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A Proof of Theorem 1

Note that the primal problem Eq. (9) is
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Its Lagrange function can be written as
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where ↵m and �m are Lagrange multipliers. Then we have
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The dual problem is thus

min
↵

1

2

�����

MX

m=1

↵mr✓`
t
m(✓(⌧))

�����

2

, s.t.
MX

m=1

↵m = 1, 0  ↵m  C, 8m 2 [1 : M ]. (22)

Denote the optimal solution of Eq. (9) and Eq. (10) as (d⇤, v⇤, ⇠⇤m) and (↵⇤
m,�⇤

m), respectively.
According to KKT condition, we have
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In this way,

• if d⇤ = 0, then we have hr✓`tm(✓(⌧)),d⇤
i = 0, which is a trivial case and corresponds to

the Pareto critical point.
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which implies that
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Then the proof is completed.
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