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Abstract

In this paper, we present a statistical mechanics framework to understand the effect
of sampling properties of training data on the generalization gap of machine learn-
ing (ML) algorithms. We connect the generalization gap to the spatial properties
of a sample design characterized by the pair correlation function (PCF). In partic-
ular, we express generalization gap in terms of the power spectra of the sample
design and that of the function to be learned. Using this framework, we show
that space-filling sample designs, such as blue noise and Poisson disk sampling,
which optimize spectral properties, outperform random designs in terms of the
generalization gap and characterize this gain in a closed-form. Our analysis also
sheds light on design principles for constructing optimal task-agnostic sample
designs that minimize the generalization gap. We corroborate our findings using
regression experiments with neural networks on: a) synthetic functions, and b) a
complex scientific simulator for inertial confinement fusion (ICF).

1 Introduction

Machine learning (ML) techniques have led to incredible advances in a wide variety of commercial
applications, and similar approaches are rapidly being adopted in several scientific and engineering
problems. Traditionally, ML research has focused on developing modeling techniques and training
algorithms to learn generalizable models from historic labeled data (i.e., a known set of inputs and
their corresponding responses). However, in several applications, we encounter a key challenge
even before building the model – determining the input samples for which the responses should be
collected (referred to as task-agnostic sample design problem). This is particularly true for emerging
applications in physical sciences and engineering where curated datasets are not available a priori
and data acquisition involves time-consuming computational simulations or expensive real-world
experiments. For example, in inertial confinement fusion (ICF) [2], one needs to build a high-fidelity
mapping from the process inputs, say target and laser settings, to process outputs, such as ICF
implosion neutron yield and X-ray diagnostics. In such scenarios, the properties of collected data
directly control the generalization error of ML models. However, determining the right samples to
use for model training hinges on understanding the intricate interplay between sampling properties
and the ML generalization error. Unfortunately, our theoretical understanding is very limited in this
regard, and hence existing sample design approaches rely upon a variety of heuristics, e.g., generating
so called space-filling sample designs [15] to cover the input space as uniformly as possible.

Most existing theoretical frameworks only study the generalization properties of random i.i.d. de-
signs or other simple probabilistic variants. Intuitively, this assumption ignores the dependency
of generalization gap on data properties except the sample size (data-independent bounds). While
some efforts exist to obtain data-dependent bounds, they still focus on studying model design related
questions while ignoring sample design aspects. To the best of our knowledge, there does not exist
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a framework in the literature that can help study the generalization error of generic sample designs
(e.g., space-filling). This paper proposes to study generalization error from the viewpoint of the
sampler generating the training data. We fill a crucial gap by developing a framework capable of
characterizing the generalization performance of generic sample designs based on metrics from
statistical mechanics, which are expressive enough to quantify a broad range of sample distributions.

Contributions: We develop a framework for studying the generalization behavior of sample designs
through the lens of statistical mechanics. First, we model sample design as a stochastic point process
and obtain a corresponding representation in the spectral domain using tools from [18]. This approach
allows us to study the behavior of a larger class of sample designs (including space-filling). In
particular, for our subsequent analysis, we focus on the blue noise [13, 17] and Poisson disk sampling
(PDS) [16, 18] designs (see Figure 1 in the supplementary material). Next, we reformulate the
generalization gap in the spectral domain and obtain an explicit closed-form relation of generalization
gap with the power spectra of both the sample design and the function to be learned. Using our
framework, we are able to theoretically show that space-filling designs outperform random designs.
We further characterize the gains obtained with two state-of-the-art space-filling designs, namely blue
noise and PDS samples, over a random design in a closed-form. This analysis further enables us to
formulate design principles to construct optimal sampling methods for specific ML problems. We
also make interesting (counter-intuitive) observations on the convergence behavior of generalization
error with increasing dimensions. Specifically, we find that analysis with traditional metrics leads to
inconsistent results in high dimensions. To overcome this issue, we develop novel spectral metrics to
obtain meaningful convergence results for different sampling patterns (see supplementary material).
Finally, we corroborate our findings by carrying out regression experiments on synthetic functions
and a complex scientific simulator for inertial confinement fusion [3].

2 Related Work

2.1 Generalization Theory

Understanding the generalization error is essential for estimating how well the generated hypothesis
will apply to unknown test data. Traditionally, generalization error is analyzed based on the model
complexity, such as, the Vapnik-Chervonenkis (VC) dimension and the Rademacher complexity [4], or
properties of the learning algorithm, such as uniform stability [5], and data-independent upper bounds
on the error are derived. Some efforts have extended these bounds to accommodate certain data-related
properties – for e.g., the luckiness framework [19], empirical Rademacher complexity [14], and the
robustness of learning algorithms [27]. However, most existing frameworks are either restricted to
random i.i.d. designs or cannot accommodate a broad range of sample designs. Consequently, they
cannot be leveraged to gain insights into obtaining improved sample designs.

2.2 Space-Filling Designs

Sample design has been a long-standing research area in statistics [11, 22]. Traditionally, a good task-
agnostic sample design aims to uniformly cover the input space to generate the so-called space-filling
designs [15]. Since it is challenging to evaluate the space-filling property, simple scalar metrics, e.g.,
discrepancy [7] or geometric distances (maximin or minimax [24]) are utilized. However, these scalar
metrics are not very descriptive, and when used as the design objective, often result in poor-quality
samples. Recent work in [18] overcame this limitation using a spectral framework to quantify the
space-filling property and demonstrated superiority over other designs. However, these strategies
are not designed to specifically improve the generalization error of learning algorithms and, more
importantly, it is currently not possible to rigorously characterize their generalization performance.

2.3 Other Related Directions

The term sample design is used broadly, and can refer to a variety of problems including subset
selection [8, 1], linear bandits [9], diversity sampling [20] and active learning [25]. The fundamental
difference between these works and the setup considered in this paper is that our sample design
process is agnostic to both the specific response (i.e., output) and the choice of the ML model, thus,
referred to as task-agnostic sample design.
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3 Preliminaries – A Statistical Mechanics View of Sample Design

Studying the effect of sample design on the generalization error requires the use of expressive metrics
to characterize sampling properties. Sample designs have been traditionally analyzed using heuristic
measures, such as, discrepancy or uniformity which are known to be insufficient [18]. Hence, we
advocate the use of a principled statistical mechanical analysis where a sample design is modeled as
a stochastic point process and characterized using both its power spectral density (PSD) in spectral
domain and pair correlation function (PCF) in spatial domain.

Power Spectral Density: For a sample design with finite set of N samples, {xj}Nj=1, the PSD
describes how signal power is distributed over frequencies k. It is formally defined as

P (k) =
X

j,`

e�2⇡ik·(x`�xj)/N.

For isotropic designs, P (⇢) = P (|k|) where ⇢ is the radial frequency and | · | is the magnitude
operator. Equivalently, a sample design can also be characterized in the spatial domain.

Pair Correlation Function: For a sample design, the PCF describes how sample density varies as a
function of distances r. For isotropic designs, G(r) = G(|r|) where r is the radial distance.

Relating PCF and PSD: The PSD and PCF of a sample design are related via the Fourier transform
as follows:

P (k) = 1 +NF (G(r)� 1)

= 1 +N

Z

Rd

(G(r)� 1) exp(�2⇡ik.r)dr, (1)

where F (·) denotes the d-dimensional Fourier transform. For isotropic designs (focus of this paper),
the above relationship simplifies as follows.
Theorem 1. The PCF and the PSD of radially symmetric sample designs are related as follows:

G(r) = 1 +
1

N
r1�

d
2H d

2�1

⇣
⇢

d
2�1(P (⇢)� 1)

⌘
,

where Hd(f(⇢)) = 2⇡
R1
0 ⇢f(⇢)Jd(2⇡r⇢)d⇢ denotes the Hankel transform and Jd(.) is the Bessel

function of order d.

Realizability: Note, not all PSDs/PCFs are realizable in practice. The two necessary conditions 1

that a sample design must satisfy to be realizable are: (a) its PSD must be non-negative, i.e.,
P (k) � 0, 8k, and (b) its PCF must be non-negative, i.e., G(r) � 0, 8r.

Theorem 1 along with realizability conditions establish a fundamental relationship between the PSD
and PCF of isotropic sample designs. We utilize this to construct optimal forms of PDS and blue
noise (Lemmas 1, 2, 8 and 9) and carry out our analysis only on realizable power spectra. Note that
not every power spectra has corresponding sample design, though other way around is always true.

4 Risk Minimization using Monte Carlo Estimates

We consider the following general supervised learning setup: We have two spaces of objects X 2 Td

(toroidal unit cube [0, 1]d) and Y 2 R where Y = F(X). The goal of a learning algorithm is to learn
a function h : X ! Y (often called hypothesis) which approximates the true (but unknown) function
F . We assume access to training data comprised of N samples S = {(x1, y1), · · · , (xN , yN )} drawn
from an unknown distribution P (x, y). We infer a hypothesis h(·) by minimizing the population risk:

RP (h) , EP (x,y)[l(h(x), y)] =

Z
l(h(x), y)dP (x, y), (2)

where l(·, ·) denotes the loss function.

1Whether or not these two conditions are not only necessary but also sufficient is still an open question
(however, no counterexamples are known).
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Empirical Risk Minimization: In general, the joint distribution P (x, y) is unknown to the learning
algorithm and hence the risk RP (h) cannot be computed. Instead, an approximation referred as
empirical risk is often used which is obtained by averaging the loss function on the training data:

RS(h) ,
1

N

NX

i=1

l(h(xi), yi). (3)

Note that the empirical risk RS(h) is a Monte Carlo (MC) estimate of the population risk RP (h). It
also can be rewritten in a continuous form

RS(h) ,
1

N

Z

T
S(x)l(h(x), y)dx, (4)

where T is the sampling domain and S(x) is the sampling function, i.e., a sample design rewritten as a
random signal S composed of N Dirac functions at positions S(x) =

P
�(x� xi) for i = 1, · · · , N .

Generalization Gap: In ML and statistical learning theory, the performance of a supervised learning
algorithm is measured by the generalization gap, which is the expected difference between the
population risk and the empirical risk. More specifically, we adopt the following definition of the
generalization gap:

gen(h) , ES [(RP (h)�RS(h))
2], (5)

which is the expected difference between the population risk and its empirical risk on the training
data for a fixed hypothesis h(·)2. The generalization gap also has an alternate form with a direct link
to the statistical properties of the sampling pattern:

gen(h) , ES [(RP (h)�RS(h))
2]

= bias2 + var(RS(h)).

We consider sample designs which are homogeneous, i.e. statistical properties of a sample are
invariant to translation over the sampling domain. Homogeneous sample designs are unbiased in
nature, thus, the generalization gap arises only from the variance. Though variance analysis of
Monte-Carlo integration has been considered in the literature [10, 26, 23], such an analysis has not
been carried out so far, in the context of the generalization gap in ML.

5 Connecting Generalization Gap with Sample Design

5.1 Monte Carlo Estimator of Risk in the Spectral domain

Building upon [23], the MC estimator for risk as given in Eq. 4 can be transformed to the Fourier
domain � using the fact that the dot-product of functions (the integral of the product) is equivalent to
the dot-product of their Fourier coefficients. This allows us to pose the MC estimator for empirical
risk as follows:

RS(h) ,
1

N

Z

�
FS(k)Fl(k)

⇤dk, (6)

where FS , Fl denote the Fourier transforms of the sampling function S and the loss function l and
(⇤) denotes complex conjugate.

5.2 Spectral Analysis of the Generalization Gap

We now use the spectral domain version of empirical risk to define the generalization gap:

gen(h) , bias2 + var(RS(h)) = (E(RS(h))�RP (h))
2 + E(RS(h)

2)� (E(RS(h)))
2

= (E(RS(h))�RP (h))
2 +

1

N2

Z

�⇥�
E(FS,l(k,k

0))dkdk0 � (E(RS(h)))
2, (7)

where FS,l(k,k0) , FS(k) · Fl(k)⇤ · FS(k0)⇤ · Fl(k0). Using this definition, we derive an explicit
closed-form relation of the generalization gap with the power spectra of both S and l. To this end, we
first simplify Eq. 7 by restricting our analysis to homogeneous designs:

2This can further be extended to more complex hypothesis dependent analysis, e.g., by applying Hoeffding’s
inequality to each fixed hypothesis to obtain uniform bounds.
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Theorem 2. The generalization gap for homogeneous sample designs in terms of the power spectra
of both the sampling pattern PS and the loss function Pl can be obtained as:

gen(h) , 1

N

Z

⇥
E(PS(k))Pl(k)dk, (8)

where ⇥ is the Fourier domain � without DC frequency.

By combining Theorem 2 with Eq. 5, one can calculate the generalization gap of arbitrary sample
designs in terms of their power spectra. When the design is isotropic (i.e., the power spectrum is
radially symmetric), the error can be directly computed from the radial mean power spectra of the
loss with ⇢ = |k|, i.e., P̂l and the sample design P̂S .
Proposition 3. The generalization gap for isotropic homogeneous sample designs is

gen(h) , µ(Sd�1)

N

Z 1

0
⇢d�1E(P̂S(⇢))P̂l(⇢)d⇢, (9)

where µ(Sd) is the Lebesgue measure of a d-dimensional unit sphere in Rd given by 2
p
⇡d/�(d/2).

Proof. These results can be obtained by rewriting Theorem 2 in polar coordinates and noting that the
power spectra is radially symmetric for isotropic functions.

6 Best and Worst Case Generalization Gap

The proposed framework requires us to explicitly know the power spectra of the loss function to
calculate the generalization gap, which is usually unknown. Hence, in this section, we restrict our
analysis to a particular class of integrable functions of the form l(x)X⌦ with l(x) smooth and ⌦ a
bounded domain with a smooth boundary where X⌦ is the characteristic function of ⌦ (see [6] for
more details). We consider a best-case function and a worst-case function, both from this class to
quantify the generalization behavior over the entire class. Intuitively, we define the complexity of a
function in terms of its spectral content (or PSD), i.e., how fast the power of the function decays with
frequency. Best-case functions (as defined later) are functions of low complexity (band limited or
fast decaying). On the other hand, worst-case functions are high complexity functions with slowly
decaying spectra.

Best-Case Generalization Error. We define our best-case function directly in the spectral domain
with the radial mean power spectrum profile P̂l(⇢) which is a constant cl for ⇢ < ⇢0, and zero
elsewhere. The constant cl indicates that the power spectrum is bounded. The best case gap can be
thus obtained from Eq. 9 as follows:
Proposition 4. The best-case generalization gap for isotropic homogeneous sample designs is

gen(h) =
µ(Sd�1)

N
cl

Z ⇢0

0
⇢d�1E(P̂S(⇢))d⇢. (10)

Proof. These results can be derived by plugging in best-case P̂l(⇢) in Eq. 9.

Worst-Case Generalization Gap. For the worst-case, we consider a function whose radial mean
power spectrum P̂l(⇢) is a constant cl for ⇢ < ⇢0, and c0l⇢

�d�1 elsewhere, where cl and c0l are
non-zero positive constants. This spectral profile has a decay rate O(⇢�d�1) for ⇢ > ⇢0.
Proposition 5. The worst-case generalization gap for isotropic homogeneous sample designs is

gen(h) =
µ(Sd�1)

N
cl

Z ⇢0

0
⇢d�1E(P̂S(⇢))d⇢+

µ(Sd�1)

N
c0l

Z 1

⇢0

⇢�2E(P̂S(⇢))d⇢. (11)

Proof. These results can be derived by plugging in the worst-case P̂l(⇢) in Eq. 9.

Propositions 4 and 5 enable us to calculate the generalization gap of any isotropic sampling pattern
as a function of the shape of sampling power spectra. Further, when an upper-bound on the power
spectra of the loss function is known, one can deduce the corresponding error convergence rates.
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7 Sampler-Specific Generalization Error Results

In the previous section, we obtained the best and worst-case generalization gap as a function of the
sampling spectra. Next, we study the effects of different sample designs on the generalization gap.

Random (or Poisson) Sampler: A random sampler has a constant power spectrum since point
samples are uncorrelated, i.e., E(P̂S(⇢)) = 1, 8⇢.
Proposition 6. For a random sampler, the best-case and the worst-case generalization gap can be
obtained as:

genb(h) = µcl⇢
d
0/Nd, and genw(h) = genb(h) + µc0l⇢

�1
0 /N.

Proof. These results can be derived by plugging in E(P̂S(⇢)) = 1, 8⇢ in Eqns. 10 and 11.

Blue Noise Sampler: Blue noise design is aimed at replacing visible aliasing artifacts with incoherent
noise, and their properties are typically defined in the spectral domain. We consider the step blue
noise design defined as follows: (a) the spectrum should be close to zero for low frequencies, which
indicates the range of frequencies that can be recovered exactly; (b) the spectrum should be a constant
one for high frequencies, i.e. represent uniform white noise, which reduces the risk of aliasing. The
low frequency band with minimal energy is referred to as the zero region. Formally,

PS(⇢� ⇢z) =

⇢
0 if ⇢  ⇢z,
1 if ⇢ > ⇢z.

(12)

The zero region 0  ⇢  ⇢z indicates the range of frequencies that can be represented with no
aliasing and the flat region ⇢ > ⇢z guarantees that aliasing artifacts are mapped to broadband noise.

Next, we derive optimal blue noise sample design in high-dimensions.
Lemma 1. The PCF of a Step blue noise design of size N in d dimensions, for a given zero region
⇢z is given by

G(r) = 1� (⇢z/r)
d
2 Jd/2(2⇡⇢zr)/N, (13)

where Jd/2(.) is the Bessel function of order d/2.

Proof. These results can be derived by plugging in equation 12 in Theorem 1.

Lemma 1 helps us determine the maximum achievable zero region ⇢z , that does not violate realizabil-
ity conditions.
Lemma 2. The maximum achievable zero region using N blue noise samples in d dimensions is
equal to inverse of the d-th root of the volume of a d-dimensional hyper-sphere with radius 1/ dp

N ,

⇢⇤z =
d
q

N� (1 + d/2)/⇡d/2,

where �(.) is the gamma function. Equivalently, we can determine the minimum number of samples
needed to construct a step blue noise pattern, N = ⇡d/2⇢dz/�(1 + d/2).
Proposition 7. For a blue noise design, the best-case and the worst-case generalization gap can be
obtained as:

genb(h) =

⇢
0, if ⇢0  ⇢⇤z
genrandom

b (h)� µcl� (1 + d/2)/d⇡d/2, otherwise

genw(h) =

⇢
µc0l⇢

⇤
z
�1/N, if ⇢0  ⇢⇤z

genrandom
w (h)� µcl� (1 + d/2)/d⇡d/2, otherwise.

Poisson Disk Sampler: Without any prior knowledge of the function F of interest, a reasonable
objective for sampling is that the samples should be random to provide an equal chance of finding
features of interest. However, to avoid sampling only parts of the parameter space, a second objective
is required to cover the space in D uniformly. Poisson Disk Sampling (PDS) is designed to achieve
these objectives. In particular, the step PCF sampling pattern is a set of samples that are distributed
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(a) (b)

Figure 1: PDS convergence rate (d = 2, cl = 108, c0l = 1.1, ⇢0 = 10�4) (a) Best-case, (b) Worst-case.

according to a uniform probability distribution (Objective 1: Randomness) but no two samples are
closer than a minimum distance rmin (Objective 2: Coverage). Formally,

GS(r � rmin) =

⇢
0 if r  rmin,
1 if r > rmin.

(14)

Next, we derive optimal PDS sample design in high-dimensions.
Lemma 8 ([18]). The power spectra of a PDS design of size N in d dimensions, for a given rmin is
given by

PS(⇢� rmin) = 1�N (2⇡rmin/⇢)
d/2 Jd/2(⇢rmin), (15)

where Jd/2(.) is the Bessel function of order d/2.

Similar to the previous case, we can determining the maximum achievable rmin, that does not violate
realizability conditions, for a given sample budget N .

Lemma 9. The maximum achievable rmin using N PDS samples in d dimensions is equal to inverse
of d-th root of volume of a d-dimensional hyper-sphere with radius dp

N ,

r⇤min =
d
q
� (1 + d/2)/⇡d/2N,

where �(.) is the gamma function. Equivalently, we can also determine the minimum N required to
achieve a given rmin, N = �(1 + d/2)/⇡d/2rdmin.

Proof. Proof is similar to Lemma 2.

Proposition 10. For a PDS design, the best-case and the worst-case generalization gap can be
obtained as:

genb(h) = genrandom
b (h)� µcl(2⇡)

d
2 r⇤min

Z ⇢0

0

(⇢r⇤min)
d
2�1Jd/2(⇢r

⇤
min)d⇢,

genw(h) = genb(h) +
µc0l⇢

�1
0

N
� µc0l(2⇡)

d
2 r⇤d+2

min

Z 1

⇢0

(⇢r⇤min)
� d

2�2J d
2
(⇢r⇤min)d⇢.

These integrals are complicated to compute and it is non-trivial to get closed-form bounds. Simplifi-
cations under simplistic assumptions are provided in the supplementary material. Propositions 6, 7
and 10 show that the shape of the power spectra has a major impact on the generalization gap–designs
with optimized spectral properties are superior as compared to random designs.

8 Convergence Analysis

Next, we analyze the convergence of the generalization gap for different sample designs. This analysis
will shed light into design principles for constructing optimal sample design.
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8.1 Analysis with Sample Size

For random design, both the best and the worst-case generalization gaps converge as O(1/N). For
blue noise design, if best-case functions are bandwidth-limited with ⇢0  ⇢⇤z , then it can be perfectly
recovered. However, when ⇢0 > ⇢⇤z , the convergence is at the rate O(1/N), which is the same as
random design. For worst case functions, the error converges as O(1/N

dp
N) when ⇢0  ⇢⇤z and

as O(1/N) when ⇢0 > ⇢⇤z . This provides a theoretical justification for designing blue noise sample
design with large zero-region ⇢z for better performance. Note that, the convergence rate analysis
of PDS design is not straightforward due to the involvement of Bessel functions under the integral
in Proposition 10. Hence, we numerically analyze the convergence for PDS design. As showed in
Figure 1, we observe that the best case convergence rate approximately behaves as O(1/N

dp
N

b
)

with b � 1 and the worst case convergence behaves as O(1/N).

8.2 Some Guidelines for Sample Design and Extensions

The main conclusion from our analysis is that samples with optimized spectral properties result in
models with superior generalization. This conclusion is also corroborated via experiments in the
next section. Our analysis shows that an ideal sample design power spectrum must approach to zero
power as the frequency tends to zero (see Propositions 4 and 5). Power spectrum without oscillations
in zero region achieves faster convergence rate as compared to power spectrum with oscillations.
Ideally, one should target to generate sample designs whose power spectra has a large zero region
⇢z . However, the realizability conditions severely limit the range of realizable power spectra and
hence in practice, this results in sample designs with very small ⇢z . A worthwhile direction for
future work is to investigate sample designs with large zero regions. The proposed approach can
also be used to study the effect of other state-of-the-art sample designs on the generalization gap.
In many practical scenarios, it is possible to use information acquired from previous observations
to improve the sampling process. As more samples are obtained, one can learn how to improve the
sampling process by deciding where to sample next. These sampling feedback techniques are known
as adaptive sampling. Our analysis provides a novel way to quantify the value of a sample in terms
of the generalization gap. Another natural extension of our results is towards building importance
sampling techniques, guided by spectral properties.

9 Experiments

Now, we corroborate our theoretical findings via experiments. We compare the generalization
performance of different sample designs for regression.

Experimental Setup. In our experiments, we vary training sample set size from 200 to 1000. To
generate blue noise and PDS designs, we use gradient descent based PCF matching approach as
proposed in [21]. We use the implementation provided by the authors3. For both the experiments, we
use neural network with two hidden layers, with 200 and 100 nodes respectively, each followed by a
LeakyReLu activation function. For training algorithm, we use ADAM optimizer with learning rate
and batch size to be 0.01 and 64, respectively. We evaluate the generalization performance of neural
networks learnt using different sample designs based on root mean square error (RMSE) on 103

unseen regular grid based test samples. All the results are averaged over 20 independent realizations.

Synthetic Functions. In this experiment, we consider regression problem of learning analytical
functions and perform a comparative study of different sample designs, in terms of their generalization
performance. We consider two synthetic functions with known but different spectral behavior: a) disk
function: y = 5 if |x| < 6 (y = 0 otherwise), and b) exponential function: y = 10⇤exp(�30⇤(|x|2))
where x 2 [0, 1]3. In Figure 2, we show radial average of both the functions and their power spectral
densities. Note that exponential function is not bandwidth-limited but smooth enough to have an
exponential decay rate for its PSD. On the other hand, spectral profile of the disk function has a
decay rate of O(⇢d�1) as assumed in Section 6. For both of the functions, we see that models trained
on blue noise and PDS sample designs generalize significantly better for all sampling budgets as
compared to models trained on random sample design.

3https://github.com/gowthamasu/Coveragebasedsampledesign
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(a) (b)
Figure 2: Generalization comparison on synthetic functions: (a) exponential, (b) disk.
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Figure 3: Generalization comparison on ICF application: (a) peak fusion power, (b) radiation energy.

Inertial Confinement Fusion (ICF) Simulator. Next, we consider a scientific machine learning
problem of learning a regression model for an inertial confinement fusion (ICF) simulator developed
at the National Ignition Facility (NIF). The NIF is aimed at demonstrating inertial confinement
fusion (ICF), that is, thermonuclear ignition and energy gain in a laboratory setting. We use the
NIF JAG simulator4 with different input parameters, such as, laser power, pulse shape etc. For each
simulation run, several output quantities, such as peak fusion power, yield, etc., are obtained. In this
experiment, we vary three input parameters and study the problem of learning a model to regress
peak fusion power and radiation energy. Note that, the function and its spectral behavior is not known
in this experiment and its may not comply with any of our assumptions. In Figure 3, we observe
that regression error patterns are consistent with our observations in the previous experiment. Blue
noise design performs the best followed by the PDS design. This shows that our finding that spectral
designs are superior compared to random designs hold even in this real-world setting.

The performance gain with both synthetic function and ICF simulator can be credited to superior
spectral properties of blue noise and PDS designs compared to random designs. These observations
corroborate our theoretical results which show that the shape of the power spectra has a major impact
on the generalization gap and sampling designs with optimized spectral properties (i.e., blue noise and
PDS) are superior to random designs. Further, the gain of spectral designs is higher in low-sampling
regime which makes spectral designs an attractive solution in small-data ML applications.

10 Conclusions

We presented a statistical mechanics framework to study effect of task-agnostics sample designs on
the generalization gap of ML models. We showed that the generalization gap is related to the power
spectra of a sample design and the function of interest. We also analyzed the generalization gap of
two state-of-the-art space-filling sample designs, and quantified their gain over random design in a
closed-form. Finally, we provided design guidelines towards constructing optimal sample designs
for a given problem. There are still many interesting questions that remain to be explored such
as an analysis of the generalization gap for cases where input domain is a non-linear manifold.
Analysis with a specific loss function can also be pursued. Other potentially worthwhile directions
are designing significantly higher quality sample designs than currently possible, adaptive sampling,
and importance sampling.

4https://github.com/rushilanirudh/macc
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Broader Impact

In this paper, we introduce a statistical mechanics framework to understand the effect of sample
design on the generalization gap of ML algorithms. Our framework could be applied to a wide
range of applications, including scientific ML, design and optimization in engineering, agricultural
experiments, and many more. It can also play an important building block for several ML problems,
such as, supervised ML, neural network training, image reconstruction, reinforcement learning, etc.
We expect that our framework will significantly improve the quality of inference and our current
understanding in several science and engineering applications where ML is applied. Our focus on
this paper has been understanding the effect of sample design on the generalization gap, however,
in several applications we may additionally want to understand implication of a sample design on
fairness, robustness, privacy, etc. This is an unexplored area in sample design and we encourage
researchers to understand and mitigate the risks arising from task-agnostic designs in these contexts.
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