
Supplementary file for MetaPerturb: Transferable
Regularizer for Heterogeneous Tasks and

Architectures

Organization The supplementary file is organized as follows. In section A, we show additional
results and analysis of the robustness and calibration experiments. In section B, we visualize how the
perturbations look like in the latent feature space. In section C, we provide the details of the datasets,
network architectures, and experimental setups.
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Figure 1: Adversarial robustness against PGD attack [12] with varying size of radius ε using CUB dataset
and ResNet20.

A More Results and Analysis on Robustness and Calibration

Robustness In Figure 1 and Figure 6 in the paper, we measure the adversarial robustness of other
baseline regularizers such as Manifold Mixup [18], Dropblock [5], and Information Dropout [2]. We
use EoT [3] + PGD attack of 200 steps with some range of ε and the inner-learning rate is set to
0.025ε for `∞ and `2 attack and 0.033ε for `1 attack. For EoT attack, we sample gradients 10 times.
We also compare with adversarial training baselines, which take 30 projected gradient descent steps
at training. The ε value used for adversarial training for each dataset is written in the Figure 1 and
Figure 6 in the paper. We can see that whereas adversarial training is beneficial for the adversarial
accuracies, it largely degrades the clean accuracies. On the other hand, our MetaPerturb regularizer
improves both clean accuracy and adversarial robustness than the base model, even without explicit
adversarial training.

Calibration In the main paper, we showed that the predictions with MetaPerturb regularizer are
better calibrated than those of the baselines. In this section, we provide more results and analysis
of calibration on various datasets. First of all, calibration performance is frequently quantified with
Expected Calibration Error (ECE) [14]. ECE is computed by dividing the confidence values into
multiple bins and averaging the gap between the actual accuracy and the confidence value over all the
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Table 1: ECE of multiple datasets. Source and target network are ResNet20. TIN: Tiny ImageNet.

Model # Transfer Source Target Dataset
params dataset STL10 s-CIFAR100 Dogs Cars Aircraft CUB

Base 0 None 23.36±1.10 33.09±0.50 8.40±0.66 9.78±0.72 10.37±0.92 21.77±0.80

Finetuning .3M TIN 15.68±0.40 29.78±0.33 11.41±0.18 7.00±0.84 8.04±0.65 23.05±0.31

Info. Dropout [2] 0 None 22.87±0.28 32.78±0.21 8.27±0.80 8.84±0.77 9.99±1.15 20.41±0.34

DropBlock [5] 0 None 19.65±0.50 28.70±0.17 5.89±0.71 5.83±1.02 7.26±1.55 18.64±0.40

Manifold Mixup [18] 0 None 5.41±0.25 2.26±0.52 5.82±0.42 17.00±0.79 19.80±0.45 9.95±0.50

MetaPerturb 82 TIN 4.80±0.63 14.41±0.65 2.05±0.31 2.82±0.46 2.96±0.37 15.62±1.10
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Figure 2: Calibration plot on STL10, s-CIFAR100, Stanford Dogs, Stanford Cars, Aircraft and CUB datasets
using ResNet20.

bins. Formally, it is defined as

ECE = Econfidence

[
|p(correct|confidence)− confidence|

]
. (1)

Table 1 and Figure 2 show that MetaPerturb produces better-calibrated confidence scores than the
baselines on most of the datasets. We conjecture that it is because the parameter of the perturbation
function has been meta-learned to lower the negative log-likelihood (NLL) of the test set, similarly
to temperature scaling [6] or other popular calibration methods. In other words, we argue that the
learning objective of meta-learning is inherently good for calibration by learning to lower the test
NLL.

B Visualizations of Perturbation Function

In this section, we visualize the feature maps before and after passing the perturbation function
from various datasets. We use ResNet20 network for visualization. We visualize the feature maps
from the top to bottom layers in order to see the different levels of layers. Although it is not very
straightforward to interpret the results, we can roughly observe that the activation strengths are
suppressed by the scale s, and see how the stochastic noise z transforms the original feature maps.
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Dogs Layer 1, s: 0.6463 Layer 3, s: 0.7324 Layer 9, s: 0.4963 Layer 8, s: 0.8078

Cars Layer 3, s: 0.6693 Layer 2, s: 0.7129 Layer 7, s: 0.5854 Layer 7, s: 0.8546

Aircraft Layer 3, s: 0.6601 Layer 1, s: 0.7942 Layer 9, s: 0.5110 Layer 8, s: 0.8824

CUB
(a)

Layer 1, s: 0.6579
(b)

Layer 2, s: 0.7408
(c)

Layer 9, s: 0.3544
(d)

Layer 9, s: 0.8358
(e)

Figure 3: (a) Original image (b-e) Left: feature map before passing the perturbation Center: generated noise
Right: feature map after passing the perturbation.

C Experimental Setup

C.1 Meta-training Dataset

Tiny ImageNet This dataset [1] is a subset of ImageNet [16] dataset, consisting of 64× 64 size
images from 200 classes. There are 500, 50, and 50 images for training, validation, and test dataset,
respectively. We use the training dataset for the source training, by resizing images to 32× 32 size
and dividing dataset into 10 class-wise splits to produce heterogeneous task samples.

C.2 Meta-testing Datasets

STL10 This dataset [4] consists of 10 classes of general objects such as airplane, bird, and car,
which is similar to CIFAR-10 dataset but has higher resolution of 96× 96. There are 500 and 800
examples per class for training and test set, respectively. We resized the images to 32× 32 size.

small CIFAR-100 This dataset [11] consists of 100 classes of general objects such as beaver,
aquarium fish, and cloud. The image size is 32× 32 and there are 500 and 100 examples for training
and test set, respectively. In order to demonstrate that our model performs well on small dataset, we
randomly sample 50 instances per each class from the whole training set and use this smaller set for
meta-testing.

Stanford Dogs This dataset [8] is for fine-grained image categorization and contains 20, 580 images
from 120 breeds of dogs from around the world. It has total 12, 000 and 8, 580 images for training
and testing, respectively. We resized the images to 84× 84 size.

Stanford Cars This dataset [10] is also for fine-grained classification, classifying between the
Makes, Models, Years of various cars, e.g. 2012 Tesla Model S or 2012 BMW M3 coupe. It contains
16, 185 images from 196 classes of cars, where 8, 144 and 8, 041 images are assigned for training
and test set, respectively. We resized the images to 84× 84 size.

Aircraft This dataset [13] consists of 10, 200 images from 102 different aircraft model variants
(most of them are airplane). There are 100 images for each class and we use 6, 667 examples for
training and 3, 333 examples for testing. We resized the images to 84× 84 size.
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CUB This dataset [20] consists of 200 bird classes such as Black Tern, Blue Jay, and Palm Warbler.
It has 5, 994 training images and 5, 794 test images, and we did not use bounding box information
for our experiments. We resized the images to 84× 84 size.

small SVHN (s-SVHN) The original dataset [15] consists of 26, 032 color images from 10 digit
classes. The image size is 32× 32. In our experiments, we randomly sample 500 instances per each
class from the whole training set for training in order to simulate data scarse scenario. There are
73, 257 examples for testing.

C.3 Networks

We use 6 networks (Conv4 [19], Conv6, VGG9 [17], ResNet20 [7], ResNet44, and Wide ResNet
28-2 [21]) in our experiments. For Conv4, Conv6, and VGG9, we add our perturbation function
in every convolution blocks, before activation. For ResNet architectures, we add our perturbation
function in every residual blocks, before last activation.

To simply describe the networks, let Ck denote a sequence of a 3 × 3 convolutional layer with k
channels - batch normalization - ReLU activation, M denote a max pooling with a stride of 2, and FC
denote a fully-connected layer. We provide a implementation of the networks in our code.

Conv4 This network is frequently used in few-shot classification literature. This model can be
described with C64-M-C64-M-C64-M-C64-M-FC.

Conv6 This network is similar to the Conv4 network, except that we increase the depth by adding
two more convolutional layers. This model can be described with C64-M-C64-M-C64-C64-M-C64
-C64-M-FC.

VGG9 This network is a small version of VGG [17] with a single fully-connected layer at the
last. This model can be described with C64-M-C128-M-C256-C256-M-C512-C512-M-C512-C512
-M-FC.

ResNet20 This network is used for CIFAR-10 classification task in [7]. The network consists of
3 residual block layers that consist of multiple residual blocks, where each residual block con-
sists of two 3 × 3 convolution layers. Down-sampling is performed by stride pooling in the
first convolution layer in a residual block layer and is used at the second and the third resid-
ual block layers. Let ResBlk(n,k) denote a residual block layer with n residual blocks of
channel k, and GAP denote a global average pooling. Then, the network can be described with
C16-ResBlk(3,16)-ResBlk(3,32)-ResBlk(3,64)-GAP-FC.

ResNet44 This network is similar to the ResNet20 network, but with more residual blocks in
each residual block layer. The network can be described with C16-ResBlk(7,16)-ResBlk(7,32)
-ResBlk(7,64)-GAP-FC.

Wide ResNet 28-2 This network is a variant of ResNet, which decrease the depth and increase the
width of conventional ResNet architecture. We use Wide ResNet 28-2 which has depth d = 28 and
widening factor k = 2.

C.4 Experimental Details

Meta-training We use an Adam optimizer [9] and train the model for 2K steps. We use a learning
rate of 10−3. We set the mini-batch size to 512. Lastly, for the base regularizations during training,
we use weight decay of 5× 10−4 and simple data augmentations such as random resizing & cropping
and random horizontal flipping. In order to efficiently train multiple tasks, we distribute the tasks to
multiple processing units and each process has its own main-model parameters θ and perturbation
function parameter φ. After one gradient step of the whole model, we share only the perturbation
function parameters across the processes.

Meta-testing We use an Adam optimizer [9] and train the model for 10K steps. We use an initial
learning rate of 10−3 and decay the learning rate by 0.3 at 4K, 7K, and 9K steps. We set the
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mini-batch size to 128. The other configurations are as same as the meta-training stage. After the
meta-training is done, only the perturbation function parameter φ is transferred to the meta-testing
stage. Note that φ is not updated in the meta-testing stage.

Model selection for transfer learning We empirically observed that φwhich maximizes the output
feature map works well in the meta-test step. Based on this observation, we select the snapshot
of the trained MetaPerturb model at the iteration with the largest average feature map value at the
penultimate layer. Moreover, since the performance of our perturbation module may vary across
multiple meta-training runs due to stochasticity in the initialization and training, we select the
best performing model using a validation set, which is comprised of a subset of the CIFAR-100
dataset, with 100 training instances per class. Note that this validation set does not overlap with the
s-CIFAR100 we use in the experimental validation. Although the model selection is not entirely
necessary, this may be helpful in practice since we observed that a MetaPerturb regularizer with good
performance on a specific dataset consistently works well on any datasets.

Code The code is available at https://github.com/JWoong148/metaperturb.
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