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Abstract

We study locally differentially private (LDP) bandits learning in this paper. First,
we propose simple black-box reduction frameworks that can solve a large family
of context-free bandits learning problems with LDP guarantee. Based on our
frameworks, we can improve previous best results for private bandits learning with
one-point feedback, such as private Bandits Convex Optimization, and obtain the
first result for Bandits Convex Optimization (BCO) with multi-point feedback under
LDP. LDP guarantee and black-box nature make our frameworks more attractive
in real applications compared with previous specifically designed and relatively
weaker differentially private (DP) context-free bandits algorithms. Further, we
extend our (ε, δ)-LDP algorithm to Generalized Linear Bandits, which enjoys a
sub-linear regret Õ(T 3/4/ε) and is conjectured to be nearly optimal. Note that
given the existing Ω(T ) lower bound for DP contextual linear bandits [35], our
result shows a fundamental difference between LDP and DP contextual bandits
learning.

1 Introduction

As a general and powerful model, (contextual) bandits learning has attracted lots of attentions both in
theoretical study and real applications [8, 28], from personalized recommendation to clinical trails.
However, existing algorithms designed for these applications heavily rely on user’s sensitive data, and
an off-the-shelf use of such algorithms may leak user’s privacy and bring concerns to future users for
sharing their data with related institutions or corporations. For example, in classification or regression
tasks, we update our model according to the feature and label of each user. In Multi-Armed Bandits
(MAB), we estimate underlying rewards of all arms based on user’s feedback. A solid notion of data
privacy is Differential Privacy (DP) proposed by Dwork et al. [13] in 2006. Since then, differentially
private bandits learning has been studied extensively.

Among context-free bandits learning, Bandits Convex Optimization (BCO) is one of the fundamental
problems. Thakurta and Smith [37] designed the first (ε, δ)-differentially private adversarial BCO
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Type Problem Our Regret Bound Best Non-Private Regret

Context-Free
BCO

Convex Õ
(
T 3/4/ε

)
Õ
(
T 3/4

)
[16]

Convex + Smooth Õ
(
T 2/3/ε

)
Õ
(
T 2/3

)
[32]

S.C Õ
(
T 2/3/ε

)
Õ
(
T 2/3

)
[3]

S.C + Smooth Õ
(
T 1/2/ε

)
Õ
(
T 1/2

)
[18]

MP-BCO
Convex Õ

(
T 1/2/ε2

)
Õ
(
T 1/2

)
[3]

Strongly Convex Õ
(
log T/ε2

)
Õ (log T ) [3]

Context-Based
Contextual Linear Bandits Õ(T 3/4/ε) Õ(T 1/2) [1]
Generalize Linear Bandits Õ(T 3/4/ε) Õ(T 1/2) [30]

Table 1: Summary of our main results under (ε, δ)-LDP, where Õ notation hides dependence over
dimension d and other poly-logarithmic factors. (S.C means Strongly Convex, MP means Multi-Point)

algorithm with Õ
(
T 3/4/ε

)
regret for convex loss and Õ

(
T 2/3/ε

)
regret for strongly convex loss,

which nearly match current best non-private results under the same conditions [3, 16]1. However,
when loss functions are further smooth, current best non-private bounds for convex/strongly convex
bandits are Õ

(
T 2/3

)
[32] and Õ

(
T 1/2

)
[18] respectively, and previous approaches [37, 5] seem

hard to achieve such regret bounds in the same setting under privacy constraint (see Section 3.1 for
more discussions). Besides BCO and its extension to multi-point feedback [3], context-free bandits
also include other important cases, such as Multi-Armed Bandits (MAB), and there have been lots
of algorithms designed for differentially private MAB [37, 31, 38, 39, 5, 33], either in stochastic or
adversarial environment. As one can see, there are many different settings in context-free bandits
learning, and existing differentially private algorithms are carefully designed for each one of them,
which makes them relatively inconvenient to be used. Besides, their theoretical performance is
analyzed separately and rather complicated. Some of them do not match corresponding non-private
results.

Different with context-free bandits, usually there are certain contexts in real applications, such as user
profile that contains user’s features. Advanced bandit model uses these contexts explicitly to find
the corresponding best action at each round, which is called contextual bandits. Two representatives
are contextual linear bandits [29] and Generalized Linear Bandits [15]. Given benefits of contextual
bandits, one may also wish to design corresponding private mechanisms. However, Shariff and
Sheffet [35] proved that any differentially private contextual bandit algorithm would cause an Ω(T )
regret bound. Hence, they considered a relaxed definition of DP called joint differential privacy,
and proposed an algorithm based on LinUCB [1] with regret bound Õ

(
T 1/2/ε

)
[35] under ε-joint

differential privacy.

Note all of previous study focus on differential privacy or its relaxed version. Compared with
Differential Privacy, most of time Local Differential Privacy (LDP) [26, 11] is a much stronger and
user-friendly standard of privacy and is more appealing in real applications [10], as LDP requires
protecting each user’s data before collection.

For context-free bandits, it is not hard to see algorithms with LDP guarantee protects DP automatically.
However in contextual bandits, things become more delicate. These two definitions are not comparable
as they have different interpretations about the output sequence, and traditional post-processing
property cannot be used here to imply LDP is more rigorous than DP. In detail, DP regards predicted
actions for contexts as the output sequence. Since optimal action varies from round to round in
contextual bandits, it is not surprising there is a lower bound of linear regret in this case [35], as DP
requires outputs to be nearly the same for any two neighboring datasets/contexts, which essentially
contradicts with the goal of personalized prediction in contextual bandits. In contrast, LDP regards
the collected information from users as “output sequence” and has no restriction on predicted actions,
which is more reasonable as these actions are predicted on the local side based on local personal
information and will not be released to public. Therefore, LDP seems like a more appropriate standard

1Though Bubeck et al. [9] designed a polynomial time algorithm for general BCO with Õ(T 1/2) regret, it is
far from practical, so we don’t consider its result in this paper, but of course we can plug that algorithm into our
framework to obtain optimal Õ(T 1/2/ε) bound for general private BCO.
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for contextual bandits compared with DP, and maybe there is hope to bypass the lower bound proved
for DP contextual bandits.

Given above discussions, a natural question arises: can we design simple and effective algorithms for
bandits learning with LDP guarantee?

Our Contributions: In this work, we study both context-free bandits2 and contextual bandits with
LDP guarantee. Our contributions are summarized as follows: (see Table 1 for more details)

(1) We propose a simple reduction framework motivated by Agarwal and Singh [5] for a large class
of context-free bandits learning problems with LDP guarantee, including BCO, MAB and Best Arm
Identification (see Section 3.1 and Appendix3 B). Equipped with different non-private algorithms, the
utility of our framework can match corresponding best non-private performances, and these results
are obtained through a unified and simple analysis;

(2) By modifying above framework slightly, we extend our algorithm to BCO with multi-point
feedback [3], and design the first LDP multi-point BCO algorithm with nearly optimal guarantees;

(3) For contextual bandits including contextual linear bandits and more difficult generalized linear
bandits, we propose algorithms with regret bounds Õ(T 3/4/ε) under (ε, δ)-LDP , which are conjec-
tured to be optimal. Note that these results show a fundamental difference between LDP and DP
contextual bandits as discussed above.

All our results can be extended in parallel to ε-LDP if using Laplacian noise instead of Gaussian
noise. Here, we only focus on (ε, δ)-LDP.

Comparison with Prior Work: As mentioned earlier, for context-free bandits, nearly all of previous
work focused on differentially private bandits learning, rather than stronger LDP guarantee. Only
algorithms proposed in Tossou and Dimitrakakis [39] and Agarwal and Singh [5] for adversarial
MAB can be converted to LDP version easily and obtain almost the same results. Though both their
algorithms and ours are nearly the same in MAB, which is a very special case of bandits learning,
our analysis is different, and we prove a new result for MAB with LDP guarantee as a side-product,
which achieves nearly optimal regret bound under both adversarial and stochastic environment
simultaneously (Appendix B.1). What’s more, our results apply to more general bandits learning.
For more comparison with Agarwal and Singh [5], see Section 3.1. Note, even in stronger LDP
context-free bandits, our framework can achieve improved regret bounds for smooth BCO compared
with previous results under weaker DP guarantee [37]. Besides, to the best of our knowledge, we
give the first results for contextual bandits under LDP.

2 Preliminaries

Notations: [p] = {1, 2, · · · , p}. d is the dimension of decision space, and ei represents i-th basis
vector. For a vector x and a matrix M , define ‖x‖M :=

√
x>Mx. Given a setW , we define the

projection into this set as ΠW(·).

Suppose the server collects certain information from each user with data domain C. C can be the
range of loss values in context-free bandits, or both contexts and losses/rewards in contextual bandits.
Now we define LDP rigorously:
Definition 1 (LDP). A mechanism Q : C → Z is said to protect (ε, δ)-LDP, if for any two data
x, x′ ∈ C, and any (measurable) subset U ⊂ Z , there is

Pr[Q(x) ∈ U ] 6 eε Pr[Q(x′) ∈ U ] + δ

In particular, if Q preserves (ε, 0)-LDP, we call it ε-LDP.

Now, we introduce a basic mechanism in LDP literature – Gaussian Mechanism. Given any function
h : C → Rd. Define ∆ := maxx,x′∈C ‖h(x)− h(x′)‖2, then Gaussian Mechanism is defined
as h(x) + Y , where random vector Y is sampled from Gaussian distribution N (0, σ2Id) with

σ =
∆
√

2 ln(1.25/δ)

ε . One can prove Gaussian Mechanism preserves (ε, δ)-LDP [12].

2Note that adaptive adversary is ambiguous in bandits setting [6], so we only consider oblivious adversary
throughout the paper.

3Appendix could be found in the full version [43].
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Algorithm 1: One-Point Bandits Learning-LDP
1 Input: non-private algorithm A, privacy parameters ε, δ

2 Initialize: set σ =
2B
√

2 ln(1.25/δ)

ε
3 for t = 1, 2, . . . do
4 Server plays xt ∈ X returned by A;
5 User t suffers loss ft(xt) and sends ft(xt) + Zt to A in the server, where Zt ∼ N (0, σ2);
6 A receives ft(xt) + Zt and calculates xt+1

Next, we define the common strong convexity and smoothness for a function f .

Definition 2. We say that a function f : X → R is µ-strongly convex if there is: f(x) − f(y) 6
∇f(x)>(x − y) − µ

2 ‖x− y‖
2
2. We say that a function f : X → R is β-smooth if it satisfies the

following inequality:
∣∣f(x)− f(y)−∇f(y)>(x− y)

∣∣ 6 β
2 ‖x− y‖

2
2

3 Nearly Optimal Context-Free Bandits Learning with LDP Guarantee

In this section, we consider private context-free bandits learning with LDP guarantee, including
bandits with one-point and multi-point feedback. As the following theorem shows, LDP is much
stronger than DP in this setting (see Appendix A for the definition of DP in streaming setting and the
proof), therefore it is more difficult to design algorithms under LDP with nearly optimal guarantee.

Theorem 1. If an algorithm A protects ε-LDP, then any algorithm based on the output of A on a
sequence of users guarantees ε-DP in streaming setting.

3.1 Private Bandits Learning with One-Point Feedback

Bandits learning with one-point feedback includes several important cases, such as BCO, MAB, and
Best Arm Identification (BAI). Generally speaking, we need to choose an action in the decision set at
each round based on all previous information, then receive corresponding loss value of the action we
choose. Most of time, our goal is to design an algorithm to minimize regret (it will be defined clearly
later) compared with any fixed competitor.

Different with previous work [37, 31, 38, 39, 33], which designed delicate algorithms for different
bandit learning problems under DP, here we propose a general framework to solve all of them within
a unified analysis under stronger LDP. Our general private framework is shown in Algorithm 1, based
on a pre-chosen non-private black-box bandits learning algorithm A. Definitions of X , ft and the
choice of A in Algorithm 1 will be made clear in concrete settings below. Here we only assume all
ft(x) are bounded by a constant B, i.e., ∀x ∈ X , t ∈ [T ], |ft(x)| 6 B.

For private linear bandits learning, Agarwal and Singh [5] also propose a general reduction framework
that can achieve nearly optimal regret. The key idea is to inject a linear perturbation 〈nt, xt〉 to
the observed value ft(xt) at each round, where xt is the current decision strategy and nt is fresh
noise vector sampled from a predefined distribution. Because of the special form of linear loss, their
approach actually protects data sequence in the functional sense, i.e., it is equivalent to disturbing
original linear loss function ft(x) with noisy function n>t x. However, this approach cannot protect
privacy when loss functions are nonlinear, as injected noise depends on strategy xt. Just consider
xt = 0, then it may leak the information of ft as values of different nonlinear functions can be
different at point xt = 0 and there is no noise at all if we use perturbation 〈nt, xt〉. Instead, our main
idea is to inject fresh noise variable directly to the observed loss value at each round, which doesn’t
rely on xt any more. Intuitively, this approaches looks more natural as bandits learning algorithms
only use the information of these observed loss values instead of loss functions.

Obviously, the LDP guarantee of Algorithm 1 is followed directly from basic Gaussian mechanism.

Theorem 2. Algorithm 1 guarantees (ε, δ)-LDP.

To show the power of Algorithm 1, here we consider its main application, Bandits Convex Opti-
mization. For another two concrete applications, MAB and BAI, see Appendix B for more details.
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Besides, it also looks promising to extend the technique to pure exploration in combinatorial bandits
(e.g., [21]).

In bandit convex optimization [20], X is a bounded convex constraint set. At each round, the server
chooses a prediction xt based on previous collected information, then suffers and observers a loss
value ft(xt). The goal is to design an algorithm with low regret defined as maxx∈X E[

∑T
t=1 ft(xt)−

ft(x)]. There are two different environments which generate underlying loss function sequence
{ft(x)|t ∈ [T ]}. For adversarial BCO, there is no further assumption about {ft(x)|t ∈ [T ]} and they
are fixed functions given before games starts. For stochastic BCO [4], feedback ft(xt) is generated
as f(xt) + qt, where f(x) is an unknown convex function and {qt} are independently and identically
distributed noise sampled from a sub-Gaussian distribution Q with mean 0.

A critical ingredient in BCO is the gradient estimator constructed through the observed feedback.
Besides convexity, when ft have additional properties like smoothness or strong convexity, usually we
need to construct different gradient estimators and use different efficient non-private algorithms A to
achieve better performance [16, 3, 32, 18]. Denote ut as a uniform random vector sampled from the
unit sphere, then two representatives of gradient estimators are sphere sampling estimator dρft(xt)ut
used in [16, 3] (ρ is a parameter), and advanced ellipsoidal sampling estimator dft(xt)A−1

t ut which
is the key part in [32, 18] to further improve the performance, where At is the Hessian matrix induced
by certain loss function with self-concordant barrier.

When it comes to private setting, Thakurta and Smith [37] designed a delicate differentially private
algorithm with Õ

(
T 3/4/ε

)
and Õ

(
T 2/3/ε

)
guarantees for convex and strongly convex loss functions

respectively, based on classical sphere sampling estimator and tree-based aggregation technique [14].
To achieve better bounds under additional smoothness assumption, it seems natural to combine their
method with advanced ellipsoidal sampling estimator. However, this approach doesn’t work even
under DP guarantee, let alone LDP guarantee. In detail, to protect privacy, usually we need to add
noise proportional to the range of information we use. For classical sphere sampling estimator, it
is bounded by dB/ρ. However, for the advanced ellipsoidal sampling estimator, the spectral norm
of inverse Hessian of self-concordant barrier (i.e., A−1

t ) can be unbounded, which makes it hard to
protect privacy. Besides, tree-based aggregation techniques fail in LDP setting.

Instead of adding noise to the accumulated estimated gradient like Thakurta and Smith [37], our
general reduction Algorithm 1 injects noise directly to the loss value that is already bounded. Based
on the critical observation that the regret defined for original loss functions {ft(x)|t ∈ [T ]} equals to
the regret defined for virtual loss functions {ft(x) + Zt|t ∈ [T ]} in expectation, we avoid complex
analysis which is based on a connection with non-private solutions [37], and obtain the utility of our
private algorithm through the guarantee of non-private algorithm A directly as the following shows:
Theorem 3. Suppose non-private algorithm A achieves regret B · RegTA for BCO, where B is the
range of loss function. We have the following guarantee for Algorithm 1: for any x ∈ X , there is

E

[
T∑
t=1

ft(xt)− ft(x)

]
6 Õ

(
B ln(T/δ)

ε
· RegTA

)
(1)

where expectation is taken over the randomness of non-private algorithm A and all injected noise.4

With above theorem, by plugging different non-private optimal algorithms under variant cases, we
obtain corresponding regret bounds with LDP guarantee:

Corollary 4. When loss functions are convex and β-smooth, Algorithm 1 achieves Õ(T 2/3/ε) regret
by setting A as Algorithm 1 in [32]. When loss functions are µ-strongly convex and β-smooth,
Algorithm 1 achieves Õ(

√
T/ε) regret by setting A as Algorithm 1 in [18]. For private Stochastic

BCO, using Algorithm 2 in [4] as the black-box algorithm will achieve Õ(
√
T/ε) regret.

Note this result improves previous result [37] in three aspects. First, our Algorithm 1 guarantees
stronger LDP rather than DP. Second, it achieves better regret bounds when loss functions are
further smooth, and matches corresponding non-private results. Third, our algorithm is easy to be
implemented, admits a unified analysis, and also obtains new results in stochastic BCO.

4Actually, if using the high probability guarantee of black-box algorithmA, we can also obtain corresponding
high probability guarantee of our Algorithm 1. See Appendix E for more details, and the same argument there
can be extended to results in section 3.2 as well.
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Algorithm 2: Two-Point Feedback Private Bandit Convex Optimization via Black-box Reduction
1 Input: set A as Algorithm 4 (in Appendix C) with parameters η, ρ, ξ, privacy parameters ε, δ

2 Initialize: set σ =
2G
√

2 ln(1.25/δ)

ε , η = 1√
T
, ρ = log T

T , ξ = ρ
r

3 for t = 1, 2, . . . do
4 Server plays xt,1, xt,2 ∈ X received from A
5 User suffers ft(xt,1), ft(xt,2) and passes ft(xt,1)− ft(xt,2) + n>t (xt,1 − xt,2) to A in the

server, where nt ∼ N (0, σ2Id)

3.2 Private Bandits Convex Optimization with Multi-Point Feedback

Now we consider BCO with Multi-Point Feedback. Different with one-point bandit feedback setting,
where we can only query one point at each round, now we can query multiple points. This is natural
in many applications, such as in personalized recommendation, we can recommend multiple items to
each user and receive their feedback. Suppose we are permitted to query K points per round (denote
them as xt,1, . . . , xt,K at round t), then we observe ft(xt,1), . . . , ft(xt,K). Suppose decision set X
satisfies rB ⊂ X ⊂ RB like in Agarwal et al. [3], where B is the unit ball in Rd. The expected regret
is defined as

E

[
1

K

T∑
t=1

K∑
k=1

ft(xt,k)

]
−min
x∈X

E

[
T∑
t=1

ft(x)

]
(2)

where {ft(x)} are G-Lipschitz convex functions, and expectation is taken over the randomness of
algorithm.

With the relaxation of amount about queries, there is a significant difference about regret bound of
BCO between one-point feedback and K-point feedback for K > 2 [3]. In detail, the minimax regret
for general BCO with one-point feedback is in order Õ(

√
T ) (even for strongly convex and smooth

losses [34]), whereas one can design algorithms for BCO under multi-point feedback with O(
√
T )

regret for convex loss and O(log T ) regret for strongly convex loss, just like full information online
convex optimization. As there is not much difference between K = 2 and K > 2, so we focus on
K = 2 in this paper. An optimal non-private algorithm can be found in [3] and is given as Algorithm
4 in Appendix C for completion, which will be used as our black-box algorithm later.

For private version of this problem, note our previous reduction framework no longer fits in this
new setting, mainly because of multiple feedback. If we add the same noise Zt to observed values
ft(xt,1), ft(xt,2), then it cannot guarantee privacy. If we use different noise Zt,1, Zt,2 to perturb
observed values respectively, though it protects privacy, previous utility analysis fails.

Based on the non-private algorithm, we design a slightly modified reduction framework that resembles
the approach in Agarwal and Singh [5] but for Multi-Point BCO, as shown in Algorithm 2. The
key observation is that now we play two pretty close points xt,1, xt,2 at each round, and critical
information we use about user t is only the difference ft(xt,1)−ft(xt,2) of two observed values. Note
xt,1−xt,2 = 2ρut (see Algorithm 4 in Appendix C), which implies we can add noise n>t (xt,1−xt,2)
to ft(xt,1)− ft(xt,2) to protect its privacy. As ft(x) is G-Lipschitz, hence |ft(xt,1)− ft(xt,2)| 6

2ρG ‖ut‖2 and adding Gaussian noise with standard deviation σ =
2G
√

2 ln(1.25/δ)

ε is enough to
protect privacy as ‖ut‖2 = 1.
Theorem 5. Algorithm 2 guarantees (ε, δ)-LDP.

For utility analysis of Algorithm 2, as now the noise depends on strategies xt,1, xt,2 at round t, hence
both output and regret in terms of original loss functions {ft(x)|t ∈ [T ]} are the same as output and
regret in terms of virtual loss functions {ft(x) + n>t x|t ∈ [T ]} in expectation. Therefore we can
obtain the utility of our private Algorithm 2 through the guarantee of non-private algorithm A:
Theorem 6. For any x ∈ X , Algorithm 2 guarantees

E

[
1

2

T∑
t=1

(ft(xt,1) + ft(xt,2))− ft(x)

]
6 Õ

(
d3
√
T

ε2

)
(3)
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If {ft} are further µ strongly convex, set η = 1
µt , ρ = log T

T , ξ = ρ
r , then for any x ∈ X , we have

E

[
1

2

T∑
t=1

(ft(xt,1) + ft(xt,2))− ft(x)

]
6 Õ

(
d3 log T

µε2

)
(4)

From above results, one can see there is also a significant difference about regret bounds between
BCO and Multi-Point BCO under LDP setting, which is exactly the same as non-private settings.

4 Contextual Bandits Learning with LDP Guarantee

In this section, we turn our attention to more practical contextual bandits learning. At each round
t, the learner needs to choose an action xt ∈ Xt in the local side, where Xt contains the personal
information and features about underlying arms. Then the user generates a reward which is assumed
to be yt = g(x>t θ

∗) + ηt, where θ∗ is an unknown true parameter in the domainW , g : R → R
is a known function, and ηt is a random noise in [−1, 1] with mean 0 5. If we know θ∗, xt,∗ :=
argmaxx∈Xt g(x>θ∗) is apparently the optimal choice at round t. For an algorithm A, we define
its regret over T rounds as RegAT :=

∑T
t=1 g(x>t,∗θ

∗) − g(x>t θ
∗), where {xt, t ∈ [T ]} is the

output of A. We omit the superscript A when it is clear. There are two critical parts in contextual
bandits. One is to estimate θ∗, and corresponding estimated parameter is used to find best action for
exploitation. Another one is to construct certain term for the purpose of exploration, since we are
in the environment of partial feedback. Throughout this section, we assume both {Xt} andW are
bounded by a d-dimensional L2 ball with radius 1 for simplicity.

Compared with private context-free bandits, private contextual bandits learning is more difficult, not
only because of relatively complicated setting, but we need to protect more information including
both contexts and rewards, which causes additional difficulty in the analysis of regret. As a warm-up,
we show how to design algorithm with LDP guarantee for contextual linear bandits, which resembles
a recent work [35] but under a relaxed version of DP. Next, we propose a more complicated algorithm
for generalized linear bandits with LDP guarantee.

4.1 Warm-Up: LDP Contextual Linear Bandits

In contextual linear bandits, mapping g is an identity, or equivalently, the reward generated by user t
for action xt is yt = x>t θ

∗+ηt. To estimate θ∗, the straightforward method is to use linear regression
based on collected data. Combined with classic principal for exploration, optimism in the face
of uncertainty, it leads to LinUCB [1], which is nearly optimal for contextual linear bandits. To
protect privacy, it’s not surprising that we adopt the same technique as LDP linear regression [36], i.e.
injecting noise to xtx>t and ytxt collected from user t. However, the injected noise have influence
not only over the parameter estimation, but also for further exploration part, due to more complex
bandit model, thus we need to set parameters more carefully. See Algorithm 5 in Appendix D.

Now, we state the theoretical guarantee of Algorithm 5.
Theorem 7. Algorithm 5 guarantees (ε, δ)-LDP.
Theorem 8. With probability at least 1− α, the regret of Algorithm 5 satisfies the following bound:

RegT 6 Õ

(√
log

1

δ
log

1

α

(dT )3/4

ε

)
(5)

Given the Ω(T ) lower bound for DP contextual linear bandits [35], Theorem 8 implies a fundamental
difference between LDP and DP in contextual bandit learning, which also verifies that LDP is a
more appropriate standard about privacy for contextual bandits as discussed in the introduction. One
may think we can still prove DP based on LDP guarantee and post-processing property. Recall
post-processing property holds only for the output of a DP algorithm which doesn’t use private data
any more. However, in our algorithms for LDP contextual bandits, though we can use post-processing
property to prove estimation sequence {θ̃t} satisfies DP, it doesn’t imply the output action sequence
{xt} satisfies DP, as these actions are made in the local side which use private local data.

5It’s not hard to relax this constraint to a sub-Gaussian noise.
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Algorithm 3: Generalized Linear Bandits with LDP
1 Input: privacy parameters ε, δ, failure probability α
2 Initialize: Ṽ0 = 0d×d, ũ0 = 0d, θ̃0 = θ̂1 = 0d, ζ = Θ(1/

√
T ), σ = 6

√
2 ln(3.75/δ)/ε

3 Notations: Υt = σ
√
t(4
√
d+ 2 ln(2T/α)), ct = 2Υt, β2

t = Õ(Cσµ
√
dt)

4 for t = 1, 2, . . . do
5 For the local user t:
6 Receive information Ṽt−1, θ̃t−1, θ̂t from the server

7 Play action xt = argmaxx∈Dt

〈
θ̃t−1, x

〉
+ βt−1 ‖x‖Ṽ −1

t−1

8 Observe reward yt = g(x>t θ
∗) + ηt, set zt = x>t θ̂t.

9 Send xtx>t +Bt, ztxt + ξt,∇`t(θ̂t) + rt to the server, where

`t(θ) = `(x>t θ, yt), Bt(i, j)
i.i.d∼ N (0, σ2),∀i 6 j, and

B(j, i) = B(i, j), ξt ∼ N (0d, σ
2Id×d), rt ∼ N (0d, C

2σ2Id×d)
10 For the server:
11 Update V̄t = V̄t−1 + xtx

>
t +Bt, ũt = ũt−1 + ztxt + ξt θ̃t = Ṽ −1

t ũt, where Ṽt = V̄t + ctId×d

θ̂t+1 = ΠW

(
θ̂t − ζ(∇`t(θ̂t) + rt)

)

4.2 LDP Generalized Linear Bandits

In generalized linear bandits, mapping g can be regarded as the inverse link function of exponential
family model. Here we suppose function g is G-Lipschitz, continuously differentiable on [−1, 1],
|g(a)| 6 C, and infa∈(−1,1) g

′(a) = µ > 0, which implies g is strictly increasing. These assumptions
are common either in real applications or previous work [30, 25]. We also define corresponding
negative log-likelihood function `(a, b) := −ab + m(a), where m(·) is the integral of function g.
As a concrete example, if reward y is a Bernoulli random variable, then the form of g is g(a) =
(1 + exp(−a))−1, m(a) = log(1 + exp(a)), `(a, b) = log(1 + exp(−a(2b− 1))), b ∈ {0, 1}, and
noise η is 1− g(a) with probability g(a) and −g(a) otherwise.

Note the non-linearity of g makes things much more complicated either from the view of bandits
learning or privacy preservation. The counterpart of Contextual Linear Bandits is linear regression,
the locally private version of which is relatively easy and well-studied. However, the counterpart of
Generalized Linear Bandit is Empirical Risk Minimization (ERM) with respect to generalized linear
loss, and the optimal approach of parameter estimation for GLM bandit is to solve ERM at each round
[30]. Different with linear regression, for learning ERM with LDP guarantee, in general there is no
efficient private algorithm that can achieve optimal performance in the non-interactive environment
[36, 42, 41], let alone calculating an accurate parameter estimation needed in our problem. Therefore,
it seems hard to learn generalized linear bandit under LDP guarantee.

Luckily, we can make full use of the interactive environment in bandit problems. In detail, we
build our private mechanism based on GLOC framework proposed in [25]. Compared with previous
nearly optimal approach [30], GLOC framework enjoys much better time efficiency, which calculates
estimator θ in an online fashion instead of solving ERM at each round. Its main idea is to maintain a
rough estimation for unknown parameter θ∗ through an adversarial online learning algorithm and use
it to relabel current reward, and then solve the corresponding linear regression for a refined estimator.
To achieve optimal Õ(

√
T ) regret, the online learning algorithm is set as Online Newton Step [19].

Though the original goal of GLOC framework proposed in Jun et al. [25] is to improve time efficiency,
the update form of estimated parameter for unknown θ∗ shares the same form of linear regression,
therefore we can use nearly the same technique as in previous subsection to protect LDP, which
avoids solving complex ERM with LDP guarantee. Besides, since internal online learning algorithm
also utilizes users’ data, we also need to guarantee its privacy. Different with Jun et al. [25] which
adopts Online Newton Step, we choose basic noisy Online Gradient Descent as our online black-box
algorithm. See Algorithm 3 for the full implementation. For clarity, we just write the LDP Online
Gradient Descent explicitly in Line 11.
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Though Algorithm 3 is based on the framework proposed by Jun et al. [25], we want to emphasize
that both finding the right approach and proving the rigorous guarantee are non-trivial because of
stringent LDP constraint. Following theorems give both the privacy guarantee and utility bound of
our Algorithm 3 for generalized linear bandits.

Theorem 9. Algorithm 3 guarantees (ε, δ)-LDP.

Theorem 10. With probability at least 1− α, the regret of Algorithm 3 satisfies the following bound:

RegT 6 Õ

(√
log

1

δ
log

1

α
log

T

d

(dT )3/4

ε

)
(6)

Note that both our upper bounds (5) and (6) are in order Õ
(
T 3/4

)
, which differ from common

O(
√
T ) regret bound in corresponding non-private settings. We conjecture this order is nearly the

best one can achieve in LDP setting, mainly because we need to protect more information, i.e., both
contexts and corresponding rewards. See Appendix G for more discussions and intuitions.

5 Conclusions

In this paper, we propose a simple black-box reduction framework that can solve a large class
of context-free bandits learning problems with LDP guarantee in a unified way, including BCO,
MAB, Best Arm Identification. We also extend the reduction framework to BCO with Multi-Point
Feedback. This black-box reduction mainly has three advantages compared with previous work. First
it guarantees a more rigorous LDP guarantee instead of DP. Second, this framework gives us a unified
analysis for all above private bandit learning problems instead of analyzing each of them separately,
and it easily improves previous best results or obtains new results for some problems, as well as
matching corresponding non-private optimal bounds. Third, such a black-box reduction is more
attractive in real applications, as we only need to modify the input to black-box algorithms. Besides,
we also propose new algorithms for more practical contextual bandits with LDP guarantee, including
contextual linear bandits and generalized linear bandits. Our algorithms can achieve Õ(T 3/4) regret
bound, which is conjectured to be nearly optimal. We leave the rigorous proof of this lower bound as
an interesting open problem.

Broader Impact
This work is mostly theoretical, with no negative outcomes. (Contextual) bandits learning has been
widely used in real applications, which heavily relies on user’s data that may contain personal
private information. To protect user’s privacy, we adopt the appealing solid notion of privacy –
Local Differential Privacy (LDP) that can protect each user’s data before collection, and design
(contextual) bandit algorithms under the guarantee of LDP. Our algorithms can be easily used in real
applications, such as recommendation, advertising, to protect data privacy and ensure the utility of
private algorithms simultaneously, which will befit everyone in the world.
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Appendix

A Differential Privacy under streaming setting

Differential Privacy [13] is original proposed for off-line setting. Later, Dwork et al. [14] and Jain
et al. [22] consider DP in streaming setting. In streaming setting, at each round t, the server predicts
xt ∈ X for user t whose personal data is represented as ht ∈ H (for example, his or her feature, label,
or preference etc.). Then the server requires some information zt ∈ Z from user t (zt may depend on
xt and ht) to update the model for next prediction. Note DP allows collecting true data (i.e. zt = ht)
and is defined in terms of the output sequence {xt}, while LDP doesn’t allow collecting true data and
is defined in terms of the collected information zt. Here we adopt the definition given in Jain et al.
[22] for DP in streaming setting:
Definition 3 (Differential Privacy). Let F = 〈h1, h2, . . . , hT 〉 be a sequence of information which
domain isH1:T . LetA(F ) = Y , where Y = 〈y1, y2, . . . , yT 〉 ∈ Y1:T be T outputs of the randomized
algorithm A. A is said to preserve (ε, δ)-differential privacy, if for any two information sequences
F, F ′ that differ in at most one entry, and for any subset S1:T ⊂ Y1:T , it holds that

Pr(A(F ) ∈ S1:T ) ≤ Pr(A(F ′) ∈ S1:T )eε + δ.

In particular, if A preserves (ε, 0)-differential privacy, we say A is ε-differentially private.

Now, we prove Theorem 1:

Proof of Theorem 1. Suppose algorithm A : H → Z protects ε-LDP, that is for any h, h′ ∈ H, U ⊂
Z , we have

Pr(A(h) ∈ U) 6 eε × Pr(A(h′) ∈ U)

Denote G as arbitrary online/bandits algorithm received the output of A on user sequence, i.e.
{zt = A(ht|xt)|t ∈ [T ]}. Now we prove G protects ε-DP, i.e. for any S1:T ⊂ X 1:T and neighboring
sequence F = {ht|t ∈ [T ]}, F ′ = {h′t|t ∈ [T ]} that only differ in one entry, we have the following
inequality:

Pr(G(A(F )) ∈ S1:T ) 6 eε × Pr(G(A(F ′)) ∈ S1:T )

Without loss of generality, we assume F and F ′ differ in the t-th entry. Since G only operates
on {zt|t ∈ [T ]}, according to the Post-Processing property of DP [12], we only need to prove
{zt|t ∈ [T ]} satisfies ε-DP. Denote {z′t|t ∈ [T ]} as the neighboring information sequence of A
operated on F ′, then for arbitrary U1:T ⊂ Z1:T we have

Pr(z1:T ∈ U1:T )

Pr(z′1:T ∈ U1:T )
(7)

=
Pr(z1:t−1 ∈ U1:t−1)× Pr(zt ∈ U t|z1:t−1 ∈ U1:t−1)× Pr(zt+1:T ∈ U t+1:T |z1:t ∈ U1:t)

Pr(z′1:t−1 ∈ U1:t−1)× Pr(z′t ∈ U t|z′1:t−1 ∈ U1:t−1)× Pr(z′t+1:T ∈ U t+1:T |z′1:t ∈ U1:t)
(8)

=
Pr(zt ∈ U t|z1:t−1 ∈ U1:t−1)

Pr(z′t ∈ U t|z′1:t−1 ∈ U1:t−1)
(9)

=
Pr(zt ∈ U t|xt ∈ G(U1:t−1))

Pr(z′t ∈ U t|x′t ∈ G(U1:t−1))
(10)

6eε (11)

where the second equation is because two data sequence only differ at round t, and G operates on the
sequence of z. Thus we prove the theorem.

B Another Two Applications for Bandits Learning with One-point Feedback

B.1 Private Multi-Armed Bandits

MAB is a special case of BCO, in which decision set X = {ei|i ∈ [d]}, and loss function ft(x) is
actually a linear function, i.e. ft(x) = `>t x, where `t ∈ [0, 1]d . In the adversarial setting, sequence
{`t} is chosen arbitrarily before game starts. In stochastic setting, for each arm k, {`t(k)} are
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independently sampled from underlying unknown distribution Vk with support over interval [0, 1].
Denote µk as the expected loss of arm k. Without loss of generality, assume µ1 > µ2 > · · · > µd
and define ∆i := µi − µd. It is well-known the optimal regret are O(

√
dT ) and O(

∑
i:∆i>0

log T
∆i

)
for adversarial MAB and stochastic MAB respectively [8]. However, especially in real applications,
usually we don’t know whether we are in adversarial or stochastic environment in advance. Until
recently, Zimmert and Seldin [44] proposed a single algorithm achieving the optimal performance for
both adversarial and stochastic world without any prior information about the environment.

For differentially private MAB, all of previous work consider either stochastic loss or adversarial loss
[31, 38, 39, 5]. While here, we hope to handle both scenarios simultaneously like in non-private case
but with LDP guarantee. Not surprisingly, by plugging the non-private optimal algorithm [44] in our
black-box, we obtain corresponding private version which achieves the best of both adversarial and
stochastic worlds:
Theorem 11. By choosing non-private black-box algorithm A in Algorithm 1 as TSALLIS-INF in
Zimmert and Seldin [44] and setting σ as in Theorem 2 with B = 0.5,

• in the adversarial setting, we have

max
x∈X

E

[
T∑
t=1

`t(xt)− `t(x)

]
6 Õ

(√
T

ε

)
(12)

• in the stochastic setting, we have

max
x∈X

E

[
T∑
t=1

`t(xt)− `t(x)

]
6 Õ

( ∑
i:∆i>0

log T

∆iε2
log

1

δ

)
(13)

Note above results not only nearly match corresponding non-private lower bounds [8] regardless of
privacy parameters, but also lower bounds under LDP restriction [7]. Besides, we can also use many
other MAB algorithms as our black-box candidates such as KL-UCB [17] Stochastic MAB, which
will then obtain more delicate bound under LDP.

B.2 Private Best Arm Identification

Different with Stochastic MAB, in which one has to balance between Exploration and Exploitation,
Best Arm Identification (BAI) problem only focuses on the Exploration, that is finding the best arm
among all arms. Here we use same notations as Subsection B.1. There are mainly two settings in
BAI: fixed confidence setting and fixed budget setting. In this part, we only consider fixed confidence
setting: given any confidence parameter γ, design an algorithm which outputs the best arm with
probability at least 1− γ using as fewest samples as possible [23, 27]. It’s not hard to see our method
can be generalized to fixed budget setting as well.

For private BAI, though algorithms in Mishra and Thakurta [31] and Sajed and Sheffet [33] are
designed for stochastic MAB, they can also used for differentially private BAI. However, these
algorithms only achieve sub-optimal guarantee, let alone stronger LDP. While here, we want to
protect LDP and achieve nearly optimal sample complexity. Again, using the same observation
as Subsection B.1 and given any non-private BAI algorithm A, our Algorithm 1 has the following
guarantee:
Theorem 12. Given any confidence parameter γ, suppose non-private BAI algorithm A achieves
sample complexity SA(A, σ2

0 , γ), where σ2
0 is the variance proxy parameter of underlying unknown

sub-Gaussian distributions {Vk|k ∈ [d]}. Set σ as in Theorem 2 with B = 0.5, then the sample
complexity of Private BAI Algorithm 1 is SA(A, 1

4 + σ2, γ).

Specifically, if we choose non-private BAI algorithm A as lil’UCB in Jamieson et al. [24], then the

sample complexity of Algorithm 1 is in order O
(∑

k 6=1

ln((ln 1/∆2
k)/γ)

ε2∆2
k

ln 1
δ

)
.

C Non-private Algorithm for Bandits Learning with Two-points Feedback

For completeness, we present the non-private algorithm proposed in Agarwal et al. [3] for Bandits
Convex Optimization with two-point feedback. See Algorithm 4.
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Algorithm 4: Expected Gradient Descent with two queries per round [3]
1 Input: Learning rate η, exploration parameter ρ and shrinkage coefficient ξ
2 Set y1 = 0
3 for t = 1, 2, . . . do
4 Pick a unit vector ut uniformly at random
5 Play xt,1 := yt + ρut, xt,2 := yt − ρut, and observe ft(xt,1), ft(xt,2)

6 Set g̃t = d
2ρ (ft(xt,1)− ft(xt,2))ut

7 update yt+1 =
∏

(1−ξ)X (yt − ηg̃t), where
∏
X represents projection to the set X

Algorithm 5: Contextual Linear Bandits with LDP
1 Input: privacy parameters ε, δ, failure probability α.
2 Initialize: Ṽ0 = 0d×d, ũ0 = 0d, θ̃0 = 0d, σ = 6

√
2 ln(2.5/δ)/ε.

3 Notations: Υt = σ
√
t(4
√
d+ 2 ln(2T/α)), ct = 2Υt,

βt = 2σ
√
d lnT +

(√
3Υt + σ

√
dt
Υt

)
d lnT .

4 for t = 1, 2, . . . , T do
5 For the local user t:
6 Receive information Ṽt−1, θ̃t−1 from the server.

7 Play action xt = argmaxx∈Dt

〈
θ̃t−1, x

〉
+ βt ‖x‖(Ṽt−1+ct−1I)−1

8 Observe reward yt = 〈xt, θ∗〉+ ηt

9 Send xtx>t +Bt, ytxt + ξt to the server, where Bt(i, j)
i.i.d∼ N (0, σ2),∀i 6 j, and

B(j, i) = B(i, j), ξt ∼ N (0d, σ
2Id×d).

10 For the server: update
11 Ṽt = Ṽt−1 + xtx

>
t +Bt, ũt = ũt−1 + ytxt + ξt

12 θ̃t =
(
Ṽt + ctId×d

)−1

ũt

D Contextual Linear Bandits with LDP

See Algorithm 5 above.

E Omitted Proofs in Section 3

Proof of Theorem 2. Since for any x ∈ X , t ∈ [T ], |ft(x)| 6 B, which means the sensitivity of
information sent from the user is at most 2B, thus (ε, δ)-LDP property of Algorithm 1 follows directly
from the Gaussian mechanism.

Proof of Theorem 3. Note all noise are independently sampled, hence we can fix Z1, . . . ZT in
advance. Define pseudo loss f̃t(x) = ft(x) + Zt. According to the tail bound of Gaussian variable,
there is

Pr
[
|Zt| > σ

√
2 ln 2T 2

]
6

1

T 2
(14)

By union bound, we have

Pr
[
∃t ∈ [T ], |Zt| > σ

√
2 ln 2T 2

]
6

1

T
(15)

Define the event F := {∃t ∈ [T ] : |Zt| > σ
√

2 ln 2T 2}, then there is Pr[F ] 6 1
T .

Once fixed Z1, . . . , ZT , the output of running Algorithm 1 over loss sequence {ft|t ∈ [T ]} is the
same as the output of running non-private algorithm A over pseudo loss sequence {f̃t|t ∈ [T ]}.
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On one hand, we have

E

[
T∑
t=1

f̃t(xt)− f̃t(x)

]
6E

[
T∑
t=1

f̃t(xt)− f̃t(x)|F̄

]
+ Pr[F ]× E

[
T∑
t=1

f̃t(xt)− f̃t(x)|F

]
(16)

6E

[
T∑
t=1

f̃t(xt)− f̃t(x)|F̄

]
+ 2B (17)

6(B + σ
√

2 ln(2T 2)) · RegTA + 2B (18)

On the other hand, according to our definition of f̃t(x), there is always

T∑
t=1

f̃t(xt)− f̃t(x) =

T∑
t=1

ft(xt)− ft(x) (19)

Combine above equations, we obtain the conclusion.

For the high probability version, suppose black-box algorithm A guarantees that: for any loss
sequence {f̃t(x)} with loss range B̃, with probability at least 1− κ (over the internal randomness of
A), there is

∀x ∈ X ,
∑
t

f̃t(xt)−
∑
t

f̃t(x) 6 B̃ · RegTA (20)

According to union bound and above discussion, we know: B̃ = B + σ
√

2 ln(2T 2), and with
probability at least 1− κ− 1

T , there is

∀x ∈ X ,
∑
t

ft(xt)−
∑
t

ft(x) 6 Õ
(
B ln(T/δ)

ε
· RegTA

)
(21)

Proof of Corollary 4. The guarantee for (strongly) convex and smooth bandit optimization is straight-
forward by plugging corresponding non-private guarantees in Saha and Tewari [32], Hazan and Levy
[18]. For Stochastic BCO, since our algorithm is equivalent to the case of running any stochastic
BCO algorithm over new noise distribution Q

⊗
N (0, σ2), where

⊗
represents the convolution

between two distributions, we can use the guarantee for stochastic BCO in Agarwal et al. [4].

Proof of Theorem 11. In adversarial setting, using Theorem 3 obtains the regret bound. Now we
prove the regret bound in stochastic setting. Note for any k ∈ [d], as the support of original distribution
Vk is over [0, 1], it is a sub-Gaussian distribution with variance proxy 1

4 . Define pseudo distribution
Ṽk = Vk

⊗
N (0, σ2), where

⊗
represents the convolution between two distributions. Obviously,

the output of Algorithm 1 over distributions {Vk|k ∈ [K]} is the same as the output of non-private
algorithm A over distributions {Ṽk|k ∈ [K]}. As Ṽk is now a sub-Gaussian with variance proxy
1
4 + σ2, hence it’s not hard to obtain the conclusion according to the guarantee of A.

Proof of Theorem 12. Just use Theorem 2 in the paper Jamieson and Nowak [23] with new sub-
Gaussian parameter 1

4 + σ2

Proof of Theorem 5. Since |ft(xt,1)−ft(xt,2)| 6 2ρG ‖ut‖2 = 2ρG and n>t (xt,1−xt,2) = 2ρn>t ut
which obeys N (0, 4ρ2σ2), the privacy guarantee then follows according to Gaussian mechanism.

Proof of Theorem 6. Note all noise vectors are independently sampled, hence we can fix n1, . . . , nT
in advance. Define pseudo loss f̃t(x) = ft(x) + n>t x. For any {ut|t ∈ [T ]} in the unit sphere,
according to the tail bound of Gaussian variable, there is

Pr
[
|n>t ut| > σ

√
2 ln 2T 2

]
6

1

T 2
(22)
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By union bound, we have

Pr
[
∃t ∈ [T ], |n>t ut| > σ

√
2 ln 2T 2

]
6

1

T
(23)

Define the event F := {∃t ∈ [T ] : |n>t ut| > σ
√

2 ln 2T 2}, then there is Pr[F ] 6 1
T .

Once fixed n1, . . . , nT , the output of running Algorithm 2 over loss sequence {ft|t ∈ [T ]} is the
same as the output of running non-private Algorithm 4 over pseudo loss sequence {f̃t|t ∈ [T ]}.
On one hand, we have

E

[
1

2

T∑
t=1

(
f̃t(xt,1) + f̃t(xt,2)

)
− f̃t(x)

]
(24)

6E

[
1

2

T∑
t=1

(
f̃t(xt,1) + f̃t(xt,2)

)
− f̃t(x)|F̄

]
+ Pr[F ]× E

[
1

2

T∑
t=1

(
f̃t(xt,1) + f̃t(xt,2)

)
− f̃t(x)|F

]
(25)

6E

[
1

2

T∑
t=1

(
f̃t(xt,1) + f̃t(xt,2)

)
− f̃t(x)|F̄

]
+ 2B (26)

6Reg(A, G+ σ
√
d) + 2B (27)

where Reg(A, G+ σ
√
d) represents the regret bound of non-private Algorithm 4 for loss functions

with Lipschitz constant G+ σ
√
d. On the other hand, there is

E

[
T∑
t=1

f̃t(xt)− f̃t(x)

]
= E

[
T∑
t=1

ft(xt)− ft(x)

]
(28)

Combine above equations with the guarantee of non-private Algorithm 4 in Agarwal et al. [3], we
obtain the conclusion.

F Omitted Proofs in Section 4

Proof of Theorem 7. Since ‖xt‖ 6 1, yt ∈ [−2, 2] according to our assumption, the privacy guaran-
tee then follows directly from the Gaussian Mechanism, as both the matrix and vector sent to the
server satisfy (ε/3, δ/2)-LDP and (2ε/3, δ/2)-LDP respectively.

Proof of Theorem 8. Note our private matrix Ṽt is an unbiased estimation of true matrix
∑t
s=1 xsx

>
s

with noise Ht :=
∑t
s=1Bs, where its upper triangular entry obeys the distribution N (0, tσ2).

Similarly, ũt is an unbiased estimation of true vector
∑t
s=1 ysxs with noise ht :=

∑t
s=1 ξs,

where ht ∼ N (0d, tσ
2Id×d). According to the concentration inequality [40], we know ‖Ht‖2 6

σ
√
t(4
√
d + 2 ln(2T/α)) = Υt with probability at least 1 − α/2T , thus all the eigenvalues of

Ht + ctId×d are in the range [Υt, 3Υt] with high probability. Besides, we have ‖ht‖(Ht+ctId×d)−1 6√
Υ−1
t ‖ht‖2, and ‖ht‖2 6 σ

√
dt with high probability. Now, using Proposition 4, Proposition 11

and Theorem 5 in paper [35] with our noise, we obtain the conclusion.

Proof of Theorem 9. Since ‖xt‖ 6 1, |zt| 6 1, and loss function `t is C-Lipschitz, the privacy
guarantee follows directly from the Gaussian Mechanism, as the matrix, vector, and gradient of any
user sent to the server satisfy (ε/3, δ/3)-LDP respectively.

Proof of Theorem 10. Define instantaneous regret rt : g(x>t,∗θ
∗) − g(x>t θ

∗), then there is rt 6
G(x>t,∗θ

∗ − x>t θ∗). Besides

x>t θ
∗ + 2βt−1 ‖xt‖Ṽ −1

t−1
> x>t θ

∗ +
∥∥∥θ̃t−1 − θ∗

∥∥∥
Ṽt−1

‖xt‖Ṽ −1
t−1

+ βt−1 ‖xt‖Ṽ −1
t−1

> x>t θ̃t−1 + βt−1 ‖xt‖Ṽ −1
t−1
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> x>t,∗θ̃t−1 + βt−1 ‖xt,∗‖Ṽ −1
t−1

> x>t,∗θ
∗

where the second and the forth inequality is because of our Confidence Ellipsoid Lemma 2. Thus we
have rt 6 2Gβt−1 ‖xt‖Ṽ −1

t−1
.

Next using common technique in contextual bandits to bound
∑
t ‖xt‖Ṽ −1

t−1
[35, 25], we have∑

t rt 6 GβT
√
dT log T , which finishes the proof.

Lemma 1 (Regret of LDP-OGD). For any convex loss sequence {`t(θ)|t ∈ [T ]} with Lipschitz
constant C, and for ∀θ ∈ Θ, with probability at least 1− α1, we have the following bound

T∑
t=1

`t(θ̂t)− `t(θ) 6 O

(
Cσ

√
dT ln

T

α1

)
(29)

where {θ̂t|t ∈ [T ]} are outputs of noisy OGD like step 13 in Algorithm 3, and the randomness is over
noise {rt|t ∈ [T ]}.

Proof. Condition on the event E = {∀t ∈ [T ], ‖rt‖2 6
√
dCσ} (which happens with high probabil-

ity) and according to the guarantee of On-line Gradient Descent [20], there is
∑
t `t(θ̂t) + r>t θ̂t −

(`t(θ)+r
>
t θ) 6 O(Cσ

√
dT ). Next, using martingale concentration, we know

∥∥∥∑t r
>
t θ̂t

∥∥∥
2
6 σ
√
dT

and
∥∥∑

t r
>
t θ
∥∥

2
6 Cσ

√
dT with high probability. Combining above three inequalities, we obtain

the conclusion.

Lemma 2 (Confidence Ellipsoid). In terms of Algorithm 3, with probability at least 1− α2, we have
the following bound

∀t,
∥∥∥θ̃t − θ∗∥∥∥2

Ṽt
6 Õ

(
Cσ

µ

√
dT ln

T

α2

)
(30)

where {θ̃t, Ṽt|t ∈ [T ]} are outputs of Algorithm 3, and the randomness is over the injected noise as
well as underlying environment.

Proof. Since infa∈(−1,1) g
′(a) = µ > 0, it implies loss function `(a, b) is µ-strongly convex in terms

of the first argument, thus
t∑

s=1

`s(θ̂s)− `s(θ∗) =

t∑
s=1

`(x>s θ̂s, ys)− `(x>s θ∗, ys) (31)

>
t∑

s=1

`′(x>s θ
∗, ys)(x

>
s θ̂s − x>s θ∗) +

µ

2
(x>s θ̂s − x>s θ∗)2 (32)

=

t∑
s=1

(−ys + g(x>s θ
∗))(x>s θ̂s − x>s θ∗) +

µ

2
(x>s θ̂s − x>s θ∗)2 (33)

=

t∑
s=1

−ηs(x>s θ̂s − x>s θ∗) +
µ

2
(x>s θ̂s − x>s θ∗)2 (34)

Then according to Lemma 1 above, with probability at least 1− α1, there is

µ

2

t∑
s=1

(x>s θ̂s − x>s θ∗)2 6 O

(
Cσ

√
dt ln

T

α1

)
+

t∑
s=1

ηs(x
>
s θ̂s − x>s θ∗) (35)

Using Corollary 8 in paper [2], with probability at least 1− α3 (over the randomness of noise {ηt}),
for all t, there is

t∑
s=1

ηs(x
>
s θ̂s − x>s θ∗) 6

√√√√√(2 + 2

t∑
s=1

(x>s (θ̂s − θ∗))2

)
· ln

 1

α3

√√√√1 +

t∑
s=1

(x>s (θ̂s − θ∗))2


(36)
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Combine above two inequalities, and solve the right hand side using Lemma 2 in paper [25], then
with probability 1− α1 − α3, we have

∀t,
t∑

s=1

(x>s (θ̂s − θ∗))2 6 Õ

(
Cσ

µ

√
dt ln

T

α1
ln
T

α3

)
(37)

Denote Xt ∈ Rt×d as the design matrix consisting of x1, . . . , xt, Zt = [z1; z2; . . . ; zt] ∈ Rt, B̄t =∑t
s=1Bs, ξ̄t =

∑t
s=1 ξs. Note

t∑
s=1

(x>s (θ̂s − θ∗))2 (38)

= ‖θ∗‖2X>t Xt − 2Z>t Xtθ
∗ + ‖Zt‖22 (39)

= ‖θ∗‖2Ṽt − 2ũ>t θ
∗ + ‖Zt‖22 − ‖θ

∗‖2B̄t+Ṽ0
+ 2ξ̄>t θ

∗ (40)

=
∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
−
∥∥∥θ̃t∥∥∥2

Ṽt
+ ‖Zt‖22 − ‖θ

∗‖2B̄t+Ṽ0
+ 2ξ̄>t θ

∗ (41)

=
∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
+
∥∥∥Xtθ̃t − Zt

∥∥∥2

2
−
∥∥∥θ̃t∥∥∥2

X>t Xt
+ 2θ̃>t X

>
t Zt −

∥∥∥θ̃t∥∥∥2

Ṽt
− ‖θ∗‖2B̄t+Ṽ0

+ 2ξ̄>t θ
∗

(42)

=
∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
+
∥∥∥Xtθ̃t − Zt

∥∥∥2

2
−
∥∥∥θ̃t∥∥∥2

X>t Xt
+ 2θ̃>t ũt −

∥∥∥θ̃t∥∥∥2

Ṽt
− ‖θ∗‖2B̄t+ctI + 2ξ̄>t (θ∗ − θ̃t)

(43)

=
∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
+
∥∥∥Xtθ̃t − Zt

∥∥∥2

2
−
∥∥∥θ̃t∥∥∥2

X>t Xt
+ 2

∥∥∥θ̃t∥∥∥2

Ṽt
−
∥∥∥θ̃t∥∥∥2

Ṽt
− ‖θ∗‖2B̄t+ctI + 2ξ̄>t (θ∗ − θ̃t)

(44)

=
∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
+
∥∥∥Xtθ̃t − Zt

∥∥∥2

2
+
∥∥∥θ̃t∥∥∥2

B̄t+ctI
− ‖θ∗‖2B̄t+ctI + 2ξ̄>t (θ∗ − θ̃t) (45)

>
∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
− ‖θ∗‖2B̄t+ctI − 2

∥∥ξ̄t∥∥2
− 2ξ̄>t θ̃t (46)

Combine above inequalities, there is∥∥∥θ∗ − θ̃t∥∥∥2

Ṽt
6 Õ

(
Cσ

µ

√
dt ln

T

α1
ln
T

α3

)
+ ‖θ∗‖2B̄t+ctI + 2

∥∥ξ̄t∥∥2
+ 2ξ̄>t θ̃t (47)

On the other hand, with probability at least 1− α4, there is

‖θ∗‖2B̄t+ctI 6 Õ(Υt) = Õ(σ
√
dt) (48)∥∥ξ̄t∥∥2

6 Õ(σ
√
dt) (49)

and

ξ̄>t θ̃t 6 ξ̄>t Ṽ
−1
t (X>t Zt + ξ̄t) (50)

6 ξ̄>t Ṽ
−1
t X>t Zt + Õ(σ

√
dt) (51)

6 Õ(σ
√
dt) (52)

where the last inequality is because Ṽ −1
t X>t Zt is the solution of regularized least square loss function

J(θ) := ‖Xtθ − Zt‖22 + ‖θ‖2ctI+B̄t . Since J(θ∗) 6 Õ(σ
√
dt), and ΥtI 6 ctI + B̄t 6 3ΥtI holds

with high probability, there is
∥∥∥Ṽ −1

t X>t Zt

∥∥∥ 6 Õ(1), otherwise it cannot be the solution of J(θ).

Thus, with probability at least 1− α1 − α3, we have∥∥∥θ̃t − θ∗∥∥∥2

Ṽt
6 O

(
Cσ

µ

√
dt ln

T

α1
ln
T

α3

)
(53)

Taking a union bound over all T rounds and choose appropriate α1, α3 we then finish the proof.
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G Discussion about Lower Bound in LDP Contextual Bandits

Either for contextual linear bandits or more complex generalized linear bandits, both of our algorithms
with LDP guarantee can only achieve Õ(T 3/4) regret, contrasted with optimal O(T 1/2) regret in
non-private case [30], as well nearly optimal Õ(T 1/2) regret for MAB with LDP guarantee. The
critical difference is that we need to protect more information in contextual bandits. If we regard
MAB as a special case of contextual bandits, decision set Xt then becomes {ei|i ∈ [d]}. Privacy
of contexts means we need to protect (eIt , rt) sent from user t to the server at round t, where It is
the chosen arm and rt is the reward of user t. Recall in Section 3.1, we only protect rt. Denote θt
as the estimation of underlying θ∗ at round t, and define Mt :=

∑t
τ=1 eIτ e

>
Iτ

. Roughly speaking,
in almost all analysis of stochastic MAB, the regret bound depends on Õ(

√
T ‖θT − θ∗‖MT

), and
‖θT − θ∗‖MT

is nearly a constant in either non-private setting or our MAB example in Appendix B.1.
However in the setting of this section, on one hand, for those sub-optimal arms i, the algorithm won’t
play it too much, and its estimation error |θT (i)− θ∗(i)| is roughly in constant order. On the other
hand, since we still need to protect eIt at each round, which will lead to an estimation error of MT in
order

√
T . Therefore ‖θT − θ∗‖MT

is roughly in order Õ(T 1/4) under LDP setting, which leads to
the final Õ(T 3/4) regret. Though this special case looks a little strange, it shows an inherent difficulty
in contextual bandits learning with LDP guarantee, and we conjecture that Ω(T 3/4) is exactly the
lower bound in this case.
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