret guarantee for IOMD. First, we give a simple lemma
that provides a bound on the cumulative losses paid after the updates (proof in Appendix B).
Lemma 5.1. Let V ⊂ X ⊂ Rd be a non-empty closed convex set. Let Bψ be the Bregman diver-
gence w.r.t. ψ : X → R. Then, Algorithm 1 guarantees

T∑
t=1

`t(xt+1)−
T∑
t=1

`t(u) ≤
T∑
t=1

Bψ(u,xt)−Bψ(u,xt+1)

ηt
−

T∑
t=1

1

ηt
Bψ(xt+1,xt) . (8)

Furthermore, assume that (ηt)
T
t=1 is a non-increasing sequence and letD2 , maxx,u∈V Bψ(u,x).

Then the bound can further be expressed as
T∑
t=1

`t(xt+1)−
T∑
t=1

`t(u) ≤ D2

ηT
−

T∑
t=1

1

ηt
Bψ(xt+1,xt) . (9)

Adding
∑T
t=1 `t(xt) on both sides of Eq. (8), we immediately get our new regret bound.

Theorem 5.2. Under the assumptions of Lemma 5.1, the regret incurred by Algorithm 1 is bounded
as

RT (u) ≤
T∑
t=1

Bψ(u,xt)−Bψ(u,xt+1)

ηt
+

T∑
t=1

[
`t(xt)− `t(xt+1)− Bψ(xt+1,xt)

ηt

]
. (10)

We note that this result could also be extrapolated from [31], by carefully going through the proof of
their Lemma 1. However, as in the other previous work, they did not identify that the key quantity
to be used in order to quantify an actual gain is the temporal variability VT , as we will show later.

First Regret: Recovering OMD’s Guarantee. To this point, the advantages of an implicit update
are still not clear. Therefore, we now show how, from Theorem 5.2, one can get a possibly tighter
bound than the usual O(

√
T ). The key point in this new analysis is to introduce g′t as defined in

Proposition 4.1 and relate it to the Bregman divergence between xt and xt+1.
Theorem 5.3. Let g′t ∈ ∂`t(xt+1) satisfy Eq. (6). Assume ψ to be 1-strongly convex w.r.t. ‖ · ‖.
Then, under the assumptions of Lemma 5.1, we have that Algorithm 1 satisfies

`t(xt)− `t(xt+1)− Bψ(xt+1,xt)

ηt
≤ ηt‖gt‖? min

(
2‖g′t‖?,

‖gt‖?
2

)
, ∀t, gt ∈ ∂`t(xt) . (11)

Proof. Using the convexity of the losses, we can bound the difference between `t(xt) and `t(xt+1):

`t(xt)− `t(xt+1) ≤ 〈gt,xt − xt+1〉 ≤ ‖gt‖∗‖xt − xt+1‖,
where gt ∈ ∂`t(xt). Given that ψ is 1-strongly convex, we can use Eq. (2) to obtain

`t(xt)− `t(xt+1) ≤ ‖gt‖?
√

2Bψ(xt+1,xt) . (12)

Note that `t(xt) − `t(xt+1) − Bψ(xt+1, xt)/ηt ≤ `t(xt) − `t(xt+1). Hence, to get the first term
in the min of Eq. (11), we can simply look for an upper bound on the term

√
2Bψ(xt+1,xt) in

Eq. (12) above. Using the fact that the Bregman divergence is convex in its first argument, we get

Bψ(xt+1,xt) ≤ 〈∇ψ(xt+1)−∇ψ(xt),xt+1 − xt〉 ≤ 〈ηtg′t,xt − xt+1〉 ≤ ηt‖g′t‖? ‖xt+1 − xt‖

≤ ηt‖g′t‖?
√

2Bψ(xt+1,xt),

4



where we used Eq. (6) in the second inequality and Eq. (2) in the last one. Solving this inequality
with respect to Bψ(xt+1,xt), we get

√
2Bψ(xt+1,xt) ≤ 2ηt‖g′t‖?.

For the second term, it suffices to subtract Bψ(xt+1,xt)/ηt on both sides of Eq. (12) and use the
fact that bx− a

2x
2 ≤ b2

2a ,∀x ∈ R with x = Bψ(xt+1,xt).

This Theorem immediately gives us that Algorithm 1 has a regret upper-bounded by

RT (u) ≤
T∑
t=1

Bψ(u,xt)−Bψ(u,xt+1)

ηt
+

T∑
t=1

ηt‖gt‖? min

(
2‖g′t‖?,

‖gt‖?
2

)
, (13)

where gt ∈ ∂`t(xt). The presence of the minimum makes this bound equivalent in a worst-case
sense to the one of OMD in Eq. (3). Moreover, at least in the Euclidean case, from Eq. (7) we have
that ‖g′t‖2 ≤ ‖gt‖2. However, it is difficult to quantify the gain over OMD because in general ‖gt‖?
and ‖g′t‖? are data-dependent. Hence, as in the other previous analyses, the gain over OMD would
be only marginal and not quantifiable. This is not a limit of our analysis: it is easy to realize that in
the worst case the OMD update and the IOMD update can coincide. To show instead that a real gain
is possible, we are now going to take a different path.

Second Regret: Temporal Variability in IOMD. Here we formalize our key intuition that IOMD
is using an approximation of the future subgradient when the losses do not vary much over time. We
use the notion of temporal variability of the losses, VT , as given in Eq. (1). Considering again our
regret bound in Theorem 5.2 and using ηt = η for all t, we immediately have

RT (u) ≤ Bψ(u,x1)

η
+

T∑
t=1

(
`t(xt)− `t(xt+1)− Bψ(xt+1,xt)

η

)

≤ Bψ(u,x1)

η
+ `1(x1)− `T (xT+1) +

T∑
t=2

(
max
x∈V

`t(x)− `t−1(x)− Bψ(xt+1,xt)

η

)
≤ Bψ(u,x1)

η
+ `1(x1)− `T (xT+1) + VT .

This means that using a constant learning rate yields a regret bound of O(VT + 1), which might
be better than O(

√
T ) if the temporal variability is low. In particular, we can even get constant

regret if VT = O(1). On the contrary, OMD cannot achieve a constant regret for any convex loss
even if VT = 0, since it would imply an impossible O(1/T ) rate for non-smooth batch black-box
optimization [23, Theorem 3.2.1]. Instead, IOMD does not violate the lower bound since it is not a
black-box method. As far as we know, the connection between IOMD and temporal variability has
never been observed before. On the other hand, even when the temporal variability is high, we can
still use a O(1/

√
T ) learning rate to achieve a worst case regret of the order O(

√
T ).

We would like to point out that a similar behaviour arises from Follow The Regularized Leader algo-
rithm (FTRL) employed with full losses, rather than linearized ones. We show a detailed derivation
in Appendix E. Unfortunately, contrarily to the OMD case employing FTRL would entail solving
a constrained convex optimization problem whose size (in terms of number of functions) grows
each step, that would have a high running time even when the implicit updates have closed form
expressions, e.g., linear classification with hinge loss.

Finally, a natural question arises: can we get a bound which interpolates between O(VT + 1) and
O(
√
T ), without any prior knowledge on the quantity VT ? We give a positive answer to this question

by presenting an adaptive strategy in the next section.

6 Adapting to the Temporal variability with AdaImplicit

In this section, we present an adaptive strategy to set the learning rates, in order to give a regret
guarantee that depends optimally on the temporal variability.

From the previous section, we saw that the key quantity in the IOMD regret bound is

δt , `t(xt)− `t(xt+1)− Bψ(xt+1,xt)

ηt
. (14)

5



Algorithm 2 AdaImplicit

Require: Non-empty closed convex set V ⊂ X ⊂ Rd, ψ : X → R, λ1 = 0, β2 > 0, x1 ∈ V
1: for t = 1, . . . , T do
2: Output xt ∈ V
3: Receive `t : Rd → R and pay `t(xt)
4: Update xt+1 = arg minx∈V `t(x) + λtBψ(x,xt)
5: Set δt = `t(xt)− `t(xt+1)− λtBψ(xt+1,xt)
6: Update λt+1 = λt + 1

β2 δt
7: end for

From Eq. (5), we have that δt ≥ 0. At this point, one might think of using a doubling trick: monitor∑t
i=1 δi over time and restart the algorithm with a different learning rate once it exceeds a certain

threshold. In Appendix A, we show that it is indeed possible to use such a strategy. However,
while theoretically effective, we can’t expect the doubling trick to have any decent performance in
practice. Consequently, we are going to show how to use instead an adaptive learning rate.

AdaImplicit. Define D2 , maxx,u∈V Bψ(u,x) and assume D < ∞. For ease of notation, we
let ηt = 1/λt where λt will be decided in the following. Assuming (λt)

T
t=1 to be an increasing

sequence, from Theorem 5.2 we get

RT (u) ≤ D2λT +

T∑
t=1

[`t(xt)− `t(xt+1)− λtBψ(xt+1,xt)] . (15)

Ideally, to minimize the regret we would like to have λT to be as close as possible to the sum over
time in the r.h.s. of this expression. However, setting λt ∝

∑t
s=1 δi would introduce an annoying

recurrence in the computation of λt. To solve this issue, we explore the same strategy adopted in
AdaFTRL [25], adapting it to the OMD case: we set λt+1 = 1

β2

∑t
i=1 δi for t ≥ 2, for a parameter

β to be defined later, and λ1 = 0. We call the resulting algorithm AdaImplicit and describe it
in Algorithm 2. Before proving a regret bound for it, we first provide a technical lemma for the
analysis. This lemma can be found in [24, 26] and for completeness we give a proof in Appendix B.
Lemma 6.1. Let {at}∞t=1 be any sequence of non-negative real numbers. Suppose that
{∆t}∞t=1 is a sequence of non-negative real numbers satisfying ∆1 = 0 and3 ∆t+1 ≤ ∆t +

min
{
bat, ca

2
t/(2∆t)

}
, for any t ≥ 1. Then, for any T ≥ 0,∆T+1 ≤

√
(b2 + c)

∑T
t=1 a

2
t .

We are now ready to prove a regret bound for Algorithm 2.
Theorem 6.2. Let V ⊂ X ⊂ Rd be a non-empty closed convex set. Let Bψ be the Bregman
divergence w.r.t. ψ : X → R and let D2 = maxx,u∈V Bψ(u,x). Assume ψ to be 1-strongly
convex with respect to ‖ · ‖ in V . Then, for any u ∈ V , running Algorithm 2 with β = D guarantees

RT (u) ≤ min

2(`1(x1)− `T (xT+1) + VT ) , 2D

√√√√3

T∑
t=1

‖gt‖2?

 , ∀gt ∈ `t(xt) . (16)

Proof. Using the definition of λt and the fact that the sequence (λt)
T+1
t=1 is increasing over time, the

regret in Eq. (15) can be upper bounded as RT (u) ≤ (D2 +β2)λT+1. Therefore, we need an upper
bound on λT+1. We split the proof in two parts, one for each term in the min in Eq. (16). For the
first term, using the definition of λt we have

β2λT+1 =

T∑
t=1

[`t(xt)− `t(xt+1)− λtBψ(xt+1,xt)]

≤ `1(x1)− `T (xT+1) +

T∑
t=2

[`t(xt)− `t−1(xt)] ≤ `1(x1)− `T (xT+1) + VT ,

3With a small abuse of notation, let min(x, y/0) = x.

6



from which using β = D the result follows.

For the second term, from Lemma 5.3 for t ≥ 2 we have δt ≤ ‖gt‖
2
?

2λt
. On the other hand,

δt = `t(xt)− `t(xt+1)− λtBψ(xt+1,xt) ≤ `t(xt)− `t(xt+1) ≤ 〈gt,xt − xt+1〉
≤ ‖gt‖?‖xt − xt+1‖ ≤

√
2D‖gt‖?,

where in the last step we used Eq. (2) and the definition of D. Therefore, putting the last two results
together we get

δt ≤ min
(√

2D‖gt‖?, ‖gt‖2?/(2λt)
)
, ∀gt ∈ ∂`t(xt) .

Note that λt+1 = λt + 1
β2 δt. Hence, λ1 = 0, λ2 = (`1(x1)− `1(x2))/β2 ≤

√
2D‖g1‖?/β2, and

λt+1 = λt +
1

β2
δt ≤ λt +

1

β2
min

(√
2D‖gt‖?,

‖gt‖2?
2λt

)
, ∀t ≥ 3 .

Therefore, using Lemma 6.1 with ∆t = λt, b =
√
2D
β2 and c = 1

β2 , at = ‖gt‖?, we get

λT+1 ≤

√√√√(2D2/β4 + 1/β2)

T∑
t=1

‖gt‖2?,

from which setting β = D we obtain the second term in the min in Eq. (16).

This last theorem shows that Algorithm 2 can have a low regret if the temporal variability of the
losses VT is low. Moreover, differently from Optimistic Algorithms, Algorithm 2 does not need
additional assumptions on the losses (for example smoothness), as done for example in [15].

Lower Bound. Next, we are going to prove a lower bound in terms of the temporal variability
VT , which shows that the regret bound in Theorem 6.2 cannot be improved further. The proof is a
simple modification of the standard arguments used to prove lower bounds for constrained OLO and
is reported in Appendix B.
Theorem 6.3. Let d ≥ 2, ‖ · ‖ an arbitrary norm on Rd, and V = {x ∈ Rd : ‖x‖ ≤ D/2}. Let A
be a deterministic algorithm on V . Let T be any non-negative integer. Then, for any V ′T ≥ 0, there
exists a sequence of convex loss functions `1(x), . . . , `T (x) with temporal variability equal to V ′T
and u ∈ V such that the regret of algorithm A satisfies RT (u) ≥ V ′T .

7 Empirical results

0 500 1000 1500 2000
T

10 3

10 1

101

103

L T

Slow varying losses

AdaImplicit
Implicit
AdaOGD
OGD

Figure 1: Synthetic experiment.

In this section, we compare the empirical performance of our al-
gorithm AdaImplicit with standard baselines in online learning:
OGD [38], OGD with adaptive learning rate ηt = β√∑t

i=1 ‖gt‖2?
(AdaOGD) [21], and IOMD with ηt = β/

√
t (Implicit) [18].

Synthetic Experiment. We first show the benefits of AdaIm-
plicit on a synthetic dataset. The loss functions are chosen to
have a small temporal variability VT . In particular, we consider
a 1-d case using `t(x) = 1

4 (x− yt)2 with yt = 100 sin(π t
10T ),

a time horizon T = 2000 and the L2 ball of diameter D = 150.
We set β = 1 in all algorithms. The update of the implicit al-
gorithms can be computed in closed form: xt+1 = xt − ηt

2+ηt
(xt − yt). In Fig. 1 we show the

cumulative loss LT =
∑T
t=1 `t(xt) of the algorithms (note that the y-axis is plotted in logarith-

mic scale). From the figure we can see that, contrarily to the other algorithms, the cumulative loss
of AdaImplicit grows slowly over time, reflecting experimentally the bound given in Theorem 6.2.
Also, even if not directly observable, OGD and IOMD basically incur the same total cumulative
loss.

Real world datasets. We are now going to show some experiments conducted on real data. Here,
there is no reason to believe that the temporal variability is small. However, we still want to verify

7



2 20 2 10 20 210

 
0

1

2

3

4

5

L T
/T

covtype
AdaImplicit
Implicit
AdaOGD
OGD

2 10 20 210 220

 
0

1

2

3

4

L T
/T

cod-rna
AdaImplicit
Implicit
AdaOGD
OGD

2 20 2 10 20 210

 
0.0

0.5

1.0

1.5

2.0

2.5

L T
/T

phishing
AdaImplicit
Implicit
AdaOGD
OGD

2 10 2 5 20 25 210 215

 

2

4

6

8

10

L T
/T

abalone_scale
AdaImplicit
Implicit
AdaOGD
OGD

2 20 2 10 20 210 220

 

20

40

60

80

L T
/T

cpusmall_scale
AdaImplicit
Implicit
AdaOGD
OGD

2 10 20 210 220

 
0.0

0.2

0.4

0.6

0.8

1.0

L T
/T

1e6 cadata
AdaImplicit
Implicit
AdaOGD
OGD

Figure 2: Plots on classification tasks using the hinge loss (top) and regression tasks using the
absolute loss (bottom).

if AdaImplicit can achieve a good worst-case performance. We consider both classification and
regression tasks. Additional plots can be found in Appendix D.

We used datasets from the LIBSVM library [6]. Before running the algorithms, we preprocess the
data by dividing each feature by its maximum absolute value so that all the values are in the range
[−1, 1], then we add a bias term. Details about the datasets can be found in Appendix D.

Given that in the online setting we cannot tune the hyperparameter β using hold-out data, we plot
the average cumulative loss of each algorithm, i.e., Lt/t = 1

t

∑t
i=1 `i(xi), as a function of the

hyperparameter β. This allows us to evaluate at the same time the sensitivity of the algorithms to β
and their best performance with oracle tuning. Note that in all the algorithms we consider the optimal
worst-case setting of β is proportional to the diameter of the feasible set, hence it is fair to plot their
performance as a function of β. We consider values of β in [2−20, 220] with a grid containing 41
points. Then, each algorithm is run 10 times and results are averaged. For classification tasks we
use the hinge loss, while for regression tasks we use the absolute loss. In both cases, we adopt the
squared L2 function for ψ. The details about implicit updates are discussed in Appendix C.

Results are illustrated in Fig. 2. From the plots, we can see that when fine-tuned, all the algorithms
achieve similar results, i.e., the minimum value of average cumulative loss is very close for all the
algorithms considered and there is not a clear winner. However, note that the range of values which
allows an algorithm to reach the minimum is considerably wider for Implicit algorithms and confirms
their robustness regarding learning rate misspecification, as already investigated in other works [see,
e.g., 33, 34]. This is a great advantage when considering online algorithms since, contrarily to the
batch setting, algorithms cannot be fine-tuned in advance relying on training/validation sets.

8 Conclusions

In this paper, we investigated online Implicit algorithms from a theoretical perspective. Our analysis
revealed interesting insights regarding the behavior of these algorithms and allowed us to design
a new adaptive algorithm, which may take advantage of “easy” data. The obtained experimental
results indicate that in real-world tasks (such as online classification with hinge loss or online re-
gression with the absolute loss), Implicit algorithms provide a better solution in terms of robustness,
which is particularly relevant in online settings. Future directions include extending our analysis to
a broader area, for example considering dynamic environments or strongly-convex loss functions, to
see if the same gains can be proved. Finally, other examples of “easy” data can be considered, such
as the case of stochastic loss functions.

8



Broader Impact

We believe our investigation will foster further studies promoting the adoption of adaptive learning
rates in online learning and beyond. Indeed, in recent years adaptive methods in optimization proved
to be one of the preferred methods for training deep neural networks. On the other hand, this work
confirm the robustness of implicit updates and opens up to new possibilities in this field. From a
societal aspect, this work in mainly theoretical and does not present any foreseeable consequence.

Acknowledgements

This material is based upon work supported by the National Science Foundation under grants no.
1925930 “Collaborative Research: TRIPODS Institute for Optimization and Learning” and no.
1908111 “AF: Small: Collaborative Research: New Representations for Learning Algorithms and
Secure Computation”. NC thanks Nicolò Cesa-Bianchi for supporting his visit to Boston University.

References
[1] A. Ajalloeian, A. Simonetto, and E. Dall’Anese. Inexact online proximal-gradient method for

time-varying convex optimization. arXiv preprint arXiv:1910.02018, 2019.

[2] H. Asi and J. C. Duchi. Stochastic (approximate) proximal point methods: Convergence,
optimality, and adaptivity. SIAM Journal on Optimization, 29(3):2257–2290, 2019.

[3] D. Baby and Y.-X. Wang. Online forecasting of total-variation-bounded sequences. In Ad-
vances in Neural Information Processing Systems, pages 11069–11079, 2019.

[4] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[5] O. Besbes, Y. Gur, and A. Zeevi. Non-stationary stochastic optimization. Operations research,
63(5):1227–1244, 2015.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[7] N. Chen, G. Goel, and A. Wierman. Smoothed online convex optimization in high dimensions
via online balanced descent. In Conference On Learning Theory, pages 1574–1594, 2018.

[8] X. Chen, Y. Wang, and Y.-X. Wang. Nonstationary stochastic optimization under Lp,q-
variation measures. Operations Research, 67(6):1752–1765, 2019.

[9] L. Cheng, S. V. N. Vishwanathan, D. Schuurmans, S. Wang, and T. Caelli. Implicit online
learning with kernels. In Advances in Neural Information Processing Systems 19, pages 249–
256, 2007.

[10] C.-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin, and S. Zhu. Online opti-
mization with gradual variations. In Proc. of the Conference on Learning Theory (COLT),
volume 23, pages 6.1–6.20, 2012.

[11] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

[12] R. Dixit, A. S. Bedi, R. Tripathi, and K. Rajawat. Online learning with inexact proximal online
gradient descent algorithms. IEEE Transactions on Signal Processing, 67(5):1338–1352, 2019.

[13] E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3–4):157–325, 2016.

[14] E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in
costs. In Proc. of the 21st Conference on Learning Theory, 2008.

[15] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan. Online optimization: Competing
with dynamic comparators. In Artificial Intelligence and Statistics, pages 398–406, 2015.

9

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[16] N. Karampatziakis and J. Langford. Online importance weight aware updates. In Proc. of
the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, pages 392—
-399, Arlington, Virginia, USA, 2011. AUAI Press.

[17] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predic-
tors. Information and Computation, 132(1):1–63, January 1997.

[18] B. Kulis and P. L. Bartlett. Implicit online learning. In International Conference on Machine
Learning, pages 575–582, 2010.

[19] B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. rev.
française informat. Recherche Opérationnelle, 4:154–158, 1970.

[20] H. B. McMahan. A unified view of regularized dual averaging and mirror descent with implicit
updates. arXiv preprint arXiv:1009.3240, 2010.

[21] H. B. McMahan and M. J. Streeter. Adaptive bound optimization for online convex optimiza-
tion. In COLT, 2010.

[22] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France, 93:273–299, 1965.

[23] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer, 2004.

[24] F. Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

[25] F. Orabona and D. Pál. Scale-free algorithms for online linear optimization. In International
Conference on Algorithmic Learning Theory, pages 287–301. Springer, 2015.

[26] F. Orabona and D. Pál. Scale-free online learning. Theoretical Computer Science, 716:50–69,
2018. Special Issue on ALT 2015.

[27] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):
127–239, 2014.

[28] A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences.
In Advances in Neural Information Processing Systems, pages 3066–3074, 2013.

[29] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

[30] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2), 2012.

[31] C. Song, J. Liu, H. Liu, Y. Jiang, and T. Zhang. Fully implicit online learning. arXiv preprint
arXiv:1809.09350, 2018.

[32] J. Steinhardt and P. Liang. Adaptivity and optimism: An improved exponentiated gradient
algorithm. In Proc. of the International Conference on Machine Learning (ICML), pages 1593–
1601, 2014.

[33] P. Toulis and E. M. Airoldi. Asymptotic and finite-sample properties of estimators based on
stochastic gradients. The Annals of Statistics, 45(4):1694–1727, 2017.

[34] P. Toulis, E. M. Airoldi, and J. Rennie. Statistical analysis of stochastic gradient methods for
generalized linear models. In International Conference on Machine Learning, pages 667–675,
2014.

[35] M. K. Warmuth and A. K. Jagota. Continuous and discrete-time nonlinear gradient descent:
Relative loss bounds and convergence. In Electronic proceedings of the 5th International
Symposium on Artificial Intelligence and Mathematics, 1997.

[36] T. Yang, L. Zhang, R. Jin, and J. Yi. Tracking slowly moving clairvoyant: Optimal dynamic
regret of online learning with true and noisy gradient. In International Conference on Machine
Learning, pages 449–457, 2016.

10



[37] L. Zhang, T. Yang, and Z.-H. Zhou. Dynamic regret of strongly adaptive methods. In Interna-
tional Conference on Machine Learning, pages 5882–5891, 2018.

[38] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proc. of ICML, pages 928–936, 2003.

11


	Introduction
	Related Work
	Definitions
	Online Mirror Descent with Implicit Updates
	Two Regret Bounds for IOMD
	Adapting to the Temporal variability with AdaImplicit
	Empirical results
	Conclusions
	Doubling Trick
	Fixed Losses

	Proofs
	Lower Bound

	Formulas
	Experiments
	Implicit Updates for FTRL

