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A Demo Video1

We release a demo video of MCUNet running visual wake words. MCUNet achieves 12% higher2

accuracy and 2.6× faster speed compared to MobilenetV1 on TF-Lite Mircro [1]. Please refer to3

the anonymous link https://www.youtube.com/watch?v=sDRxruEbpRM for details. We4

also provide a low-resolution version in the attachment: mcunet_demo_360p.mp4.5

Note that we show the actual frame rate in the demo video, which includes frame capture overhead6

from the camera (around 30ms per frame). It slows down the inference from 10 FPS to 7.4 FPS for7

our model.8

B Model Release9

We release MCUNet models in TF-Lite format in the supplementary materials. Please refer to10

mcunet-eval/README.md for details. We will also release the TinyEngine and TinyNAS11

codebase once cleaned up.12

C Missing Connected Curves in Figure 613

The connected curves in Figure 6(a) of the paper is missing due to LaTeX compilation error. The14

fixed version is below:15
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Figure S1. Accuracy vs. latency/SRAM memory trade-off on VWW (top) and Speech Commands (down)
dataset. MCUNet achieves better accuracy while being 2.4-3.4× faster at 2.2-2.6× smaller peak SRAM.

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

https://www.youtube.com/watch?v=sDRxruEbpRM


D Binary size of Inference Libraries16

The binary size of TinyEngine is light-weight, making it very memory-efficient for MCUs. Unlike17

interpreter-based TF-Lite Micro, which prepares every operation (e.g., conv, softmax) to support18

cross-model inference even if they are not used, which has high redundancy. TinyEngine only19

compiles the operations that are used by a given model into the binary. As shown in Figure S2, such20

model-adaptive compilation reduces code size by up to 4.5× and 5.0× compared to TF-Lite Micro21

and CMSIS-NN, respectively.22
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Figure S2. Binary size of different inference libraries. TinyEngine requires less binary size compared to
TFLite-Micro and CMSIS-NN.

E Design Cost23

There are billions of IoT devices with drastically different constraints, which requires different search24

spaces and model specialization. Therefore, keeping a low design cost is important.25

MCUNet is efficient in terms of neural architecture design cost. The search space optimization26

process takes negligible cost since no training or testing is required (it takes around 2 CPU hours27

to collect all the FLOPs statistics). The process needs to be done only once and can be reused for28

different constraints (e.g., covered two MCU devices and 4 memory constraints in Table 4). The29

one-shot neural architecture search is far more efficient compared to traditional neural architecture30

search method: it takes 40,000 GPU hours for MnasNet [8] to design a model, while MCUNet31

only takes 300 GPU hours, reducing the search cost by 133×. With MCUNet, we reduce the CO232

emission from 11.4 lbs to 0.08 lbs per model (Figure S3).33
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Figure S3. Total CO2 emission (lbs) for model design. MCUNet saves the design cost by orders of magnitude,
allowing model specialization for different deployment scenarios.

F Resource-Constrained Model Specialization Details34

For all the experiments in our paper, we used the same training recipe for neural architecture search35

to keep a fair comparison.36

Super network training. We first train a super network to contain all the sub-networks in the37

search space through weight sharing. Our search space is based on the widely-used mobile search38

space [8, 3, 10, 2] and supports variable kernel sizes for depth-wise convolution (3/5/7), variable39

expansion ratios for inverted bottleneck (3/4/6) and variable stage depths (2/3/4). The input resolution40

and width multiplier is chosen from search the space optimization technique proposed in section 3.1.41

The number of possible sub-networks that TinyNAS can cover in the search space is large: 2× 1019.42

To speed up the convergence, we first train the largest sub-network inside the search space (all kernel43

size 7, all expansion ratio 6, all stage depth 4). We then use the trained weights to initialize the super44

network. Following [2], we sort the channels weights according to their importance (we used L-145

norm to measure the importance [6]), so that the most important channels are ranked higher. Then46
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we train the super network to support different sub-networks. For each batch of data, we randomly47

sample 4 sub-networks, calculate the loss, backpropogate the gradients for each sub-network, and48

update the corresponding weights. For weight sharing, when select a smaller kernel, e.g., kernel size49

3, we index the central 3 × 3 window from the 7 × 7 kernel; when selecting a smaller expansion50

ratio, e.g. 3, we index the first 3n channels from the 6n channels (n is #block input channels), as51

the weights are already sorted according to importance; when using a smaller stage depth, e.g. 2,52

we calculate the first 2 blocks inside the stage the skip the rest. Since we use a fixed order when53

sampling sub-networks, we keep the same sampling manner when evaluating their performance.54

Evolution search. After super-network training, we use evolution to find the best sub-network55

architecture. We use a population size of 100. To get the first generation of population, we randomly56

sample sub-networks and keep 100 satisfying networks that fit the resource constraints. We measure57

the accuracy of each candidate on the independent validation set split from the training set. Then,58

for each iteration, we keep the top-20 candidates in the population with highest accuracy. We use59

crossover to generate 50 new candidates, and use mutation with probability 0.1 to generate another 5060

new candidates, which form a new generation of size 100. We measure the accuracy of each candidate61

in the new generation. The process is repeated for 30 iterations, and we choose the sub-network with62

the highest validation accuracy.63

G Training&Testing Details64

Training. The super network is trained on the training set excluding the split validation set. We65

trained the network using the standard SGD optimizer with momentum 0.9 and weight decay 5e-5.66

For super network training, we used cosine annealing learning rate [7] with a starting learning rate67

0.05 for every 256 samples. The largest sub-network is trained for 150 epochs on ImageNet [5], 10068

epochs on Speech Commands [9] and 30 epochs on Visual Wake Words [4] due to different dataset69

sizes. Then we train the super network for twice training epochs by randomly sampling sub-networks.70

Validation. We evaluate the performance of each sub-network on the independent validation set71

split from the training set in order not to over-fit the real validation set. To evaluate each sub-network’s72

performance during evolution search, we index and inherit the partial weights from the super network.73

We re-calibrate the batch normalization statistics (moving mean and variance) using 20 batches74

of data with a batch size 64. To evaluate the final performance on the real validation set, we also75

fine-tuned the best sub-network for 100 epochs on ImageNet.76

Quantization. For most of the experiments (except Table 4), we used TensorFlow’s int8 quantiza-77

tion (both activation and weights are quantized to int8). We used post-training quantization without78

fine-tuning which can already achieve negligible accuracy loss. We also reported the results of 4-bit79

integer quantization (weight and activation) on ImageNet (Table 4 of the paper). In this case, we used80

quantization-aware fine-tuning for 25 epochs to recover the accuracy.81
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