
Projection Efficient Subgradient Method and
Optimal Nonsmooth Frank-Wolfe Method

Kiran Koshy Thekumparampil
University of Illinois at Urbana-Champaign

thekump2@illinois.edu

Prateek Jain
Microsoft Research, India
prajain@microsoft.com

Praneeth Netrapalli
Microsoft Research, India

praneeth@microsoft.com

Sewoong Oh
University of Washington, Seattle
sewoong@cs.washington.edu

Abstract

We consider the classical setting of optimizing a nonsmooth Lipschitz continuous
convex function over a convex constraint set, when having access to a (stochastic)
first-order oracle (FO) for the function and a projection oracle (PO) for the con-
straint set. It is well known that to achieve ε-suboptimality in high-dimensions,
Θ(ε−2) FO calls are necessary [64]. This is achieved by the projected subgradient
method (PGD) [11]. However, PGD also entails O(ε−2) PO calls, which may be
computationally costlier than FO calls (e.g. nuclear norm constraints). Improving
this PO calls complexity of PGD is largely unexplored, despite the fundamental
nature of this problem and extensive literature. We present first such improvement.
This only requires a mild assumption that the objective function, when extended
to a slightly larger neighborhood of the constraint set, still remains Lipschitz and
accessible via FO. In particular, we introduce MOPES method, which carefully
combines Moreau-Yosida smoothing and accelerated first-order schemes. This is
guaranteed to find a feasible ε-suboptimal solution using onlyO(ε−1) PO calls and
optimal O(ε−2) FO calls. Further, instead of a PO if we only have a linear mini-
mization oracle (LMO, à la Frank-Wolfe) to access the constraint set, an extension
of our method, MOLES, finds a feasible ε-suboptimal solution usingO(ε−2) LMO
calls and FO calls—both match known lower bounds [54], resolving a question left
open since [84]. Our experiments confirm that these methods achieve significant
speedups over the state-of-the-art, for a problem with costly PO and LMO calls.

1 Introduction

In this paper, we consider the nonsmooth convex optimization (NSCO) problem with the First-order
Oracle (FO) and the Projection Oracle (PO) defined as:

NSCO : min
x

f(x), s.t. x ∈ X , FO(x) ∈ ∂f(x), and PO(x) = PX (x) = argmin
y∈X

‖y − x‖22, (1)

where f : Rd → R is a convex Lipschitz-continuous function, and X ⊆ Rd is a convex constraint.
When queried at a point x, FO returns a subgradient of f at x and PO returns the projection of x onto
X . NSCO is a fundamental problem with a long history and several important applications including
support vector machines (SVM) [12], robust learning [44], and utility maximization in finance [82].

Finding an ε-suboptimal solution for this problem requires Ω(ε−2) FO calls in the worst case, when
the dimension d is large [64]. This lower bound is tightly matched by the projected subgradient
method (PGD). Unfortunately, PGD also uses one PO call after every FO call, resulting in a PO calls

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Randomized Smoothing State-of-the-art Our results Lower
dimension dependent dimension-free (Theorems 1 and 2) bound

SFO O((G2 + σ2)/ε2) [27] O((G2 + σ2)/ε2) [65] O((G2 + σ2)/ε2) Ω((G2 + σ2)/ε2) [64]
PO O(d1/4G/ε) [27] O(G2/ε2)? [65] O(G/ε) Open problem

SFO O(
√
d (G2 + σ2)2/ε4) [54] O((G2 + σ2)/ε2)† O((G2 + σ2)/ε2) Ω((G2 + σ2)/ε2) [64]

LMO O(
√
dG2/ε2) [54]∗ O((G2 + σ2)2/ε4)† O(G2/ε2) Ω(G2/ε2) [54]

Table 1: Comparison of SFO (3), PO (1) & LMO (2) calls complexities of our methods and state-
of-the-art algorithms, and corresponding lower-bounds for finding an approximate minimizer of a
d-dimensional NSCO problem (1). We assume that f is convex and G-Lipschitz continuous, and is
accessed through a stochastic subgradient oracle with a variance of σ2. ?requires using a minibatch of
appropriate size, †approximates projections of PGD with FW method (FW-PGD, see Appendix B.2).

complexity (PO-CC)—the number of times PO needs to be invoked—of Θ(ε−2). This can be a major
bottleneck in solving several practical problems like collaborative filtering [79], where the cost of a
PO is often higher than the cost of an FO call. This begs the natural question, which surprisingly
is largely unexplored in the general nonsmooth optimization setting: Can we design an algorithm
whose PO calls complexity is significantly better than the optimal FO calls complexity O(ε−2)?

In this work, we answer the above question in the affirmative. Our first key contribution is MOreau
Projection Efficient Subgradient method (MOPES), that obtains an ε-suboptimal solution using only
O(ε−1) PO calls, while still ensuring that the FO calls complexity (FO-CC)—the number of times
FO needs to be invoked—is optimal, i.e., O(ε−2). This requires a mild assumption that the function
f extends to a slightly larger neighborhood of the constraint set X . Concretely, we assume that f is
Lipschitz continuous in this neighborhood and FO can be queried at points in this neighborhood. To
the best of our knowledge, our result is the first improvement over the O(ε−2) PO calls of PGD for
minimizing a general nonsmooth Lipschitz continuous convex function.

We achieve this by carefully combining Moreau-Yosida regularization with accelerated first-order
methods [62, 81]. As accelerated methods cannot be directly applied to a nonsmooth f , we can
instead apply them to minimize its Moreau envelope, which is smooth (as long as f is Lipschitz
continuous). Although this idea has been explored, for example, in [25, 9], PO-CC has remained
O(ε−2), unless a much stronger and unrealistic oracle is assumed [9] with a direct access to the
gradient of Moreau envelope. The key idea in breaking this barrier is to separate out the dependence
on FO calls of f from PO calls to X by: (a) using Moreau-Yosida regularization to split the original
problem into a composite problem, where one component consists of an unconstrained optimization
of the function f and the other consists of a simple constrained optimization over the set X ; and (b)
applying the gradient sliding algorithm [55] on this joint problem to ensure the above mentioned
bounds for both FO and PO calls. We note that our results are limited to the Euclidean norm, since
our results crucially depend on smoothness of the Moreau envelope and its regularizer, which is not
known for Moreau envelopes based on general Bregman divergences [7].

In some high-dimensional problems, even a single call to the PO can be computationally prohibitive.
A popular alternative, pioneered by Frank and Wolfe [28], is to replace PO by a more efficient Linear
Minimization Oracle (LMO), which returns a minimizer of any linear functional 〈g, ·〉 over the set X .

LMO (g) ∈ argmin
s∈X

〈g, s〉 (2)

Linear minimization is much faster than projection in several practical ML applications such as a
nuclear norm ball constrained problems [15], video-narration alignment [1], structured SVM [51],
and multiple sequence alignment and motif discovery [89]. LMO based methods have an important
additional benefit of producing solutions that preserve desired structures such as sparsity and low rank.
For smooth f , there is a long history of conditional gradient (Frank-Wolfe) methods that use O(ε−1)
LMO calls and O(ε−1) FO calls to achieve ε-suboptimality, which achieve optimal LMO-CC [45].
For nonsmooth functions, starting from the work of [84], several approaches have been proposed,
some under more assumptions. The best known upper bound on LMO calls is O(

√
dε−2) which is

achieved at the expense of significantly larger O(ε−4) FO calls. Details of these are in Section 1.1.

Our second key contribution is the algorithm MOLES, which obtains an ε-suboptimal solution
using the optimal O(ε−2) LMO and FO calls, without any additional dimension dependence. We

2

achieve this result by extending MOPES to work with approximate projections and using the classical
Frank-Wolfe (FW) method [28] to implement these approximate projections using LMO calls.

Finally, both of our methods extend naturally to the Stochastic First-order Oracle (SFO) setting,
where we have access only to stochastic versions of the function’s subgradients. Stochastic versions
of MOPES and MOLES still achieve the the same PO/LMO calls complexities as deterministic
counterparts, while the SFO calls complexity (SFO-CC) isO

(
(1 + σ2)ε−2

)
, where σ2 is the variance

in SFO. This again matches information theoretic lower bounds [64].

Contributions: We summarize our contributions below and in Table 1. We assume that the function
f extends to a slightly larger neighborhood of the constraint set X i.e., f continues to be Lipschitz
continuous and (S)FO can be queried in this neighborhood.

• We introduce MOPES and show that it is guaranteed to find an ε-suboptimal solution for any
constrained nonsmooth convex optimization problem using O(ε−1) PO calls and optimal O(ε−2)
SFO calls. To the best of our knowledge, for the general problem, this achieves the first improvement
over O(ε−2) PO-CC and SFO-CC of stochastic projected subgradient method (PGD).

• For LMO setting, we extend our method to design MOLES, that achieves the optimal SFO-CC and
LMO-CC of O(ε−2), and improves over the best known LMO-CC by

√
d.

• We also empirically evaluate MOPES and MOLES on the popular nuclear norm constrained Matrix
SVM problem [85], where they achieve significant speedups over their corresponding baselines.

• Our main technical novelty is the use Moreau-Yosida regularization to separate out the constraint
(PO/LMO) and function (SFO) accesses into two parts of a composite optimization problem. This
enables a better control of how many times each of these oracles are accessed. This idea might be
of independent interest, whenever a trade-off between PO-CC/LMO-CC and SFO-CC is desirable.

1.1 Related Work

Nonsmooth convex optimization: Nonsmooth convex optimization has been the focal point of
several research works for past few decades. [64] provided information theoretic lower bound of
FO calls O(ε−2) to obtain ε-suboptimal solution, for the general problem. This bound is matched
by the PGD method introduced independently by [34] and [59], which also implies a PO-CC of
O(ε−2). Recently, several faster PGD style methods [50, 78, 87, 48] have been proposed that exploit
more structure in the given optimization function, e.g., when the function is a sum of a smooth and a
nonsmooth function for which a proximal operator is available [8]. But, to the best of our knowledge,
such works do not explicitly address PO-CC and are mainly concerned about optimizing FO-CC.
Thus, for the worst case nonsmooth functions, these methods still suffer from O(ε−2) PO-CC.

Smoothed surrogates: Smoothing of the nonsmooth function is another common approach in
solving them [62, 66]. In particular, randomized smoothing [27, 9] techniques have been successful
in bringing down FO-CC w.r.t. ε but such improvements come at the cost of dimension factors. For
example, [27, Corollary 2.4] provides a randomized smoothing method that has O(d1/4/ε) PO-CC
and O(ε−2) FO-CC. Our MOPES method guarantees significantly better PO-CC than PGD that is
still independent of dimension.

One or log(1/ε) projection methods: Starting with the work of [61], several recent works [91, 17,
88] have proposed methods that require only one or log(1/ε) projections, under a variety of conditions
on the optimization function like smoothness and strong convexity. However, these methods require
that the constraint set can be written as c(x) ≤ 0 and they require access to∇c(x)—the gradient of
c–in each iteration. Hence, for the general nonsmooth functions, they will require at least O(ε−2)
accesses to gradients of the set’s functional form. On the other hand, our method is required to
access the set at only O(ε−1) points. Furthermore, for several practical problems, the computational
complexities of computing ∇c(x) and projecting are similar. For example, when c(x) = ‖x‖nuc − r
where ‖ · ‖nuc denotes the nuclear norm (see Section 4), then both gradient of c(x) as well as PO
requires computation of a full-SVD of x.

Frank-Wolfe methods: FW or conditional gradient method [28, 59] for smooth convex optimization,
which uses LMO, has found renewed interest in machine learning [92, 45] due to the efficiency
of computing LMO over PO [33], and its ability to ensure atomic structure and provide coreset
guarantees [22]. Over the last decade, several variants of FW method and their analyses have
been proposed [54, 29, 3, 31, 58, 68, 14], and FW has been extended to stochastic nonconvex

3

[49, 39, 75, 76, 5, 37] and online [38, 30, 52, 18, 86, 40] settings. However these methods provide
dimension-free LMO-CC and SFO-CC only for smooth functions, and further it is known that FW
fails to converge if subgradients are used instead of gradients [68].

Nonsmooth Frank-Wolfe methods: [84] posed an interesting question in the domain of nonsmooth
optimization with LMO: can LMO-CC be reduced from the O(ε−4) bound (achieved by PGD with
PO implemented via LMO: FW-PGD, see Appendix B.2) without increasing FO-CC significantly.
On the lower bound side, [54] showed that O(ε−2) LMO calls are necessary. On algorithmic side,
several randomized smoothing approaches combined with Frank-Wolfe methods were proposed, and
can reduce LMO-CC to O(d1/2ε−2). But, they come at the expense of increased O(d1/2ε−4) FO
calls [54, improving Theorem 5]1. If we allow stronger oracles or additional structure in the problem,
the complexity can be significantly improved. Assuming a stronger than LMO oracle introduced in
[84], [73] shows that O(1/ε2) LMO-CC and FO-CC are achievable for a special class of problems
with low curvatures. Another popular setting is when the nonsmooth problem admits a smooth
convex-concave saddle point reformulation [35, 23, 72, 36, 41, 42, 32, 60]. Among these the best
complexity is achieved by semi-proximal mirror-prox [41] which usesO(ε−2) LMO andO(ε−1) FO
calls. However, for the general nonsmooth convex optimization problem with LMO, the problem
posed by [84] remained open, and is resolved by our MOLES method that achieves the optimal
O(ε−2) LMO-CC and FO-CC.

2 Preliminaries and Notations

We consider Nonsmooth Convex Optimization with FO and PO (1) or LMO (2) accesses. LetX ⊂ Rd
be a closed convex set of diameter DX := maxx1,x1∈X ‖x1− x2‖, where ‖ · ‖ is the Euclidean norm
which corresponds to the inner product 〈·, ·〉. Let X be enclosed in a closed convex set X ′ ⊆ Rd to
which it is easy to project, i.e. X ⊂ X ′. For simplicity, let X ′ be a Euclidean ball of radius R ≤ DX
around origin. We can satisfy R = DX by re-centering Rd around any feasible point of X . We
assume f : X ′ → R to be a proper, lower semi-continuous (l.s.c.), convex Lipschitz function.We
use ∂f(x) to denote sub-differential of f at x, and if f is differentiable we use∇f(x) to denote its
gradient at x. We assume a first-order oracle (FO) can provide access to some subgradient at any
point in X ′, i.e. FO (x) ∈ ∂f(x).
Definition 1. A function f : X ′ → R is G-Lipschitz if and only if, |f(y)− f(x)| ≤ G ‖y − x‖ for
all x, y ∈ X ′. For a convex f , this is equivalent to: maxx∈X ′ maxg∈∂f(x) ‖g‖ ≤ G.

Definition 2. A function f : X ′ → R is µ-strongly convex if and only if, µ2 ‖y − x‖
2 + 〈g, y − x〉+

f(x) ≤ f(y), for all x, y ∈ X ′ and g ∈ ∂f(x). Similarly, a differentiable function f : X ′ → R is
said to be L-smooth if and only if, f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2 ‖y − x‖
2 for all x, y ∈ X ′.

In addition to FO, we also consider problems with stochastic FO (SFO) access, which computes
stochastic subgradient of a point x with variance σ2, as defined below:

SFO(x) := ĝ, where E[ĝ |x] = g for some g ∈ ∂f(x), and E[‖ĝ − g‖2 |x] ≤ σ2. (3)

Moreau Envelope: The key idea behind our method is to use “smoothed” version of the function via
its Moreau envelope [63, 90] defined below.
Definition 3. For a proper l.s.c. convex function f : X ′ → R ∪ {∞} defined on a closed convex set
X ′ and λ > 0, its Moreau-(Yosida) envelope function, fλ : X ′ → R, is given by

fλ(x) = min
x′∈X ′

f(x′) +
1

2λ
‖x− x′‖2, for all x ∈ X ′ . (4)

Furthermore, the prox operator is defined: proxλf (x) := argminx′∈X ′ f(x′) + 1
2λ‖x− x

′‖2.

When f is clear from context, we will use x̂λ(x) to denote proxλf (x). Note that this definition of
Moreau envelope is not standard as x′ is constrained to X ′ ⊆ Rd. However, the following lemma
(whose proof is in Appendix C.3) shows that this Moreau envelope and the prox operator still satisfies
most useful properties of the standard definition.

1 Needs tightening of [54, Theorem 5], by reducing the number of SFO calls per step by a factor of d−1/2,
i.e. Tk = dkd−1/2e

4

Lemma 1. For a closed convex set X ′, a convex proper l.s.c. function f : X ′ → R∪{∞} and λ > 0,
the following hold for any x ∈ X ′.
(a) x̂λ(x) is unique and f(x̂λ(x)) ≤ fλ(x) ≤ f(x),
(b) fλ is convex, differentiable, 1/λ-smooth and ∇fλ(x) = (1/λ)(x− x̂λ(x)), and,
(c) if f is G-Lipschitz continuous, then, ‖x̂λ(x)− x‖ ≤ Gλ, and f(x) ≤ fλ(x) +G2λ/2.

This lemma implies that, to find an ε-approximate minima of a nonsmooth f , one can instead minimize
fλ and achieve a faster convergence by exploiting its smoothness. Concretely, if f is G-Lipschitz
and λ = O(ε/G2), and Lemma 1(c) ensures that solving fλ up to O(ε) accuracy guarantees O(ε)
accuracy in the original minimization of f (Lemma 2). This insight allows us to design a simple
method that can reduce PO-CC but at the cost of a higher FO-CC. Next section starts with this result
as a warm-up and then presents our method, which ensures reduced PO-CC with optimal FO-CC.

3 Main Results

We present our main results in this section. We first present the main ideas in Section 3.1 and then the
results for PO and LMO settings in Sections 3.2 and 3.3 respectively.

3.1 Main Ideas

We are interested in the NSCO problem (1). As discussed in the previous section, instead of
optimizing f(x) over X , we can instead optimize the Moreau envelope function fλ(x) with λ = O(ε)
to get ε-suboptimality. Since by Lemma 1, fλ(·) is a 1/λ-smooth convex function, a straightforward
approach is to iteratively optimize fλ(x) using Nesterov’s accelerated gradient descent (AGD) [69]
method. But to get gradients of fλ(x), we will need to solve the inner problem (4) approximately.

A key insight is that since the inner problem does not involve the constraint set X , PO calls are not
required in inner steps for estimating∇fλ(x). So the total number of PO calls required is equal to the
total number of outer steps in minimizing fλ(x), which for Nesterov’s AGD isO(1/

√
λε) = O(ε−1).

We see that this already improves over the O(ε−2) projections of PGD. However, since ∇fλ(x)
needs to be estimated to a good accuracy, the total number of FO calls, including in the inner loop,
turns out to be O(ε−3), which is worse than the optimal O(ε−2) FO calls of PGD.

Similarly, when we have access to LMO for X , we could optimize fλ using FW [28, 45], with total
number of outer steps = O(1/λε) = O(ε−2), and hence the total number of LMO calls is O(ε−2).
However, this again leads to suboptimal O(ε−4) FO calls. We can improve the FO-CC to O(ε−3) by
using the conditional gradient sliding algorithm [56] instead of FW method, but this is still worse
than the optimal O(ε−2) FO calls.

In order to achieve optimal number of FO calls, we directly optimize the Moreau envelope through
the following joint optimization.

min
x∈X ,x′∈X ′

[Ψλ(x, x′) := f(x′) + ψλ(x, x′)] where ψλ(x, x′) :=
1

2λ
‖x′ − x‖2, (5)

where the function Ψλ : X ′ ×X ′ → R is convex in the joint variable (x, x′). The main advantage of
this new form is that, this is a composite optimization problem with a nonsmooth part (corresponding
to f(x′)) and a 2/λ-smooth part (corresponding to (1/2λ)‖x′ − x‖2) with the constrained variable
x ∈ X only appearing in the smooth part. Now, by the following lemma, an approximate minimizer
of Ψλ, is also an approximate minimizer of the Moreau envelope fλ, and further if λ = ε/G2, it is
also an approximate minimizer of the original function f . A proof is provided in Appendix C.1.
Lemma 2. Under the same assumptions as in Lemma 1, let X ⊆ X ′ be a convex subset and Ψλ

be defined as in (5). Then, (i) minx∈X minx∈X ′ Ψλ(x, x′) = minx∈X fλ(x) ≤ minx∈X f(x) , and
(ii) for any random vectors (xε, x

′
ε) ∈ X × X ′, E[f(xε)]−G2λ/2 ≤ E[fλ(xε)] ≤ E[Ψλ(xε, x

′
ε)].

Our algorithm essentially solves (5) using Gradient Sliding [55] and Conditional Gradient Sliding [56]
frameworks, which are optimal for minimizing composite problems of the form (5) for the PO and
LMO settings respectively. The resulting algorithm for PO setting, called MOPES is given in
Algorithm 1. The algorithm for LMO setting, called MOLES is presented in Algorithm 2. The
only difference between MOPES and MOLES is that MOLES uses FW to compute approximate
projections while MOPES uses exact projections. Finally, our algorithms extend straightforwardly

5

Algorithm 1: MOPES: MOreau Projection Efficient Subgradient method

Input: f , X , X ′, G, DX , R, x0, K, D̃, c′, λ,
1.1 Set x′0 = z′0 = x0 = z0 = x0

1.2 for k = 1, . . . ,K do
1.3 Set βk = 4

λk , γk = 2
k+1 , and Tk =

⌈
(4G2+σ2)λ2Kk2

2D̃

⌉
1.4 Set (yk, y

′
k) = (1− γk) · (xk−1, x

′
k−1) + γk · (zk−1, z

′
k−1)

1.5 Set zk = PX
(
zk−1 − 1

βk
· ∇ykΨλ(yk, y

′
k)
)

(1) // Note ∇ykΨλ(yk, y
′
k) =

yk−y′k
λ

1.6 Set (z′k, z̃
′
k) = Prox-Slide

(
∇y′kψλ(yk, y

′
k), z′k−1, βk, Tk

)
// ∇y′kψλ(yk, y

′
k) =

y′k−yk
λ

1.7 Set (xk, x
′
k) = (1− γk) · (xk−1, x

′
k−1) + γk · (zk, z̃′k)

Output: (xK , x
′
K)

1.8 Prox-Slide(g, u0, β, T) // Approx. resolve proxf/β
(
u′0 − g/β

)
[55]:

1.9 Set ũ0 = u0

1.10 for t = 1, . . . , T do
1.11 Set θt = 2(t+1)

t(t+3) , ĝt−1 = SFO (ut−1) (3)
1.12 Set ût = ut−1 − 1

(1+t/2)β · (ĝt−1 + β(ut−1 − (u0 − g/β)))

// subgradient method step for φ(u) := f(u) + β
2 ‖u−

(
u0 − g

β

)
‖2

1.13 Set ut = ût ·min (1, R/‖ut‖) // projection of ût onto X ′: P ′X (ut)

1.14 Set ũt =
(
1− θt

)
· ũt−1 + θt · ut

1.15 return (uT , ũT)

to the case of stochastic subgradients through a stochastic first order oracle (SFO) and the resulting
bounds depend on the variance of SFO in addition to the Lipschitz constant of f(·).

3.2 MOreau Projection Efficient Subgradient (MOPES) method

A pseudocode of our algorithm MOPES is presented in Algorithm 1. At a high level, MOPES is an
inexact Accelerated Proximal Gradient method (APGD) [67, 8] scheme which tries to implement Nes-
terov’s AGD algorithm on Ψλ(x, x′). Now, standard AGD updates for solving minx∈X ,x′ Ψλ(x, x′),
if Ψλ were smooth are:

βk ← 4/λk , γk ← 2/(k + 1)

(yk, y
′
k)← (1− γk) (xk−1, x

′
k−1) + γk(zk−1, z

′
k−1)

zk ← PX (zk−1 −∇ykΨλ(yk, y
′
k)/βk) , z′k ← z′k−1 −∇y′kΨλ(yk, y

′
k)/βk,

(xk, x
′
k)← (1− γk) (xk−1, x

′
k−1) + γk(zk, z

′
k).

(6)

MOPES essentially implements the above updates, but as Ψλ is nonsmooth in x′, we use prox steps
for the x′ variable instead of the GD steps. The prox step—proxf/βk

(
z′k−1−∇y′kψλ(yk, y

′
k)/βk

)
—

is implemented via Prox-Slide procedure (see Line 1.6), which is the standard subgradient method
applied to a strongly convex function φ (see Line 1.12). Now, Prox-Slide procedure outputs two
points (z′k, z̃

′
k) which are the final and average iterates, respectively, of the subgradient method, This

achieves optimal FO-CC by exploiting strong convexity of φ. If we were to use only the average of the
iterates, the FO-CC would increase by a factor of O(ε−1) (see the failed attempt in Appendix A.1).

Note that MOPES needs only a PO call & no FO call in Line 1.5, and only a FO/SFO call in Line 1.11.
Therefore, we bound below, the total number of PO calls K and the number of FO/SFO calls K · T .
Theorem 1. Let f : X ′ → R be aG-Lipschitz continuous proper l.s.c. convex function equipped with
a SFO with variance σ2, and X ⊆ X ′ = B(0, R) be some convex subset equipped with a projection
oracle PX and contained inside the Euclidean ball of radius R around origin. If we run MOPES (Al-
gorithm 1) with inputs λ = ε/G2, D̃ = c‖x0 − x∗‖2 and K = d2

√
(10 + 8c)G‖x0 − x∗‖/εe for

any absolute constant c > 0 and x∗ ∈ argminx∈X f(x), then, using O(G‖x0−x∗‖
ε) PO calls and

O((G2+σ2)‖x0−x∗‖2
ε2) FO calls, it outputs xK satisfying f (xK)−minx∈X f(x) ≤ ε.

6

Remarks: Note that FO-CC is same as that of PGD (up to constants) while PO-CC is significantly
better. A natural open question is if PO-CC can be further reduced. Also, MOPES requires querying of
SFO/FO at ut−1 which is not necessarily in X but is always in X ′ (Line 1.11). Recall from Section 2
thatX ′ is a Euclidean ball of radiusR ≤ DX around origin. Being able to query SFO/FO inX ′ seems
like a mildly stricter requirement than the standard requirement of querying on X only, but for most
practical problems this seems feasible. Even if f is unknown outside of X , theoretically we could
work with its convex extension to the entire space, which remains G Lipschitz (see Section 6). Also,
notice that the guarantee only depends on the diameter DX of the constraint set X and not the radius
R of the enclosing set X ′. This is so because the first-order method only depends on the distance from
initial point (x0, x

′
0) to the desired solution (x∗, x∗), which isO(‖x0− x∗‖) = O(DX), as x′0 = x0.

Finally, for simplicity of exposition, we provide desired suboptimality ε as an input to MOPES–in
practice, we can remove this assumption by using standard doubling trick [80, Algorithm 6].

See Appendices A.2 and C.2.1 for a proof sketch and a detailed proof, respectively, of Theorem1. At a
high level, our proof uses a potential function [6] for analyzing APGD, combines it with Proposition 1
which provides a fast convergence guarantee on Prox-Slide iterates, and then apply standard APGD
proof techniques [81] to obtain the final result.
Proposition 1 (Proposition 3, informal). For some 0 < τk ≤ 1.5, output of Prox-Slide satisfies

φk(z̃′k)− φk(x′) +
βk
2
‖z′k−1 − x′‖2 ≤

βk
2

[τk‖z′k−1 − x′‖2 − τk+1‖z′k − x′‖2] +
16G2

βkTk
.

3.3 MOreau Linear minimization oracle Efficient Subgradient (MOLES) method

Algorithm 2: MOLES: MOreau Linear minimization oracle Efficient Subgradient method
Use the same steps as MOPES (Algorithm 1), but replace Line 1.5 with:

2.5 Set zk = FW-Based-Projection(zk−1 − 1
βk
· ∇ykΨλ(yk, y

′
k), zk−1,

⌈ 7KD2
X

c′D̃

⌉
)

2.16 FW-Based-Projection(z, u0, T̂):
// T̂ steps of standard Frank-Wolfe for minu∈X ‖u− z‖2

2.17 for t = 1, . . . , T̂ do
2.18 Set st = LMO (ut−1 − z)
2.19 Set ut = ((t− 1) · ut−1 + 2 · st)/(t+ 1)

2.20 return uT̂

We now present our results for the LMO setting. A pseudocode of our algorithm, MOLES, is
presented in Algorithm 2. MOLES does exactly the same steps as in MOPES (Algorithm 1), except
that the projection in Line 1.5 of MOPES is estimated using the LMO and Frank-Wolfe algorithm. At
the outer-step k, the output zk of FW-Based-Projection, which uses T̂ = O(1/ε) LMO calls to
approximately project, satisfies the following bound on the projection problem’s Wolfe dual gap [45]:

max
s∈X

βk
〈
zk −

(
zk−1 − (1/βk) · ∇ykΨλ(yk, y

′
k)
)
, zk − s

〉
≤ 4c′D̃/λKk (7)

In practice we can use the above condition as a stopping criterion for FW-Based-Projection. The
following theorem, a proof of which is in Appendix C.2.2, provides the convergence guarantee.
Theorem 2. Let f : X ′ → R be aG-Lipschitz continuous proper l.s.c. convex function equipped with
an SFO with variance σ2, and X ⊆ X ′ = B(0, R) be some convex subset of diameter DX equipped
with an LMO and contained inside the Euclidean ball of radius around origin. If we run MOLES (Al-
gorithm 2) with inputs λ = ε/G2, D̃ = cDX , K = d2

√
10 + 8c(1 + c′)G‖x0 − x∗‖/εe, for some

absolute constants c,c′ > 0 and x∗ ∈ argminx∈X f(x), then, using O(
G2D2

X
ε2) LMO calls and

O(
(G2+σ2)D2

X
ε2) FO calls it outputs xK satisfying f (xK)−minx∈X f(x) ≤ ε.

Remarks: Thus our algorithm obtains the optimalO(ε−2) dimension independent FO-CC and LMO-
CC for general nonsmooth functions [54]. Similar to MOPES, here also, we require FO/SFO of f to
be well-defined in X ′. If f is a maximum of smooth convex functions, then we can get similar PO-CC

7

by applying min-max saddle point approaches [41]. But even for such functions, it is non-trivial
to extend saddle point approaches to stochastic FO, which is important in practice. In contrast, our
result matches the optimal FO-CC (on all key parameters) of unconstrained stochastic-PGD method.

4 Applications

We first explain the gain of MOPES in practical applications. One of the main applications of our
method is Empirical Risk Minimization (ERM) with nonsmooth loss functions. For a nonsmooth loss
fi for the ith training example in a set of n examples, the general form of ERM is:

min
x∈X⊆Rd

1

n

n∑
i=1

fi(x) For example, min
X∈Rm×p;‖X‖nuc≤r

1

n

n∑
i=1

max(0, 1− bi〈X,Ai〉) , (8)

which is known as the low rank SVM [85, 83, 74] as the nuclear norm constraint induces low rank
solutions. As the cost of a single PO call involves a full SVD on a potentially full rank X , MOPES
significantly improves over the competing baseline as we showcase in Fig. 1. There are numerous
examples of ERMs with costly POs to a nuclear norm ball (e.g. max-margin collaborative filtering
[79]), to an `1 norm ball (e.g. sparse SVM [13, 93, 4]), and to a large number of linear constraints
(e.g. robust classification [10]). One notable example is SVM with hard constraints on a subset of the
training data, so that some predictions are constrained to be always accurate [70] (See Appendix E.2).

In all these examples, PO calls can be more costly than FO calls, making MOPES attractive. In
comparison, popular accelerated proximal point methods, such as FISTA [8], cannot handle general
nonsmooth losses. The standard projected subgradient methods suffer from O(ε−2) PO-CC. Mirror
descent [64] may give better d dependence, but it too requires O(ε−2) (proximal) operations.

Now, several nonsmooth loss functions have a special structure where they can be written as a smooth
minimax problem. Such (stochastic) problems can be solved using Oε(ε−1) (S)FO and PO calls [66].
However, the resulting complexity scales up with the dimension d or the number of samples n. Thus
the PO-CC of the minimax formulations becomes inefficient (even with variance reduction [71, 16]),
whenever n or d gets large. In the deterministic setting, each step of the optimization problem requires
gradient of the entire empirical risk function, so for problems with large n and small ε, total time
complexity can be significantly higher than MOPES. See Appendix E.1 for exact complexities.

Further, beyond ERM, nice minimax representations might not always exist. For example, in
reinforcement learning/optimal control setting, f could be an (already trained) input-convex neural
network [2, 19] approximating the Q-function over a continuous constrained action space [20].

For several of the above examples, LMO might be preferred if it is significantly more efficient than a
PO call e.g., for high-dimensional low rank SVM, a LMO call only requires computing top singular
vector, as opposed to full SVD required by a PO. Further, LMO-based methods have an additional
benefit of preserving the desired structure of the solution, such as sparse and low rank structures [22].
This makes MOLES particularly attractive, for example, in differentially private collaborative filtering
[46], where structured updates lead to improved privacy guarantees. In Appendix E, we present the
details of some these examples, and give analytical comparisons to competing methods.

5 Empirical Results

We experimentally evaluate2 MOPES (Algorithm 1) and MOLES (Algorithm 2) methods on a low
rank SVM problem [85] of the form (8) on a subset of the Imagewoof 2.0 dataset [43]. The training
data contains n = 400 samples {(Ai, yi)}ni=1 where Ai is a 224 × 224 grayscale image labeled
using yi ∈ {0, 1}. Note that the effective dimension is d = 50176. We use r = 0.1 as nuclear
norm ball radius of X . First, we compare the PO and FO efficiencies of MOPES with those of PGD
with a fixed and PGD with a diminishing stepsize. In Figure 1 we plot the mean (over 10 runs)
sub-optimality gap: f(xk) − f̂∗, of the iterates against the number of PO (top) and FO (bottom)
calls, respectively, used to obtain that iterate. Next, we compare the LMO and FO efficiencies of
MOLES with those of FW-PGD (see Algorithm 3 in Appendix B.2) and Randomized Frank-Wolfe
(RandFW) [54, Theorem 5] methods with a fixed and diminishing stepsizes. In Figure 2 we plot the

2Code for the experiments is available at https://github.com/tkkiran/MoreauSmoothing

8

https://github.com/tkkiran/MoreauSmoothing

100 101 102 103

number of PO calls made till k

10 1

f(x
k)

f*
PGD (fixed)
PGD (diminish)
MOPES

100 101 102 103

number of FO calls made till k

10 1

f(x
k)

f*

PGD (fixed)
PGD (diminish)
MOPES

Figure 1: MOPES uses significantly fewer PO
calls and comparable number of FO calls than PGD

100 101 102 103

number of LMO calls made till k

10 1

f(x
k)

f*

RandFW
FW-PGD (fixed)
FW-PGD (diminish)
MOLES

100 101 102 103 104

number of FO calls made till k

10 1

f(x
k)

f*

RandFW
FW-PGD (fixed)
FW-PGD (diminish)
MOLES

Figure 2: MOLES uses fewer LMO calls and simi-
lar number of FO calls than FW-PGD and RandFW

mean (over 10 runs) sub-optimality gap: f(xk) − f̂∗, of the iterates against the number of LMO
(top) and FO (bottom) calls, respectively, used to obtain that iterate. In both these plots, while
MOPES/MOLES and baselines have comparable FO-CC, MOPES/MOLES is significantly more
efficient in the number of PO/LMO calls, matching our Theorems 1 and 2. As the nuclear norm ball
has a non-trivial projection/LMO, PO-CC/LMO-CC will dominate the total run-time as m becomes
larger for X ∈ Rm×m. Note that matrix mirror descent [47] would also require O(ε−2) SVD based
proximal operations. We provide additional experimental details in Appendix D.

6 Conclusion

We study a canonical problem in optimization: minimizing a nonsmooth Lipschitz continuous convex
function over a convex constraint set. We assume that the function is accessed with a first-order
oracle (FO) and the set is accessed with either a projection oracle (PO) or a linear minimization
oracle (LMO). In this general setting, we address the fundamental question of reducing the number
of accesses to the function and the set. When using projections, we introduce MOPES, and show
that it finds an ε-suboptimal solution with O(ε−2) FO calls and O(ε−1) PO calls. This is optimal
in the number of FO calls and significantly improves over competing methods in the number of PO
calls (see Table 1). When using linear minimizations, we introduce MOLES, and show that it finds
an ε-suboptimal solution with O(ε−2) FO and LMO calls. This is optimal in both the number of PO
and the number of LMO calls. This resolves a question left open since [84] on designing the optimal
Frank-Wolfe type algorithm for nonsmooth functions.

The two properties we need of the superset X ′ ⊇ X are that (a) it is easy to project onto X ′ and
(b) f is G-Lipschitz on X ′. In our paper, we choose X ′ to be a Euclidean ball (which is easy to
project to) but any other choice of X ′ which satisfies the above properties works just as well. For
example, if f is Lipschitz everywhere, we can set X ′ = Rd and ignore the explicit projection to X ′
in line 1.13 of Algorithm 1. However, even if f is G-Lipschitz inside the constraint X , f could (i)
have unbounded Lipschitz constant, or (ii) be undefined just outside of X . Thus an X ′ satisfying
our requirements may not exist. In our experiments, we do not explicitly project onto X ′ (line 1.13)
but still observed that ‖xk − x′k‖ = O(Gλ) = O(ε) and small, which hints that we may only need
Lipschitzness over a much smaller set, say X +B(0,O(Gλ)). Theoretically, we can work around
the above issues by minimizing the convex extension fX : Rd → R of the function f from the set X ,
defined as fX (x′) := maxx∈X maxg∈∂f(x) f(x)+ 〈g, x′ − x〉. The extension fX has the same value
as f inside X and is G-Lipschitz everywhere. Therefore the minimization problems minx∈X f(x)
and minx∈X fX (x′) are equivalent. However, it is not clear if we can estimate the gradients of fX
efficiently. We did not find any relevant prior work and leave this question for future work.

Another possible direction of future work is developing ε-horizon oblivious algorithms, where
we need not fix K and ε a priori. In our experiments, we observed that varying λ according to
λk = O(DXGk) and βk = 4

λkk
works just as well as fixing it.

9

Broader Impact

As this is foundational research that is theoretical in nature, it is hard to predict any foreseeable
societal consequence.

Funding Disclosure

Funding in direct support of this work: NSF grant 1927712, NSF grant 1929955, NSF grant 2019844,
and Google faculty research award.

References
[1] J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev, and S. Lacoste-Julien. Unsuper-

vised learning from narrated instruction videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4575–4583, 2016.

[2] B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 146–155. JMLR. org, 2017.

[3] F. Bach. Duality between subgradient and conditional gradient methods. SIAM Journal on
Optimization, 25(1):115–129, 2015.

[4] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Optimization with sparsity-inducing
penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106, 2012.

[5] K. Balasubramanian and S. Ghadimi. Zeroth-order (non)-convex stochastic optimization via
conditional gradient and gradient updates. In Advances in Neural Information Processing
Systems, pages 3455–3464, 2018.

[6] N. Bansal and A. Gupta. Potential-function proofs for first-order methods. arXiv preprint
arXiv:1712.04581, 2017.

[7] H. H. Bauschke, M. N. Dao, and S. B. Lindstrom. Regularizing with bregman–moreau envelopes.
SIAM Journal on Optimization, 28(4):3208–3228, 2018.

[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[9] A. Beck and M. Teboulle. Smoothing and first order methods: A unified framework. SIAM
Journal on Optimization, 22(2):557–580, 2012.

[10] A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and A. Nemirovski. Efficient methods for robust
classification under uncertainty in kernel matrices. Journal of Machine Learning Research, 13
(Oct):2923–2954, 2012.

[11] D. P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 2 edition, 1999.
[12] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.
[13] P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support

vector machines. In ICML, volume 98, pages 82–90, 1998.
[14] G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. Journal of

Machine Learning Research, 20(71):1–42, 2019.
[15] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix

completion. SIAM Journal on optimization, 20(4):1956–1982, 2010.
[16] Y. Carmon, Y. Jin, A. Sidford, and K. Tian. Variance reduction for matrix games. In Advances

in Neural Information Processing Systems, pages 11377–11388, 2019.
[17] J. Chen, T. Yang, Q. Lin, L. Zhang, and Y. Chang. Optimal stochastic strongly convex

optimization with a logarithmic number of projections. arXiv preprint arXiv:1304.5504, 2013.
[18] L. Chen, C. Harshaw, H. Hassani, and A. Karbasi. Projection-free online optimization with

stochastic gradient: From convexity to submodularity. In International Conference on Machine
Learning, pages 814–823, 2018.

[19] Y. Chen, Y. Shi, and B. Zhang. Optimal control via neural networks: A convex approach. In
International Conference on Learning Representations, 2018.

10

[20] Y. Chen, Y. Shi, and B. Zhang. Input convex neural networks for optimal voltage regulation.
arXiv preprint arXiv:2002.08684, 2020.

[21] A. Clark and Contributors. Pillow: Python image-processing library, 2020. URL https:
//pillow.readthedocs.io/en/stable/. Documentation.

[22] K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):1–30, 2010.

[23] B. Cox, A. Juditsky, and A. Nemirovski. Decomposition techniques for bilinear saddle point
problems and variational inequalities with affine monotone operators. Journal of Optimization
Theory and Applications, 172(2):402–435, 2017.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[25] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization
with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

[26] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l 1-ball for
learning in high dimensions. In Proceedings of the 25th international conference on Machine
learning, pages 272–279, 2008.

[27] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[28] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

[29] R. M. Freund and P. Grigas. New analysis and results for the frank–wolfe method. Mathematical
Programming, 155(1-2):199–230, 2016.

[30] D. Garber and E. Hazan. A linearly convergent conditional gradient algorithm with applications
to online and stochastic optimization. arXiv preprint arXiv:1301.4666, 2013.

[31] D. Garber and E. Hazan. Faster rates for the frank-wolfe method over strongly-convex sets. In
32nd International Conference on Machine Learning, ICML 2015, 2015.

[32] G. Gidel, T. Jebara, and S. Lacoste-Julien. Frank-wolfe algorithms for saddle point problems.
In Artificial Intelligence and Statistics, pages 362–371. PMLR, 2017.

[33] G. Gidel, F. Pedregosa, and S. Lacoste-Julien. Frank-wolfe splitting via augmented lagrangian
method. In International Conference on Artificial Intelligence and Statistics, pages 1456–1465,
2018.

[34] A. A. Goldstein. Convex programming in hilbert space. Bulletin of the American Mathematical
Society, 70(5):709–710, 1964.

[35] J. H. Hammond. Solving asymmetric variational inequality problems and systems of equations
with generalized nonlinear programming algorithms. PhD thesis, Massachusetts Institute of
Technology, 1984.

[36] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for norm-
regularized smooth convex optimization. Mathematical Programming, 152(1-2):75–112, 2015.

[37] H. Hassani, A. Karbasi, A. Mokhtari, and Z. Shen. Stochastic conditional gradient++:
(non-)convex minimization and continuous submodular maximization. arXiv preprint
arXiv:1902.06992, 2019.

[38] E. Hazan and S. Kale. Projection-free online learning. In Proceedings of the 29th International
Coference on International Conference on Machine Learning, pages 1843–1850, 2012.

[39] E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. In
International Conference on Machine Learning, pages 1263–1271, 2016.

[40] E. Hazan and E. Minasyan. Faster projection-free online learning. arXiv preprint
arXiv:2001.11568, 2020.

[41] N. He and Z. Harchaoui. Semi-proximal mirror-prox for nonsmooth composite minimization.
In Advances in Neural Information Processing Systems, pages 3411–3419, 2015.

[42] N. He and Z. Harchaoui. Stochastic semi-proximal mirror-prox. Workshop on Optimization for
Machine Learning, 2015. URL https://opt-ml.org/papers/OPT2015_paper_27.pdf.

11

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://opt-ml.org/papers/OPT2015_paper_27.pdf

[43] J. Howard. Imagenette, 2019. URL https://github.com/fastai/imagenette. Github
repository with links to dataset.

[44] P. J. Huber. Robust statistical procedures, volume 68. SIAM, 1996.

[45] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th international conference on machine learning, pages 427–435, 2013.

[46] P. Jain, O. D. Thakkar, and A. Thakurta. Differentially private matrix completion revisited. In
International Conference on Machine Learning, pages 2215–2224. PMLR, 2018.

[47] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with bregman matrix
divergences. Journal of Machine Learning Research, 10(Feb):341–376, 2009.

[48] A. Kundu, F. Bach, and C. Bhattacharya. Convex optimization over intersection of simple
sets: improved convergence rate guarantees via an exact penalty approach. In International
Conference on Artificial Intelligence and Statistics, pages 958–967. PMLR, 2018.

[49] S. Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345, 2016.

[50] S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining an O(1/t) conver-
gence rate for the projected stochastic subgradient method. arXiv preprint arXiv:1212.2002,
2012.

[51] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe
optimization for structural svms. In Proceedings of the 30th international conference on
machine learning, pages 53–61, 2013.

[52] J. Lafond, H.-T. Wai, and E. Moulines. On the online frank-wolfe algorithms for convex and
non-convex optimizations. arXiv preprint arXiv:1510.01171, 2015.

[53] G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1-2):365–397, 2012.

[54] G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.
arXiv preprint arXiv:1309.5550, 2013.

[55] G. Lan. Gradient sliding for composite optimization. Mathematical Programming, 159(1-2):
201–235, 2016.

[56] G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM Journal on
Optimization, 26(2):1379–1409, 2016.

[57] G. Lan, Z. Lu, and R. D. Monteiro. Primal-dual first-order methods with O(1/ε) iteration-
complexity for cone programming. Mathematical Programming, 126(1):1–29, 2011.

[58] G. Lan, S. Pokutta, Y. Zhou, and D. Zink. Conditional accelerated lazy stochastic gradient
descent. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1965–1974, 2017.

[59] E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational
mathematics and mathematical physics, 6(5):1–50, 1966.

[60] F. Locatello, A. Yurtsever, O. Fercoq, and V. Cevher. Stochastic frank-wolfe for composite
convex minimization. In Advances in Neural Information Processing Systems, pages 14246–
14256, 2019.

[61] M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi. Stochastic gradient descent with only one
projection. In Advances in Neural Information Processing Systems, pages 494–502, 2012.

[62] J. J. Moreau. Functions convexes duales et points proximaux dans un espace hilbertien. CR
Acad. Sci. Paris Ser. A Math., 255:2897–2899, 1962.

[63] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique
de France, 93:273–299, 1965.

[64] A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience, 1 edition, 1983.

[65] Y. Nesterov. Introductory lectures on convex programming volume I: Basic course. Lecture
notes, 1998.

12

https://github.com/fastai/imagenette

[66] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103
(1):127–152, 2005.

[67] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013.

[68] Y. Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective
function. Mathematical Programming, 171(1-2):311–330, 2018.

[69] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[70] Q. Nguyen. Efficient learning with soft label information and multiple annotators. PhD thesis,
University of Pittsburgh, 2014.

[71] B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-point problems.
In Advances in Neural Information Processing Systems, pages 1416–1424, 2016.

[72] F. Pierucci, Z. Harchaoui, and J. Malick. A smoothing approach for composite conditional
gradient with nonsmooth loss. Technical report, [Research Report] RR-8662, INRIA Grenoble,
2014.

[73] S. N. Ravi, M. D. Collins, and V. Singh. A deterministic nonsmooth frank wolfe algorithm with
coreset guarantees. Informs Journal on Optimization, 1(2):120–142, 2019.

[74] M. I. Razzak. Sparse support matrix machines for the classification of corrupted data. PhD
thesis, Queensland University of Technology, 2019.

[75] S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic frank-wolfe methods for nonconvex
optimization. In 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1244–1251. IEEE, 2016.

[76] A. K. Sahu, M. Zaheer, and S. Kar. Towards gradient free and projection free stochastic
optimization. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 3468–3477, 2019.

[77] M. Schmidt, N. L. Roux, and F. R. Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. In Advances in neural information processing systems, pages
1458–1466, 2011.

[78] O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In International conference on machine learning, pages
71–79, 2013.

[79] N. Srebro, J. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances
in neural information processing systems, pages 1329–1336, 2005.

[80] K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh. Efficient algorithms for smooth
minimax optimization. In Advances in Neural Information Processing Systems, pages 12659–
12670, 2019.

[81] P. Tseng. Accelerated proximal gradient methods for convex optimization. Technical report,
University of Washington, Seattle, 2008. URL https://www.mit.edu/~dimitrib/PTseng/
papers/apgm.pdf.

[82] R. Vinter and H. Zheng. Some finance problems solved with nonsmooth optimization techniques.
Journal of optimization theory and applications, 119(1):1–18, 2003.

[83] Z. Wang, X. He, D. Gao, and X. Xue. An efficient kernel-based matrixized least squares support
vector machine. Neural Computing and Applications, 22(1):143–150, 2013.

[84] D. White. Extension of the frank-wolfe algorithm to concave nondifferentiable objective
functions. Journal of optimization theory and applications, 78(2):283–301, 1993.

[85] L. Wolf, H. Jhuang, and T. Hazan. Modeling appearances with low-rank svm. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–6. IEEE, 2007.

[86] J. Xie, Z. Shen, C. Zhang, B. Wang, and H. Qian. Efficient projection-free online methods with
stochastic recursive gradient. In AAAI, pages 6446–6453, 2020.

[87] T. Yang and Q. Lin. RSG: Beating subgradient method without smoothness and strong convexity.
The Journal of Machine Learning Research, 19(1):236–268, 2018.

13

https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf
https://www.mit.edu/~dimitrib/PTseng/papers/apgm.pdf

[88] T. Yang, Q. Lin, and L. Zhang. A richer theory of convex constrained optimization with reduced
projections and improved rates. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3901–3910. JMLR. org, 2017.

[89] I. E.-H. Yen, X. Lin, J. Zhang, P. Ravikumar, and I. Dhillon. A convex atomic-norm approach
to multiple sequence alignment and motif discovery. In International Conference on Machine
Learning, pages 2272–2280, 2016.

[90] K. Yosida. Functional analysis. Springer Verlag, 1965.
[91] L. Zhang, T. Yang, R. Jin, and X. He. O(log t) projections for stochastic optimization of

smooth and strongly convex functions. In International Conference on Machine Learning,
pages 1121–1129, 2013.

[92] T. Zhang. Sequential greedy approximation for certain convex optimization problems. IEEE
Transactions on Information Theory, 49(3):682–691, 2003.

[93] J. Zhu, S. Rosset, R. Tibshirani, and T. J. Hastie. 1-norm support vector machines. In Advances
in neural information processing systems, pages 49–56, 2004.

14

Appendix

A Supplementary results

A.1 Intuition behind the design of MOPES and a failed attempt

In this section we study the main ideas behind the design of MOPES method through a failed attempt.
Only for the section, for simplicity, we assume that X ′ is the whole vector space, and f is G Lipschitz
in X ′. Recall that we want to solve the problem (5),

min
x∈X ,x′∈X ′

[Ψλ(x, x′) = ψλ(x, x′) + f(x′)] . (9)

Notice that this is a composite objective which is a sum of a 2/λ-smooth function ψλ and a nonsmooth
function f . This implies that, if we have access to the proximal operator (recall Definition 3) for f

proxf/t(z) := arg min
x∈X ′

f(x) +
t

2
‖x− z‖2 , (10)

then theoretically we can solve this problem using accelerated proximal gradient algorithm (APGD) [8,
67, 81], which has the following update rule

βk ← 4/λk , γk ← 2/(k + 1)

(yk, y
′
k)← (1− γk) (xk−1, x

′
k−1) + γk(zk−1, z

′
k−1)

zk ← PX (zk−1 −∇xψλ(yk, y
′
k)/βk)

z′k ← proxf/βk

(
z′k−1 −∇x′ψλ(yk, y

′
k)/βk

)
(xk, x

′
k)← (1− γk) (xk−1, x

′
k−1) + γk(zk, z

′
k)

, (APGD)

for some stepsize 1/βk and iterate weight γk.

Notice that this update rule is different from the standard accelerated schemes, because the latter
either first update the primal variables (x, x′) and then extrapolate the dual variables (z, z′) [65]
or simultaneously update them both [69, 57], whereas (APGD), which is fashioned along the lines
of [81], first updates (z, z′) using proximal3 step and then extrapolates these to update (x, x′).
Advantage of [81] over the standard rule are three fold; former only needs one proximal step per
variable (as opposed to two in [69, 57]) per iteration (which makes it practically faster), or keeps
the dual and middle iterates zk, yk feasible (as opposed to [65, (2.2.17)]), and can easily handle
stochastic FO and constraints [53]. Another reason for the choice, which will be evident later on,
is that, our update rule can simultaneously provide the optimal complexity for the smooth ψλ and
nonsmooth f parts of the composite function, Ψλ (5) [55].

With the right choice of βk, γk, (APGD) can find an ε-approximate solution to the problem (5),
(xK , x

′
K), in O(

√
2/λε) steps. Now if we choose λ = O(ε), we can show that xK is also an O(ε)

solution of our original nonsmooth constrained problem (1). This is formalized in the Lemma 2. Thus
applying (APGD) on (5) with λ = ε/G2 gives us an ε solution to the original problem (1) using only
K = O(G/ε) projections, which is a significant improvement over the O(G2/ε2) PO calls used by
the standard subgradient method.

For a general G-Lipschitz convex function f , we cannot solve proxf/βk
exactly, and hence we resort

to some approximate solution. We emphasize here that it is not immediately evident that we can
implement an inexact prox operator, and still maintain that the total number of FO calls used by this
inexact APGD method match the optimal lowerbound O(G2/ε2) [64, 65]. Perhaps surprisingly, this
is achieved using the Gradient Sliding method [55], which proposes a specific form of an inexact
APGD. Note that the constrained variable x ∈ X is not an input to the nonsmooth part f of Ψλ,
which means that approximately resolving the prox operator proxf/t does not require any projection.

As an intermediate algorithm we first present (IAPGD), which is derived from (APGD) but replaces
the proximal update of z′k with an inexact resolution for prox operator proxf/βk

up to an approxima-
tion error of δ. Notice that δ = 0, implies that zk is an exact resolution of the operation proxf/βk

(ẑ′k).

3projection PX could be considered as a proximal step for the 0-∞ indicator function for the set X

15

The specific choice of the approximation error is important, as other notions of approximation error
of the proximal operator in the context of APGD (such as those in [77]) do not explicitly control
the distance ‖x′ − z′k‖2 which is crucial for our guarantee. Although with δ = ε, (IAPGD) would
require O(1/ε3) FO calls, we provide the details of its analysis, in the next theorem, as it showcases
some of the ideas behind the design of our our main algorithm (Algorithm 4).

Use the update rule of (APGD), but replace prox step by the following:

find z′k satisfying the following for all x′ ∈ X ′

βk
2
‖x′ − z′k‖2 + f(z′k) +

βk
2
‖z′k − ẑ′k‖2 ≤ f(x′) +

βk
2
‖x′ − ẑ′k‖2 + δ ,

where ẑ′k = (z′k−1 −∇x′ψλ(yk, y
′
k)/βk)

(IAPGD)

Theorem 3. Let f : X ′ → R be a G-Lipschitz continuous convex function and X ⊆ X ′ be any
convex set with a diameter DX and projection oracle PX . If we choose λ = ε/G2 and δ = ε, then
after K = O(GDX /ε) iterations of the IAPGD update rule, initialized with y′0 = y0 = x′0 = x0,
finds xK ∈ X satisfying f(xK)−minx∈X f(x) ≤ ε. Further,O(G2D2

X /ε
2) iterations of a standard

subgradient method ensures the condition in (IAPGD). In total, this algorithm requiresO(G3D3
X /ε

3)
FO calls and O(GDX /ε) PO calls.

Remarks: Even though IAPGD only achieves a FO-CC of O(1/ε3), the main take away from this
result should be that with this right choice for approximate resolvent of the proxoperator proxf/βk

(IAPGD), we can achieve O(1/ε) PO-CC. This is exploited by our MOPES method (Algorithm 1)
which uses a more efficient Prox-Slide procedure [55] to approximately resolve the prox operator,
so as to obtain a PO-CC of O(1/ε) while still maintaining the optimal FO-CC o O(1/ε2).

Proof of Theorem 3. Now consider the following potential (Lyapunov) function from [6] for arbitrary
x ∈ X and x′ ∈ X ′:

Φk := k(k + 1)(Ψλ(xk, x
′
k)−Ψλ(x, x′)) + (4/λ)‖(zk, z′k)− (x, x′)‖2 (11)

We will prove that this potential satisfy the following approximate descent condition Φk ≤ Φk−1 +kε
as follows. Notice that by 2/λ-smoothness and convexity of ψλ

ψλ(xk, x
′
k) ≤ ψλ(yk, y

′
k) + 〈∇k, (xk, x′k)− (yk, y

′
k)〉+

1

λ
‖(xk, x′k)− (yk, y

′
k)‖2

≤ (1− γk)ψλ(xk−1, x
′
k−1)+

γk[ψλ(yk, y
′
k) + 〈∇k, (zk, z′k)− (yk, y

′
k)〉+

γk
λ
‖(zk, z′k)− (zk−1, z

′
k−1)‖2] (12)

where we use the shorthand ∇k := [∇Tk,x∇Tk,x′]T := [∇xψλ(yk, y
′
k)T ∇x′ψλ(yk, y

′
k)T]T . Now

combining this with f(x′k) ≤ (1− γk)f(x′k−1) + γkf(z′k) (convexity) and γk/λ ≤ βk/2 we get that

k(k + 1)Ψλ(xk, x
′
k)

≤ k(k − 1)Ψλ(xk−1, x
′
k−1) + 2kψλ(yk, y

′
k) + 2k[〈∇k,x, zk − yk〉+

βk
2
‖zk − zk−1‖2]

2k[f(z′k) + 〈∇k,x′ , z′k − y′k〉+
βk
2
‖z′k − z′k−1‖2]

≤ k(k − 1)Ψλ(xk−1, x
′
k−1) + 2kψλ(yk, y

′
k)+

2k[〈∇k,x, x− yk〉+
βk
2

(‖zk−1 − x‖2 − ‖zk − x‖2)]

2k[f(x′) + 〈∇k,x′ , x′ − y′k〉+
βk
2

(‖z′k−1 − x′‖2 − ‖z′k − x′‖2) + ε]

≤ k(k − 1)Ψλ(xk−1, x
′
k−1) + 2kΨλ(x, x′)+

(4/λ)(‖(zk−1, z
′
k−1)− (x, x′)‖2 − ‖(zk, z′k)− (x, x′)‖2) + kε , (13)

where the second inequality uses the definition of projection and the ε-approximate resolution of
the proximal operator (IAPGD), and the last inequality again uses convexity of ψλ. This proves that

16

Φk ≤ Φk−1 + kε, which directly implies that

Ψλ(xK , x
′
K)−Ψλ(x, x′) ≤ 4(‖x0 − x‖2 + ‖x0 − x′‖2)

λK(K + 1)
+

1

K(K + 1)

K∑
k=1

kε (14)

Setting x′ = x, choosing λ = ε/G2 and K = O(GDX /ε) gives us Ψλ(xk, x
′
k) − f(x) ≤ ε/2.

Then by Lemma 2 we get that f(xk) − minx∈X f(x) ≤ ε. For each inner problem the stan-
dard (unconstrained) proximal subgradient method applied on minx′∈X ′ f(x′) + (βk/2)‖x′ −
(z′k−1 − ∇k,x′/βk)‖2, initialized with x0 (for ease of argument), can achieve this error using
O(G2‖x0 − x̂λ(x)‖2/ε2) = O(G2D2

X /ε
2) FO calls (Lemma 3, in Appendix B.1). Thus the al-

gorithm uses totally O(GDX /ε) projections and O(G3D3
X /ε

3) subgradients.

A.2 A proof sketch for Theorem 1 (MOPES)

This section provides a short proof sketch for the Theorem 1—guarantee for the MOPES (Algorithm
1) method—to showcase the main analysis techniques used by the full proof in Appendix C.2.1. At a
high level, our proof uses a potential function [6] for analyzing APGD, combines it with Proposition 3
which provides a fast convergence guarantee on Prox-Slide iterates, and then apply standard APGD
proof techniques [81] to obtain the final result.

Proof sketch. Here we only consider the deterministic FO. We define the following potential (Lya-
punov) function for some arbitrary x ∈ X , by slightly modifying the standard AGD potential [6].

Φk := k(k + 1)(Ψλ(xk, x
′
k)−Ψλ(x, x)) + (4/λ)(‖zk − x‖2 + τk+1‖z′k − x‖2) (15)

where τk := (Tk + 1)(Tk + 2)/Tk(Tk + 3). We will prove that this potential satisfies the descent
rule: Φk ≤ Φk−1 + kη′k, for some error η′k. Using the fact that Ψλ is a sum of two convex functions:
2/λ-smooth quadratic ψλ and G-Lipschitz f , and standard analysis techniques for AGD we can get

k(k + 1)Ψλ(xk, x
′
k) ≤ k(k − 1)Ψλ(xk−1, x

′
k−1) + 2kψλ(x, x)+

2k[〈∇k,x, zk〉+ (βk/2)‖zk − zk−1‖2] + 2k[φk(z̃′k)− φk(x) + (βk/2)‖x− z′k−1‖2] (16)

where we use the short-hands∇k := ∇ψλ(yk, y
′
k) and φk(x′) := f (x′)+〈∇k,x′ , x′〉+(βk/2)‖x′−

z′k−1‖2. Next, using definition of projection zk, we bound the third term in the RHS of (16) as

2k[〈∇k,x, x− zk〉+ (βk/2) ‖zk − zk−1‖2] ≤ 2k(βk/2)[‖zk−1 − x‖2 − ‖zk − x‖2] . (17)

The fourth term in the RHS of (16) corresponds to the ε-approximate resolution of the proxf/βk
op-

erator through the Prox-Slide procedure (Line 1.5), whose output satisfies the following guarantee.

Proposition 2 (informal version of Proposition 3). Output of Prox-Slide satisfies

φk(z̃′k)− φk(x) +
βk
2
‖z′k − x‖2 ≤

βk
2

(τk − 1)[‖z′k−1 − x‖2 − ‖z′k − x‖2] +
16G2

βkTk
.

The above lemma guarantees the optimal O(1/Tk) convergence rate for the strongly convex min-
imization problem: minz′∈X ′ φk(z′), corresponding to the proximal operator. By combining the
inequalities (16) and (17) and the proposition we get: Φk ≤ Φk−1 + kO(G2/βkTk). Now, using
Lemma 2, and setting x = x∗, λ = ε

G2 , βk = 4
λk , Tk = O(k) and K = Θ(G‖x0−x∗‖

ε) we get

f(xK)− f(x∗) ≤ Ψλ(xK , x
′
K)−Ψλ(x∗, x∗) +G2λ

2

≤ 8‖x0 − x∗‖2

λK(K + 1)
+

∑K
k=1 k 16G2/βkTk
λK(K + 1)

+G2λ

2
= O(ε)

Therefore, the total number of PO calls made is K = O(G‖x0 − x∗‖/ε) and the total number of FO
calls made is

∑K
k=1 Tk = O(K2) = O(G2‖x0 − x∗‖2/ε2).

17

B Supporting results

B.1 Proximal Subgradient method

Lemma 3 (proximal subgradient descent). Consider the regularized optimization problem

min
u

[fβ,x(u) := f(u) + (β/2)‖u− x‖2] (18)

and the proximal subgradient method’s update rule

ut+1 = argmin
u

[Ft(u) := 〈gt, u− x〉+ (1/2η)‖u− ut‖2 + β/2‖u− x‖2]

= ut − (η/(1 + ηβ))(gt + β(ut − x)) (19)

where gt ∈ ∂f(ut) and η is the effective stepsize. Now, if η = 2G2‖u0 − u‖/
√
T and ũT =

1
T

∑T−1
t=0 ut+1, then for any u

β

2
‖ũT − u‖2 + fβ,x(ũT)− fβ,x(u) ≤ 2G ‖u0 − u‖√

T
(20)

Proof. Let u be an arbitrary feasible point. By convexity and G-Lipschitzness of f ,

f(ut+1)− f(u) = f(ut+1)− f(ut) + f(ut)− f(u)

≤ 〈gt+1, ut+1 − ut〉+ 〈gt, ut − u〉
= 〈gt, ut+1 − ut〉+ 〈gt+1 − gt, ut+1 − ut〉+ 〈gt, ut − u〉
≤ 〈gt, ut+1 − u〉+ 2G ‖ut+1 − ut‖ , (21)

As ut+1 is the minimizer of a (β + 1/η)-strong convexity update objective Ft and since, we get that(β
2

+
1

2η

)
‖ut+1 − u‖2 + Ft(ut+1) ≤ Ft(u) (22)

Now summing up (21), sand (22) we get

β

2
‖ut+1 − u‖2 + fβ,x(ut+1)− fβ,x(u) ≤ 1

2η
(‖ut − u‖2 − ‖ut+1 − u‖2)+

2G ‖ut+1 − ut‖ −
1

2η
‖ut+1 − ut‖2

≤ 1

2η
(‖ut − u‖2 − ‖ut+1 − u‖2) + 2G2η

=⇒ 1

T

T−1∑
t=0

β

2
‖ut+1 − u‖2 + fβ,x(ut+1)− fβ,x(u) ≤ 1

2ηT
(‖u0 − u‖2 − ‖uT − u‖2) + 2G2η

β

2
‖ũT − u‖2 + fβ,x(ũT)− fβ,x(u) ≤ (23)

where the second inequality follows from ax − x2/2b ≤ a2b/2, the third inequality is obtained
by summing over t = 0, . . . , T − 1, and the third inequality uses Jensen’s inequality. Choosing
T = 2G ‖u0 − u‖/

√
T , we get the desired result

β

2
‖ũT − u‖2 + fβ,x(ũT)− fβ,x(u) ≤ 2G ‖u0 − u‖√

T
(24)

B.2 Frank-Wolfe projected subgradient method FW-PGD (Algorithm 3)

Here we provide the details of the Frank-Wolfe based projected subgradient method (Algorithm 3)
used in the experiments. The main idea is to use some competitive LMO based method to approximate
the projection step in the standard projected subgradient method. The following theorem gives some
guarantees for the output of the Algorithm 3.

18

Algorithm 3: Frank-Wolfe projected subgradient method using LMO
Input: f , X , G, DX , x0, K,

3.1 for k = 0, . . . ,K − 1 do
3.2 Set ĝk = SFO (xk)
3.3 Using any competitive LMO based algorithm (e.g. Frank-Wolfe method [28] or CndG

procedure [56, Algo. 1]), approximately solve the projection problem

xk+1 ≈ argmin
x∈X

〈ĝk, x〉+
1

2αk
‖x− xk‖2 = argmin

x∈X

1

2αk
‖x− (xk − αk · ĝk)‖2 , (25)

ensuring that the Wolfe duality gap [45] of the above problem at uΠ satisfies

xmax
s∈X
〈ĝk + 1/αk (xk+1 − xk) , xk+1 − s〉 ≤ ηk (26)

Output: x̄K =
∑K−1

k=0 αkxk∑K−1
k=0 αk

Theorem 4. Let f : X ′ → R be a G-Lipschitz continuous proper l.s.c. convex function, and X ⊆ X ′
be some closed convex subset of Rd with diameter DX . Then after K iterations, the Algorithm 3
projection tolerance ηk = (G2 + σ2)αk, stepsize αk = DX

2
√
G2+σ2

√
K

and outputs x̄K ∈ X satisfying

E[f (x̄K)]− f(x∗) ≤2
√
G2 + σ2DX√

K
(27)

Further, the algorithm uses K SFO calls and O(K2) LMO calls.

Proof. Using the Wolfe duality gap guarantee we get that for any x ∈ X〈
ĝk +

1

αk
(xk+1 − xk) , xk+1 − x

〉
≤ ηk . (28)

By rearranging the terms above we get that

〈ĝk, xk − x〉 ≤
1

2αk
(‖xk − x‖2 − ‖xk+1 − x‖2)− 1

2αk
‖xk+1 − xk‖2 + 〈ĝk, xk − xk+1〉+ ηk

≤ 1

2αk
(‖xk − x‖2 − ‖xk+1 − x‖2)− 1

2αk
‖xk+1 − xk‖2 + ‖ĝk‖‖xk − xk+1‖+ ηk

≤ 1

2αk
(‖xk − x‖2 − ‖xk+1 − x‖2) +

αk
2
‖ĝk‖2 + ηk , (29)

where the last inequality uses the fact that −(a/2)z2 + bz ≤ b2/2a for all a, b, z ∈ R. Next,
multiplying by αk and summing the above inequality over k = 0, . . . ,K − 1 and dividing by∑K−1
k′=0 αk′ we get

K−1∑
k=0

αk 〈ĝk, xk − x〉 ≤
1

2
(‖x0 − x‖2 − ‖xK − x‖2) +

K−1∑
k=0

α2
k(
‖ĝk‖2

2
+
ηk
αk

) , (30)

Now taking expectation w.r.t. all the stochasticity in {ĝk}K−1
k=0 on both sides and using, the tow-

ering conditional expectation property E[a] = E[E[a |xk]], and E[ĝk |xk] = gk ∈ ∂f(xk) and
E[‖ĝk‖2 |xk] ≤ 2(G2 + σ2) we get

K−1∑
k=0

αkE[〈gk, xk − x〉] ≤
1

2
‖x0 − x‖2 +

K−1∑
k=0

α2
k((G2 + σ2) +

ηk
αk

) , (31)

19

Next diving by
∑K−1
k′=0 αk′ , using convex affine lower bound of f at xk and Jensen’s inequality we

get
K−1∑
k=0

αk∑K−1
k′=0 αk′

E[f(xk)− f(x)] ≤
1
2‖x0 − x‖2 +

∑K−1
k=0 α2

k((G2 + σ2) + ηk
αk

)∑K−1
k′=0 αk′

E
[
f

(K−1∑
k=0

αk · xk∑K−1
k′=0 αk′

)]
− f(x) ≤ (32)

Next if we choose ηk = αk(G2 + σ2), and set x = x∗ ∈ argminx′∈X f(x′) and αk = DX
2
√
G2+σ2

√
K

we get

E
[
f

(K−1∑
k=0

αk · xk∑K−1
k′=0 αk′

)]
− f(x∗) ≤

1
2D

2
X +

∑K−1
k=0 α2

k · 2(G2 + σ2)∑K−1
k′=0 αk′

=
2
√
G2 + σ2DX√

K
(33)

Clearly the algorithm uses K SFO calls. At step k when approximating the projection using an LMO
based method, after using T̂k = d 7D2

X
α2

k(G2+σ2)
e LMO calls in the Approx-Proj procedure, the Wolfe

duality gap (38) is at most d 6(1/αk)D2
X

T̂k
e ≤ αk(G2 + σ2) if we use CndG procedure [56, Theorem

2.2(c)] or d 7(1/αk)D2
X

T̂k
e ≤ αk(G2 + σ2) if we use the standard Frank-Wolfe algorithm [45, Theorem

2]. Therefore the total number of linear minimization oracle calls made by the algorithm is
K−1∑
k=0

T̂k =

K−1∑
k=0

7D2
X

α2
k(G2 + σ2)

+K = 28K2 +K = O(K2) (34)

where we use the given choice for αk = DX
2
√
G2+σ2

√
K

.

C Proofs of the main results

C.1 Proof of Lemma 2

Proof. First we prove part (i). By definitions of Ψλ (5) and fλ (Definition 3), we have
minx∈X minx∈X ′ Ψλ(x, x′) = minx∈X fλ(x). By Lemma 1(a), we also can show that
minx∈X fλ(x) ≤ minx∈X f(x).

For part (ii), first we show the following.
Efλ(xε) = EΨλ(xε, x̂λ(xε)) = E min

x′(xε)
Ψλ(xε, x

′(xε)) ≤ Ex̄K
Ψλ(xε,Ex′ε|xε

x′ε)

≤ Exε
Ex′ε|xε

Ψλ(xε, x
′
ε)

= EΨλ(xε, x
′
ε) (35)

Finally, combining the above inequality with Lemma 1(c) we get the desired result
Ef(xε) ≤ Efλ(xε) +G2λ/2 ≤ EΨλ(xε, x

′
ε) +G2λ/2 (36)

C.2 Analysis of MOPES (Algorithm 1) and MOLES (Algorithm 2) method

Instead of separately analyzing MOPES and MOLES, we first analyze a more general algorithm,
Algorithm 4, which has the following guarantee.
Theorem 5. Let f : X ′ → R be a G-Lipschitz continuous proper l.s.c. convex function, and
X ⊆ X ′ = B(0, R) be some convex subset contained inside the Euclidean ball of radius R around
origin. Then after K iterations, the Algorithm 4 outputs xK ∈ X satisfying

E[f (xK)]− f(x∗) ≤10‖x0 − x∗‖2 + 8D̃

λK(K + 1)
+

∑K
k=1 2k ηk

K(K + 1)
+G2λ

2
(39)

for any choice of λ > 0, D̃ > 0, and tolerance {ηk}k∈[K] (38).

20

Algorithm 4: Moreau subgradient method for nonsmooth convex optimization using PO or LMO

Input: f , X , X ′, G, DX , R, x0, K, D̃, λ, {ηk ∈ R+}k∈[K]

4.1 Set x′0 = z′0 = x0 = z0 = x0

4.2 for k = 1, . . . ,K do
4.3 Set λk = λ, βk = 4

λkk
, γk = 2

k+1 , and Tk =
⌈

(4G2+σ2)λ2Kk2

2D̃

⌉
4.4 Set (yk, y

′
k) = (1− γk) · (xk−1, x

′
k−1) + γk · (zk−1, z

′
k−1)

4.5 Set zk = Approx-Proj (∇ykΨλ(yk, y
′
k), zk−1, βk, ηk) // Note ∇ykΨλ(yk, y

′
k) =

yk−y′k
λ

4.6 Set (z′k, z̃
′
k) = Prox-Slide

(
∇y′kψλ(yk, y

′
k), z′k−1, βk, Tk

)
// ∇y′kψλ(yk, y

′
k) =

y′k−yk
λ

4.7 Set (xk, x
′
k) = (1− γk) · (xk−1, x

′
k−1) + γk · (zk, z̃′k)

Output: (xK , x
′
K)

4.8 Approx-Proj(g, u0, β, η) // Approx. resolve PX
(
u0 − g/β

)
[56]:

4.9 Either using exact PO, PX (1) , or using any competitive LMO based algorithm
(e.g. Frank-Wolfe method [28] or CndG procedure [56, Algo. 1]), approximately solve the
projection problem

uΠ ≈ argmin
u∈X

〈g, u〉+
β

2
‖u− u0‖2 = argmin

u∈X

β

2
‖u− (u0 − g/β)‖2 , (37)

ensuring that the Wolfe duality gap [45] of the above problem at uΠ satisfies

max
s∈X
〈g + β (uΠ − u0) , uΠ − s〉 ≤ ηk (38)

return uΠ

4.10 Prox-Slide(g, u0, β, T) // Approx. resolve proxf/β
(
u0 − g/β

)
[55]:

4.11 Set ũ0 = u0

4.12 for t = 1, . . . , T do
4.13 Set θt = 2(t+1)

t(t+3) , ĝt−1 = SFO (ut−1) (3)
4.14 Set ût = ut−1 − 1

(1+t/2)β · (ĝt−1 + β(ut−1 − (u0 − g/β)))

// subgradient method step for φ(u) := f(u) + β
2 ‖u−

(
u0 − g

β

)
‖2

4.15 Set ut = ût ·min (1, R/‖ut‖) // projection of ût onto X ′: P ′X (ut)

4.16 Set ũt =
(
1− θt

)
· ũt−1 + θt · ut

4.17 return (uT , ũT)

Remarks: Before providing a proof for the above result we discuss some its implications. MOPES
makes K PO calls, one per outer step, and

∑K
k=1 Tk = O(λ2K4) SFO calls, one per inner step. The

above analysis shows that we need to choose λ = ε/G2, which is expected from Lemma 1. Since PO
returns exact projections, the second term is zero with ηk = 0. The target accuracy of ε is achieved by
tuning the first term, where we need to choose K = Θ(1/

√
λε). Put together, this gives the desired

O(ε−1) PO-CC and O(ε−2) SFO-CC for MOPES. A complete proof is provided in Section C.2.1.

When we have inexact projections in MOLES, we need ηk = Θ(1/k) to ensure that the second
term is O(ε). At (outer) iteration k, this uses T̂ = Ω(K) iterations of Frank-Wolfe algorithm
in FW-Based-Projection of Algorithm 2. MOLES makes

∑K
k=1O(K) = O(K2) LMO calls,

resulting in O(ε−2) LMO-CC as K = O(1/
√
λε) = O(1/ε). A complete proof is in Section C.2.2.

Proof of Theorem 5. We define the following potential (Lyapunov) function, for some arbitrary
x ∈ X , x′ ∈ X ′:

Φk := k(k + 1)(Ψλ(xk, x
′
k)−Ψλ(x, x′)) +

4

λ
(‖zk − x‖2 +

(Tk+1 + 1)(Tk+1 + 2)

Tk+1(Tk+1 + 3)
‖z′k − x′‖2)

(40)

21

This is a slightly modified version of the following potential function for the standard AGD setting
with a 2/λ-smooth function Ψλ [6]: k(k+1)(Ψλ(xk, x

′
k)−Ψλ(x, x′))+ 4

λ (‖zk−x‖2 +‖z′k−x′‖2).
Notice that the modification factor

(Tk+1 + 1)(Tk+1 + 2)

Tk+1(Tk+1 + 3)
≤ 3

2
= O(1) (41)

is upper-bounded by a constant when 1 ≤ Tk. Below we prove that this potential satisfies the
approximate descent guarantee: Φk ≤ Φk−1 + kηk + kη′k, for some error η′k. First, notice that by
2/λ-smoothness and convexity of ψλ

ψλ(xk, x
′
k) ≤ ψλ(yk, y

′
k) + 〈∇k, (xk, x′k)− (yk, y

′
k)〉+

1

λ
‖(xk, x′k)− (yk, y

′
k)‖2

= (1− γk)[ψλ(yk, y
′
k) +

〈
∇k, (xk−1, x

′
k−1)− (yk, y

′
k)
〉
]

γk[ψλ(yk, y
′
k) + 〈∇k, (zk, z̃′k)− (yk, y

′
k)〉+

γk
λ
‖(zk, z̃′k)− (zk−1, z

′
k−1)‖2]

≤ (1− γk)ψλ(xk−1, x
′
k−1)+

γk[ψλ(yk, y
′
k) + 〈∇k, (zk, z̃′k)− (yk, y

′
k)〉+

γk
λ
‖(zk, z̃′k)− (zk−1, z

′
k−1)‖2] (42)

where we use the shorthand ∇k := [∇Tk,x∇Tk,x′]T := [∇xψλ(yk, y
′
k)T ∇x′ψλ(yk, y

′
k)T]T , and the

second inequality uses Lines 4.4 and 4.7. Now combining this with f(x′k) ≤ (1 − γk)f(x′k−1) +
γkf(z̃′k) (using convexity of f and Line 4.7) and γk/λ = 2/(λ(k + 1)) ≤ 2/(λ k) = βk/2 (using
Line 4.3), and multiplying it with k(k + 1) we get that

k(k + 1)Ψλ(xk, x
′
k)

≤ k(k − 1)Ψλ(xk−1, x
′
k−1) + 2kψλ(yk, y

′
k) + 2k[〈∇k,x, zk − yk〉+

βk
2
‖zk − zk−1‖2]

2k[f(z̃′k) + 〈∇k,x′ , z̃′k − y′k〉+
βk
2
‖z̃′k − z′k−1‖2]

= k(k − 1)Ψλ(xk−1, x
′
k−1) + 2kψλ(yk, y

′
k) + 2k[〈∇k,x, zk − yk〉+

βk
2
‖zk − zk−1‖2]

2k[φk(z̃′k)− φk(x′) +
βk
2
‖x′ − z′k−1‖2 + f(x′) + 〈∇k,x′ , x′ − y′k〉] (43)

where for brevity we use the notation

φk(x′) := f (x′) + 〈∇k,x′ , x′〉+
βk
2

∥∥x′ − z′k−1

∥∥2
. (44)

Now using the approximate optimality of zk through the bound on the Wolfe dual gap (38) we get,
βk
2
‖zk − zk−1‖2 =

βk
2
‖zk−1 − x‖2 + βk 〈zk − zk−1, zk − x〉 −

βk
2
‖zk − x‖2

≤ βk
2
‖zk−1 − x‖2 + 〈∇k,x, x− zk〉+ ηk −

βk
2
‖zk − x‖2 . (45)

When zk is the exact projection (as in Line 1.5) then the above inequality is satisfied with above
ηk = 0. Otherwise, with the LMO oracle we will later set ηk = O(ε). Next we state the following
lemma which provides a guarantee for the Prox-Slide procedure [55]. Here for rigorousness, we
denote the iterates of the Prox-Slide procedure (Line 4.10) called at the outer step k, with {uk,t}t.
Similarly at the outer step k, we denote the stochastic subgradients used by the Prox-Slide procedure
and the corresponding subgradient with {ĝk,t}t and {gk,t}t, i.e. gk,t := E[ĝk,t|uk,t] ∈ ∂f(uk,t) for
all k and t. A proof for this lemma is provided in Section C.2.3.

Proposition 3 ([55, Similar to Proposition 1]). Let φk (44) be the minimization objective solved by
Prox-Slide procedure at step k of Algorithm 4. Then (z′k, z̃

′
k) obtained after Tk iterations of the

procedure satisfy the following for any x′ ∈ X ′,

φk(z̃′k)− φk(x′) ≤ 2

Tk(Tk + 3)

βk
2
‖z′k−1 − x′‖2 −

(Tk + 1)(Tk + 2)

Tk(Tk + 3)

βk
2
‖z′k − x′‖2+

4
∑Tk−1
t=0 (2G+ ‖δk,t‖)2

βkTk(Tk + 3)
+

Tk−1∑
t=0

2(t+ 2)

Tk(Tk + 3)
〈δk,t, x′ − uk,t〉 (46)

where δk,t := ĝk,t − gk,t and uk,t are private inner variable of the Prox-Slide procedure.

22

Aside: Note that Prox-Slide procedure essentially applies Tk steps of the proximal standard
subgradient method to the φk (44), which is a composite function of a G-Lipschitz function f and
prox-friendly βk-strongly convex quadratic. Finally the procedure outputs the average of its iterate
z̃′k and its last iterate z′k. In the end we will set Tk = Θ(1/ε) and K = Θ(1/ε) so that total number
of subgradients used by the algorithm be

∑K
k=1 Tk = O(1/ε2).

Now substituting (45) and Proposition 3 into (43) we get

k(k + 1)Ψλ(xk, x
′
k) ≤ k(k − 1)Ψλ(xk−1, x

′
k−1) + 2kψλ(yk, y

′
k)+

2k[〈∇k,x, x− yk〉+
βk
2

(‖zk−1 − x‖2 − ‖zk − x‖2) + ηk]

2k[f(x′) + 〈∇k,x′ , x′ − y′k〉]+

2k[
(Tk + 1)(Tk + 2)

Tk(Tk + 3)

βk
2
‖z′k−1 − x′‖2 −

(Tk + 1)(Tk + 2)

Tk(Tk + 3)

βk
2
‖z′k − u‖2 + η′k]

≤ k(k − 1)Ψλ(xk−1, x
′
k−1) + 2kΨλ(x, x′) + 2k(ηk + η′k)

4

λ
(‖zk−1 − x‖2 − ‖zk − x‖2)

4

λ
(
(Tk + 1)(Tk + 2)

Tk(Tk + 3)
‖z′k−1 − x′‖2 −

(Tk+1 + 1)(Tk+1 + 2)

Tk+1(Tk+1 + 3)
‖z′k − x′‖2) ,

(47)

where we use the shorthand

η′k :=
4
∑Tk−1
t=0 (2G+ ‖δk,t‖)2

βkTk(Tk + 3)
+

Tk−1∑
t=0

2(t+ 2)

Tk(Tk + 3)
〈δk,t, x′ − uk,t〉 , (48)

and the last inequality uses convexity of ψλ and Ψλ = f + ψλ, definition of βk (Line 4.3), and the
fact that

Tk ≤ Tk+1 (Line 4.3) , and
(Tk+1 + 1)(Tk+1 + 2)

Tk+1(Tk+1 + 3)
≤ (Tk + 1)(Tk + 2)

Tk(Tk + 3)
(49)

This proves the approximate descent guarantee: Φk ≤ Φk−1 + k(ηk + η′k), which along with the
facts: 1 ≤ T1 and z0 = z′0 = x0 gives

Ψλ(xK , x
′
K)−Ψλ(x, x′) ≤4(‖x0 − x‖2 + (3/2)‖x0 − x′‖2)

λK(K + 1)
+

∑K
k=1 2k(ηk + η′k)

K(K + 1)
(50)

Now we take expectation, with respect to randomness in all the stochastic subgradients ((ĝk,i)
Tk
i=1)Kk=1

used in the algorithm, on both sides of (50). Then the expectation of the error from the Prox-Slide
procedure can be bounded as follows

K∑
k=1

2kE[η′k] =

K∑
k=1

2kE[
4
∑Tk−1
t=0 (2G+ ‖δk,t‖)2

βkTk(Tk + 3)
+

Tk−1∑
t=0

2(t+ 2)

Tk(Tk + 3)
〈δk,t, u− ut〉]

≤
K∑
k=1

2k
8 (4G2 + σ2)

(4
λk)((4G2+σ2)λ2Kk2

2D̃
)

+ 0

=
8D̃

λ
(51)

where we use (48), linearity of expectation, (a+ b)2 ≤ 2(a2 + b2), variance of stochastic gradient
E[‖δk,t‖2|uk,t] = E[‖ĝk,t − gk,t‖2|uk,t] ≤ σ2 (3), the value of Tk from Line 4.3, and the fact that
expectation of the second term becomes zero, since E[ĝk,i−1 |uk,i−1] = gk,i−1, which in turn implies

E[〈δk,t, x′ − uk,t〉] = E
[
E[〈ĝk,t − gk,t, x′ − uk,t〉 |uk,t]

]
s = E[〈0, x′ − uk,i−1〉] = 0 . (52)

Aside: Note that, in the final guarantee, when we set λ = ε/G2 and K = O(1/ε), we are setting
Tk = Θ(ε k2) = O(1/ε) and 1/βk = Θ(1/ε k) = O(1), so that the error from the Prox-Slide
procedure is small enough. For example, at k = K, E[ηK] = O((G2 + σ2)/βKTK) = O(ε).

23

Now taking expectation on both sides of (50) and using linearity of expectation and (51) we get that

E[Ψλ (xK , x
′
K)]−Ψλ(x, x′) ≤4(‖x0 − x‖2 + (3/2)‖x0 − x′‖2 + 2D̃)

λK(K + 1)
+

∑K
k=1 2k ηk

K(K + 1)
(53)

Next setting x′ = x = x∗ ∈ X ⊆ X ′ and using Lemma 2 and (5) we get that

E[f (xK)]− f(x∗) ≤ 10‖x0 − x∗‖2 + 8D̃

λK(K + 1)
+

∑K
k=1 2k ηk

K(K + 1)
+G2λ

2
(54)

Aside: Note that, in the final guarantee, when we set λ = ε/G2, the third term, which is the error
from the Moreau smoothing becomes ε/2. Additionally, when K = O(1/ε), first term above isO(ε).
Further, when we set Tk = Θ(ε k2) = O(1/ε), we get 1/βk = O(1/ε k) and E[ηk] = O(1/k) so
that the second term is also O(ε).

Next using the above result we derive the guarantees for MOPES (Algorithm 1) and MOLES (Algo-
rithm 2) as corollaries of Theorem 5.

C.2.1 Proof of Theorem 1

Proof. Notice that exact projection on Line 1.5 of Algorithm 1 is equivalent to choosing ηk = 0 in
Algorithm 4. Then setting, ηk = 0, and λ = ε/G2 in Theorem 5 we get

E[f (xK)]− f(x∗) ≤ G2(10‖x0 − x∗‖2 + 8D̃)

εK(K + 1)
+ 0 +

ε

2
(55)

Now, by using the given choices: D̃ = c‖x0 − x∗‖2 and K = d 2
√

10+8cG‖x0−x∗‖
ε e, we get

E[f (xK)]− f(x∗) ≤ ε (56)

Then the number of PO calls made by the algorithm is K = O(G‖x0−x∗‖
ε) and the total number of

SFO calls made subgradients made is

K∑
k=1

Tk ≤
K∑
k=1

(
(4G2 + σ2)λ2Kk2

2D̃
+ 1

)
=

(4G2 + σ2)ε2K2(K + 1)(2K + 1)

12cG4‖x0 − x∗λ‖2
+K

= O
(

(G2 + σ2)‖x0 − x∗‖2

ε2

)
, (57)

where we used Line 1.3 and the given choices for λ, K, and D̃.

C.2.2 Proof of Theorem 2

Proof. Notice that at step k of Algorithm 2 choosing T̂ = d 7KD2
X

c′D̃
e = O(1

ε) is equivalent to choosing

ηk = 4c′D̃
λKk in Algorithm 4 (see below). Therefore by setting, ηk = 4c′D̃

λKk = O(1
k), and λ = ε/G2 in

Theorem 5 we get

E[f (xK)]− f(x∗) ≤G
2(10‖x0 − x∗‖2 + 8D̃ + 8c′D̃)

εK(K + 1)
+
ε

2
(58)

Now, by using the given choices: D̃ = c‖x0 − x∗‖2 and K = d 2
√

10+8c(1+c′)G‖x0−x∗‖
ε e, in the (58)

we get

E[f (xK)]− f(x∗) ≤ ε (59)

Then using the similar arguments as in proof of Theorem 2, we can show that K = O(G‖x0−x∗‖
ε)

and the total number of SFO calls made is
∑K
k=1 Tk = O(

(G2+σ2)‖x0−x∗‖2
ε2).

Finally we calculate the total number of LMO calls made. At outer step k of Algorithm 2, after using
T̂ = d 7KD2

X
c′D̃
e LMO calls in the Approx-Proj procedure, we can find a feasible point zk whose

24

Wolfe duality gap (38) is at most d 6βkD
2
X

T̂
e ≤ 4c′D̃

λKk = ηk if we use CndG procedure [56, Theorem

2.2(c)] or d 7βkD
2
X

T̂
e ≤ 4c′D̃

λKk = ηk if we use the standard Frank-Wolfe algorithm [45, Theorem 2].
Therefore the total number of linear minimization oracle calls made by the algorithm is

KT̂ =
7K2D2

X
cc′‖x0 − x∗‖2

+K = O
(G2D2

X
ε2

)
, (60)

where we used Line 1.3 and the given choices for K and D̃.

C.2.3 Proof of Proposition 3: Analysis of Prox-Slide (Line 4.10) procedure

Proof. We analyze the Prox-Slide procedure for a fixed k, therefore we drop k from φk, uk,t, ĝk,t,
and δk,t, which are denoted here with φ, ut, ĝt, and δt. Prox-Slide has the following update steps.

θt =
2(t+ 1)

t(t+ 3)
, ĝt−1 = SFO (ut−1) (61)

ût = ut−1 −
1

(1 + t/2)β
· (ĝt−1 + β(ut−1 − (u′ − g/β))) (62)

ut = ût ·min(1, 2R/‖ût‖) (63)
ũt = (1− θt) ũt−1 + θtut (64)

By convexity and G-Lipschitzness of f in X ′, for any u ∈ X ′, we get

f(ut+1)− f(u) = f(ut+1)− f(ut) + f(ut)− f(u)

≤ 〈gt+1, ut+1 − ut〉+ 〈gt, ut − u〉
= 〈ĝt, ut+1 − ut〉+ 〈gt+1 − gt − δt, ut+1 − ut〉+ 〈ĝt, ut − u〉 − 〈δt, ut − u〉
≤ 〈ĝt, ut+1 − u〉+ (2G+ ‖δt‖) ‖ut+1 − ut‖+ 〈δt, u− ut〉 , (65)

where we used the fact that δt = ĝt − gt. Notice that ut = ût ·min(1, 2R/‖ût‖) is the projection of
ût onto X ′ = B(0, 2R). Therefore, using Line 4.14, we can re-write Prox-Slide update as

ut+1 = argmin
u∈X ′

(t+ 3)β

4
‖u− ût‖2

= argmin
u∈X ′

(t+ 3)β

4

∥∥∥u− (ut−1 −
1

(1 + ((t+ 1)/2)β
· (ĝt−1 + β(ut−1 − (u0 − g/β)))

)∥∥∥2

= argmin
u∈X ′

[
Ft(u) := 〈g, u〉+ 〈ĝt, u〉+

(t+ 1)β

4
‖u− ut‖2 +

β

2
‖u− u0‖2

]
(66)

By β(t + 3)/2-strong convexity of the quadratic update objective Ft(u) and the optimality of
ut+1 ∈ argminu∈X ′ Ft(u), we get that for any u ∈ X ′

β(t+ 3)

4
‖ut+1 − u‖2 + Ft(ut+1) ≤ Ft(u) (67)

We want to provide a lower bound on φ(u) 44 which is defined as follows, when using the private
notation of the Prox-Slide procedure by setting u = x′, u′ = zk−1, g = ∇k,x′ , β = βk.

φ(u) := f (u) + 〈g, u〉+
β

2
‖u− u0‖2 . (68)

Now adding together (65) and (67) and using the definitions of Ft and φ we get

φ(ut+1)− φ(u) ≤ β

2
(
t+ 1

2
‖ut − u‖2 −

t+ 3

2
‖ut+1 − u‖2)+

(2G+ ‖δt‖) ‖ut+1 − ut‖ −
β (t+ 1)

4
‖ut+1 − ut‖2 + 〈δt, u− ut〉

≤ β

2
(
t+ 1

2
‖ut − u‖2 −

t+ 3

2
‖ut+1 − u‖2) +

(2G+ ‖δt‖)2

β (t+ 1)
+ 〈δt, u− ut〉

(69)

25

where the second inequality follows from ax−bx2/2 ≤ a2/2b. Now multiplying the above inequality
is by 2(t+ 2)/T (T + 3) and then summing over t = {0, . . . , T − 1}, we get
T−1∑
t=0

2(t+ 2)

T (T + 3)
(φ(ut+1)− φ(u)) ≤ β

2

2

T (T + 3)
(‖u0 − u‖2 −

(T + 1)(T + 2)

2
‖uT − u‖2)+

2

T (T + 3)

2
∑T−1
t=0 (2G+ ‖δt‖)2

β
+

T−1∑
t=0

2(t+ 2)

T (T + 3)
〈δt, u− ut〉

φ(ũT)− φ(u) ≤ (70)

where the last inequality uses Jensen’s inequality and ũT =
∑T
t=1

2(t+1)
T (T+3)ut, last of which follows

from Lines 4.13 and 4.16 as follows

ũT = (1− θT)ũT−1 + θTuT

=
(T − 1)(T + 2)

T (T + 3)
((1− θT−1)ũT−2 + θT−1uT−1) +

2(T + 1)

T (T + 3)
uT

=
(T − 2)(T + 1)

T (T + 3)
ũT−2 +

2(T)

T (T + 3)
uT−1 +

2(T + 1)

T (T + 3)
uT

...

=

T∑
t=1

2(t+ 1)

T (T + 3)
ut (71)

Finally we get the desired result by setting φ = φk, β = βk, T = Tk, u0 = z̃′k−1, u = x′, ut = uk,t,
ũT = z̃′k, and uT = zk we get the desired inequality

φk(z̃′k)− φk(x′) ≤ 2

Tk(Tk + 3)

βk
2
‖z′k−1 − x′‖2 −

(Tk + 1)(Tk + 2)

Tk(Tk + 3)

βk
2
‖z′k − x′‖2+

4
∑Tk−1
t=0 (2G+ ‖δk,t‖)2

βkTk(Tk + 3)
+

Tk−1∑
t=0

2(t+ 2)

Tk(Tk + 3)
〈δk,t, x′ − uk,t〉 (72)

C.3 Proof of Lemma 1

We re-write fλ(x) as minimum value of a 1
λ -strong convex function φλ,x as follows

fλ(x) = min
x′∈X ′

[
φλ,x(x′) := f(x′) +

1

2λ
‖x− x′‖2

]
. (73)

Note that φλ,x(·) is a (1/λ)-strongly convex function as f is convex and (1/λ)‖ · −x‖2 is strongly
convex, and fλ(x) = minx′∈X ′ φλ,x(x′).
(a) The existence and uniqueness of x̂λ(x) ∈ X ′ follows from the strong convexity of φλ,x(·) and
the fact that f is a proper convex function. Then f(x̂λ(x)) ≤ φλ,x(x̂λ(x)) = minx′∈X ′ φλ,x(x′) =
fλ(x) ≤ φλ,x(x) = f(x).
(b) Let gx := (x− x̂λ(x))/λ for any x ∈ Rd. By (1/λ)-strong convexity of φλ,x(x′) and x̂λ(x) =
argminx′∈X ′ φλ,x(x′), we have, for any x′ ∈ X ′, that

φλ,x(x′) ≥ φλ,x(x̂λ(x)) + ‖x′ − x̂λ(x)‖2/2λ
⇐⇒ f(x′) + ‖x′ − x‖2/2λ ≥ f(x̂λ(x)) + ‖x′ − x̂λ(x)‖2/2λ+ ‖x′ − x̂λ(x)‖2/2λ

⇐⇒ f(x′) ≥ f(x̂λ(x)) + 〈gx, x′ − x̂λ(x)〉 (74)

Using this, for any x, y ∈ Rd we get

fλ(y)− fλ(x) = f(x̂λ(y))− f(x̂λ(x)) + (‖x̂λ(y)− y‖2 − ‖x̂λ(x)− x‖2)/2λ

≥ 〈gx, x̂λ(y)− x̂λ(x)〉+ λ/2(‖gy‖2 − ‖gx‖2) = 〈gx, y − x〉+ λ/2‖gx − gy‖2
(75)

26

By instantiating the above for y ← x, x← y, we also get fλ(y)− fλ(x) ≤ 〈gy, y − x〉 − λ/2‖gx −
gy‖2. Combining these two inequalities

0 ≤ λ/2‖gy − gx‖2 ≤ fλ(y)− fλ(x)− 〈gx, y − x〉 ≤ −λ/2‖gy − gx‖2 + 〈gy − gx, y − x〉
≤ −λ/2‖gy − gx‖2 + ‖gy − gx‖‖y − x‖
≤ ‖y − x‖2/2λ (76)

This implies that limy→x(fλ(y)−fλ(x)−〈gx, y − x〉)/‖y−x‖ = 0. Thus fλ is Frechet differentiable
with gradient ∇fλ(x) = gx = (x− x̂λ(x))/λ. The above inequality also implies fλ is convex and
1/λ-smooth.
(c) Let x ∈ X ′. Using 1/λ-strong convexity of φλ,x and x̂λ(x) ∈ argminx′∈X ′ φλ,x(x′), and
G-Lipschitzness of f in X ′, we get

‖x− x̂λ(x)‖2/2λ ≤ φλ,x(x)− φλ,x(x̂λ(x)) = f(x)− fλ(x)

= f(x)− f(x̂λ(x))− ‖x− x̂λ(x)‖2/2λ
≤ G‖x̂λ(x)− x‖ − ‖x− x̂λ(x)‖2/2λ ≤ G2λ/2 .

D Additional details for the experiments in Section 5

For all the experiments we randomly and uniformly sample a point x0 from the surface of the nuclear
norm ball of radius r. For all the figures where we plot the estimated sub-optimality gap: f(xk)− f̂∗,
where f̂∗ is the estimated minimum function value calculated by running the PGD method for a large
number of iterations. We plot the mean (standard error is negligible) of the sub-optimality gap over
10 runs using 10 different initial points x0’s (same 10 initial points for all algorithms).

For experiments in Figures 1 and 2, we use a subset of the Imagewoof 2.0 dataset [43], which in itself
is a subset of the Imagenet dataset [24]. The training data, contains n = 400 samples {(Ai, yi)}ni=1
where Ai is a 224× 224 grayscale image of one of the two types of dogs (classes n02087394 and
n02115641 in Imagenet dataset) labeled using yi ∈ {0, 1}. Note that the effective dimension is
d = 224× 224 = 50176). These grayscale images are generated from the raw 8-bit RGB Imagewoof
images using the Pillow python image-processing library [21], by (i) resizing to 256× 256 pixels:
resize(256,256), (ii) cropping to the central 224 × 224 pixels: crop(16,16,240,240), (iii)
converting to the grayscale: convert(mode=‘L’), and (iv) normalizing by 255.0 so that the pixel
values lie in range [0, 1]. For incorporating bias scalar into the SVM model we also zero-pad the
training images with an additional column and row of zeros to the right and the bottom of the image
array Ai. We use r = 0.1 as nuclear norm ball radius of X , thus DX = 0.2. We have access to a
deterministic FO.

In Figure 1, we use a Lipschitz constant of G = 50. For MOPES we set c = 40 and ε = 5.0,
and for PGD we use two stepsize schemes: (i) fixed stepsize DX /(G

√
K) with K = 103 and (ii)

diminishing stepsize DX /(G
√
k) with K = 103.

In Figure 2, we use a Lipschitz constant of G = 50. For MOLES we set c = 40, c′ = 1 and ε = 5.0.
For FW-PGD we use two stepsize schemes: (i) fixed stepsize DX /(G

√
K) with K = 103 and (ii)

diminishing stepsize DX /(G
√
k) with K = 103. Both of these stepsize schemes use a projection

tolerance of ηkG2/2. For RandFW we use the standard parameter choices as given in [54, Theorem
5] with K = 150.

In practice, in the deterministic setup with FO, at outer-step k, we can use the following criterion for
stopping the Prox-Slide (Line 1.8) procedure early at some t ≥ T̂k−1 (defined recursively below
with T̂0 = 1) and t ≤ Tk. Let φk(x′) := f (x′) + 〈∇k,x′ , x′〉+ βk

2

∥∥x′ − z′k−1

∥∥2
and g̃t ∈ ∂f(ũt).

Now if

max
x′∈X

〈g̃t +∇k,x′ , ũt − x′〉 −
(t+ 1)(t+ 2)

t(t+ 3)
βk
〈
ut − z′k−1, x

′〉
≤ 8 (4G2 + σ2)

βk(Tk + 3)
− βk

2
‖ũt − z′k−1‖2 +

(t+ 1)(t+ 2)

t(t+ 3)

βk
2

(‖z′k−1‖2 − ‖ut‖2) (77)

27

then we stop the procedure, set T̂k = t and return (ut, ũt). This implies that for (z′k, z̃
′
k) = (ut, ũt)

φk(ũt)− φk(x′) ≤ 2

T̂k(T̂k + 3)

βk
2
‖z′k−1 − x′‖2 −

(T̂k + 1)(T̂k + 2)

T̂k(T̂k + 3)

βk
2
‖ut − x′‖2+

4
∑Tk−1
t=0 (2G)2

βkTk(Tk + 3)
(78)

for all x′ ∈ X . Now the only change we need to make in the analysis of Theorem 5 is the change of
the potential (40) to

Φk := k(k + 1)(Ψλ(xk, x
′
k)−Ψλ(x, x′)) +

4

λ
(‖zk − x‖2 +

(T̂k+1 + 1)(T̂k+1 + 2)

T̂k+1(T̂k+1 + 3)
‖z′k − x′‖2)

(79)

The LHS of (77) is an linear optimization problem whose solution can be easily found as

LMO
(
g̃t +∇k,x′ +

(t+ 1)(t+ 2)

t(t+ 3)
βk(ut − z′k−1)

)
= lim
α→∞

PO
(
−α
(
g̃t +∇k,x′ +

(t+ 1)(t+ 2)

t(t+ 3)
βk(ut − z′k−1)

))
. (80)

We also use a slightly modified Tk =
⌈

2G2λ2Kk2

2D̃

⌉
for our experiments, since the deterministic

FO we use, ensures this choice gets the same guarantees as given in our theorems. Also, in our
implementation we do not explicitly project zk onto X ′, as in practice this does not seem needed.

In practice, we can eliminate the need for selecting ε of MOPES by employing ε-doubling trick with
warm restarts, which can increase the worse-case iteration complexity by a factor of at most 2 but
oftentimes will accelerate the convergence [80, Algorithm 6].

E Additional details for applications

We refer to [73] for some more nonsmooth problems which can be solved using an LMO. In the
following subsections, we compare the analytical complexities for solving some of the applications
mentioned in Section 4, using different algorithms.

E.1 `1 norm constrained SVM

For simplicity, we work with the vector version of the matrix problems and replace nuclear norm
constraint with the `1 norm constraint. The standard `1 norm constrained soft-margin SVM can be
formulated as the the following optimization problem:

min
x∈Rd

f(x) =
1

n

n∑
i=1

[fi(x) = max(0, 1− 〈x, ai〉)]

subject to ‖x‖1 ≤ λ (81)

where ai ∈ Rd captures the d-dimensional feature vector multiplied by a binary class value in
{−1, 1} and X = {x | ‖x‖1 ≤ 1} is the constraint set. We do not include any explicit bias term
above, because it can always be incorporated into the model by augmenting ai with a constant
dimension. We assume that n is large and therefore we only have access to minibatched stochastic
subgradients obtained through minibatching d (b = o(n)) uniformly sampled (with replacement)
training samples. We assume that f is Gp-Lipschitz continuous and the variance of any stochastic
subgradient is upperbounded by σ2

p, both calculated in `p norm ‖ · ‖p, for p = 1, 2. We define
q := (1− 1/p)−1 ∈ {∞, 2}. Then

Gp = max
‖x‖1 ≤λ

‖ 1

n

n∑
i=1

I{〈x, ai〉 < 1}ai‖q , and

σ2
p = max

‖x‖1 ≤λ
E{Ij}bj=1

‖ 1

n

n∑
i=1

I{〈x, ai〉 < 1}ai −
1

b

b∑
j=1

I{
〈
x, aIj

〉
< 1}aIj‖2q (82)

28

PO based methods (using `p norm)

Nonsmooth methods (p = 2) PO: O(d ln d) SFO: O(d+ n)

Our MOPES (p = 2) [Theorem 1] O
(
G2
ε
λ
)

O
(G2

2+σ
2
2

ε2
λ2
)

PGD (p = 2) O
(G2

2
ε2
λ2
)

O
(G2

2+σ
2
2

ε2
λ2
)

Randomized smoothing (p = 2) [27] O
(
d1/4G2

ε
λ
)

O
(G2

2+σ
2
2

ε2
λ2
)

Nonsmooth methods (p = 1) MO: O(d) SFO: O(d+ n)

Mirror descent (p = 1) [64] O
(

ln(d+ 1)
G2

1
ε2
λ2
)

O
(

ln(d+ 1)
G2

1+σ
2
1

ε2
λ2
)

Randomized smoothing (p = 1) [27] O
(√

d ln(d+ 1)G1
ε
λ
)

O
(

ln(d+ 1)
G2

1+σ
2
1

ε2
λ2
)

Minimax methods: O(n) extra memory PO+MO: O(d ln d+ n) SFO: O(d+ n)

Variance reduced Mirror-Prox (p = 1)[16] O
(
dn
d+n

+ L12
ε

√
dn
d+n

(λ
√
n ln d)

)
Table 2: Projection: Comparison of PO/MO and SFO calls complexities (PO-CC and SFO-CC)
of various methods for d-dimensional `1 norm constrained SVM with n training samples. SFO
uses a batchsize of b = o(n). Our MOPES outperforms other nonsmooth methods in PO-CC/MO-
CC while still maintaining O(1/ε2) SFO-CC. Complexities of methods based on smooth minimax
reformulation adversely scale with n or d.

PO: First we study the case of PO (or MO: Mirror descent step oracle) in the high-dimensional
(poly(Gp, σp, λ, 1/ε) � d) and large-scale (1 � poly(n)) regime. In Table 2 we provide the
PO-CC and SFO-CC of MOPES (p = 1, Algorithm 1) and competing nonsmooth methods: PGD
(p = 2) [34, 59], Mirror descent (p = 1) [64], Randomized smoothing (p = 1 or p = 2) [27].
The p value in brackets marks which `p norm the method uses. By definition G1 ≤ G2 ≤

√
dG1

and σ1 ≤ σ2 ≤
√
dσ1. Therefore, in this high-dimensional and large-scale regime, and when

G2 = o(
√
dG1) and σ2 = o(

√
dσ1), MOPES has a more efficient PO-CC than other competing

nonsmooth first-order methods, while still maintaining O(1/ε2) SFO-CC. Note that PO has a
computational complexity of O(d log d) because it involves sorting [26], MO has a computational
complexity of O(d), and SFO has a computational complexity of O(b(d+ n)) because it involves
sampling b vectors from a set of n d-dimensional vectors. In practice, sorting could contribute to a
significant part of the wall-clock time.

Many nonsmooth convex objectives in machine learning like the hinge loss here can be written as
smooth convex-concave minimax objectives of the form

min
x∈X

1

n

n∑
i=1

max
yi∈Yi

gi(x, yi) (83)

where gi(x, ·) is concave and gi is L-smooth for all i ∈ [n]. However, the iteration/projection
complexities of even the best variance reduced algorithms could have a dependence on the number n of
additionally introduced dual variables {yi}ni=1 [71, 16]. Therefore in the regime when comparatively
n is large and ε is moderate (poly(1/ε)� n), it is more efficient to optimize the original stochastic
nonsmooth formulation than the smooth minimax reformulation.

Concretely, the soft-margin SVM problem with a hinge loss, can be reformulated as a saddle point
problem of the following form

min
‖x‖1≤1

max
y∈[0,1]n

1

n
(yT1− yTAx) . (84)

This smooth saddle point problem is an `1-`2 matrix game (ignoring possibility of `∞ optimization
due to limited literature) which is L12-smooth, where

L12 = max
‖x‖1 ≤1

max
‖y‖2≤1

1

n
yTAx =

1

n
max

i=1,...,n
‖ai‖2 . (85)

Note that the primal (in `1 norm) and dual (in `2 norm) space diameters are DX = O(λ) and
DY = O(

√
n) respectively.

29

Next we derive the MO and SFO calls complexities (MO-CC and SFO-CC) of the variance re-
duced Mirror-prox method [16]. For any stepsize α ≤ ε

DXDY
√

ln d
, this algorithm runs for

K = O(αDXDY
√

ln d
ε) outer iterations, each of which uses T = 1 +

L2
12

α2 SFO calls and one
FO call, and T + 1 primal and dual MO calls. Computational complexity of

• Primal MO is O(d log d) since it involves sorting,
• Dual MO is O(n) since it involves normalization of each dual dimension,
• FO is O(dn) since it involves d× n-matrix vector products, and,
• SFO isO(d+n) because it involves sampling from two set of n and d (d and n-dimensional,

respectively) vectors.

We assume that the algorithm uses T̃ = 1 +
L2

12

α2 + dn
d+n = O(

L2
12

α2 + dn
d+n) SFO calls per outer

iteration, because computationally it is equivalent to T = 1 +
L2

12

α2 SFO calls and one FO call per

outer iteration. Using the suggested stepsize α = max(ε
DXDY

√
ln d

, L12

√
d+n
dn), we get that

[MO-CC = O(K · T)] = O
(dn

d+ n
+
L12

ε

√
dn

d+ n
(λ
√
n ln d)

)
= [K · T̃ = SFO-CC] . (86)

In very high dimensional regime (n� d) or very large-scale regime (d� n), MO-CC of this smooth
minimax formulation is O(d) or O(n) larger than PO-CC for MOPES. Further more the former
method uses extra Θ(n) extra space for storing the dual variables.

LMO: Next we study the case of LMO in the high-dimensional (poly(Gp, σp, λ, 1/ε) � d) and
large-scale (1� poly(n)) regime. In Table 3 we provide the LMO and SFO calls complexities of
MOLES (p = 1, Algorithm 1) and competing nonsmooth methods: FW-PGD (p = 2)—projection
approximated with Frank-Wolfe method (Appendix B.2), and Randomized Frank-Wolfe method
(p = 1 or p = 2) [54]. The p value in brackets marks which `p norm the method uses. By definition
G1 ≤ G2 ≤

√
dG1 and σ1 ≤ σ2 ≤

√
dσ1. Therefore, in this high-dimensional and large-scale

regime, MOLES has a more efficient dimension-free LMO-CC O(G2
2λ

2/ε2) than other competing
nonsmooth first-order methods, while still maintaining optimal O(1/ε2) SFO-CC. Note that LMO
has a computational complexity of O(d) because it uses just one pass over a d-dimensional vector.

A competing method based on the smooth minimax reformulation is SP+VR-MP which combines
ideas from Semi-Proximal [41] and Variance reduced [16] Mirror-Prox methods. Here SP+VR-MP
uses the variance reduced Mirror-prox method [16] in the `2-`2 setting to optimize (84) and then
approximates the projection steps with Frank-Wolfe (FW) method. This is an L22-smooth minimax
problem with

L22 = max
‖x‖2 ≤1

max
‖y‖2≤1

1

n
yTAx =

1

n
‖A‖2 . (87)

where ‖A‖2 is the spectral norm of the matrix A, but the algorithm we are discussing will depend on

L̃22 =
1

n
‖A‖F . (88)

where ‖A‖F is the Frobenius norm of the matrix A. Note that 1√
min(n,d)

‖A‖F ≤ ‖A‖2 ≤ ‖A‖F .

The primal and dual space diameters are again DX = O(λ) and DY = O(
√
n), respectively.

For each of the projection steps, the Frank-Wolfe method solves an (α + 10
L2

22

α)-smooth convex
optimization problem up to an error O(ε). Therefore each of these uses at most T̂ = d(α +

10
L2

22

α)λ2/εe LMO calls. Thus using similar arguments as the PO setting and using the suggested

stepsize α = max(ε
DXDY

, L̃22

√
d+n
dn), K = O(αDXDYε) outer iterations, T̃ = 1 +

L̃2
22

α2 = O(
L̃2

22

α2)

SFO calls per outer iteration, and T̃ = 1 +
L̃2

22

α2 + dn
d+n = O(

L̃2
22

α2 + dn
d+n) effective number of SFO

calls per outer iteration, we get that

[SFO-CC = K · T̃] = O
(dn

d+ n
+
L̃22

ε

√
dn

d+ n
(λ
√
n)
)
, (89)

30

LMO based methods (using `p norm)

Nonsmooth methods (p = 2) LMO: O(d) SFO: O(d+ n)

MOLES (p = 2) [Theorem 2] O
(G2

2
ε2
λ2
)

O
(G2

2+σ
2
2

ε2
λ2
)

FW-PGD (p = 2) [Theorem 4] O
(G4

2+σ
4
2

ε4
λ4
)

O
(G2

2+σ
2
2

ε2
λ2
)

Rand. Frank-Wolfe (p = 2) [54] O
(
d1/2

G2
2
ε2
λ2
)

O
(G4

2+σ
4
2

ε4
λ4
)

Nonsmooth methods (p = 1) LMO: O(d) SFO: O(d+ n)

Rand. Frank-Wolfe (p = 1) [54] O
(
d ln(d+ 1)

G2
1
ε2
λ2
)

O
(

ln2(d+ 1)
G4

1+σ
4
1

ε4
λ2
)

Minimax methods: O(n) extra memory LMO: O(d) SFO: O(d+ n)

SP [41]+VR [16]-MP (p = 2) SFO-CC + O
(
d
√
nλ

d+n
+ O

(
dn
d+n

+

L̃22 λ
2

ε

(
dn
d+n

) 3
2

+
L̃2

22 λ
3√n

ε2

(
dn
d+n

))
+ L̃22

ε

√
dn
d+n

(λ
√
n)
)

Table 3: Linear minimization oracle: LMO and SFO calls complexity (LMO-CC and SFO-CC)
of various methods for d-dimensional `1 norm constrained SVM with n training samples. SFO
uses a batchsize of b = o(n). SP+VR-MP combines ideas from Semi-Proximal [41] and Variance
reduced [16] Mirror-Prox methods. Our MOLES outperforms other nonsmooth methods in LMO-
CC while still maintaining O(1/ε2) SFO-CC. Complexities of method based on smooth minimax
reformulation adversely scale with n or d.

and

[LMO-CC = O(K · T) · T̂]

= O
([dn

d+ n
+
L̃22

ε

√
dn

d+ n
(λ
√
n)
]
·
[
1 + (α+

L2
22

α
)
D2
X
ε

])
= O

([dn

d+ n
+
L̃22

ε

√
dn

d+ n
(λ
√
n)
]
·
[
1 +

λ√
n

+
L̃22 λ

2

ε

√
dn

d+ n

])
= SFO-CC +O

(d√nλ
d+ n

+
L̃22 λ

2

ε

(dn

d+ n

) 3
2

+
L̃2

22 λ
3
√
n

ε2

(dn

d+ n

))
(90)

In very high dimensional regime (n � d) or very large-scale regime (d � n), LMO-CC of this
smooth minimax reformulation is O(d) or O(n) larger than LMO-CC for MOLES. Further more the
former method uses extra Θ(n) extra space for storing the dual variables.

Similar arguments hold for the nuclear norm constrained Matrix SVM [85], so that MOPES/MOLES
outperforms other nonsmooth methods in some regime, where n or d is large and ε is relatively
moderate, and complexities of smooth minimax reformulation based methods scales adversely with d
and n. For this case, the gain in the actual wall-clock time would be even more stark than vector SVM
due to the computation of SVD/largest eigenvalue, which is required for implementing PO/LMO.

E.2 SVM with hard constraints

Soft-margin SVM could be provided with some hard constraints [70], so that the classifier is forced to
always predict the correct labels for a subset (of size k) of important “gold” training examples. This
problem can be formulated as a nonsmooth constrained optimization problem with a large number of
linear constraints, as follows

min
x∈Rd

1

n

n∑
i=1

max(0, 1− 〈x, ai〉)

subject to, 1 ≤ 〈x, ãj〉 , ∀j = 1, . . . , k

‖x‖1 ≤ λ (91)

We can solve this nonsmooth convex problem using first-order methods using projection onto hard
constraints set: X = {x | ‖x‖1 ≤ λ and 1 ≤ 〈x, ãj〉 ,∀j = 1, . . . , k}. This projection can be can be

31

implemented using linear programming methods, however it is computationally costly. Therefore
PO-CC efficiency is critical, and just as in the case of SVM with `1 norm constraint (Section E.1),
our MOPES method achieves smallest O(1/ε) dimension-free PO-CC which is better than other
competing methods. PO-CC and SFO-CC are the same as given in Table 2.

Note that, first-order methods using one projection [61] cannot be applied here, since they need the
constraint set to be written in the functional form: c(x) ≤ 0, such that ρ ≤ ‖g‖ for all g ∈ ∂c(x), for
some ρ > 0. This is not true for general set of linear constraints, where a pathological case can occur
when two linear constraints have almost identical normal vectors.

32

