A Tree-LSTM Encoding

As mentioned in Sec. 3, a Tree-LSTM [35] model is employed to accomplish the merge process in Composer. Similar to LSTM, Tree-LSTM uses gate mechanisms to control the flow of information from child nodes to parent nodes. Meanwhile, it maintains a hidden state and a cell state analogously. Denoting r_i as the node representation of i-th node at layer l, it consists of the hidden state vector h_i^l and the cell state vector c_i^l. For any parent node, its node representation r_i^l ($l > 1$) can be obtained by merging its left child node representation r_i^{l-1} and right child node representation r_{i+1}^{l-1} as:

$$
\begin{bmatrix}
\sigma \\
\sigma \\
\sigma \\
\text{tanh}
\end{bmatrix}
\begin{bmatrix}
r_i^{l-1} \\
r_{i+1}^{l-1} \\
e \\
g
\end{bmatrix}
=
\begin{bmatrix}
W_{\text{tree}} \\
W_r \\
W_c \\
W_g
\end{bmatrix}
\begin{bmatrix}
h_i^{l-1} \\
h_{i+1}^{l-1} \\
c_i^{l-1} \\
g
\end{bmatrix}
+ b,
$$

where $W_{\text{tree}} \in \mathbb{R}^{D_h \times 2D_h}$ is a learnable matrix, $b_{\text{tree}} \in \mathbb{R}^{D_h}$ is a learnable vector, σ and tanh are activation functions, and \otimes represents the element-wise product. As for leaf nodes, their representations r_i^1 ($l = 1$) can be obtained by applying leaf transformation on the embeddings of their corresponding elements w_i (e.g. sx, after) as:

$$
r_i^1 = \begin{bmatrix}
h_i^1 \\
c_i^1
\end{bmatrix} = W_{\text{leaf}} \text{Emb}(w_i) + b_{\text{leaf}},
$$

where $W_{\text{leaf}} \in \mathbb{R}^{D_h \times D_h}$ is a learnable matrix, $b_{\text{leaf}} \in \mathbb{R}^{D_h}$ is a learnable vector, w_i^1 is the i-th element of w_i, and $\text{Emb}(w_i) \in \mathbb{R}^{D_h}$ represents the word embedding if w_i is a word, otherwise the key vector of the source domain variable w_i.

B Details about Policy

In the following, we will explain the high-level policy π_θ and the low-level policy π_φ in detail. For the sake of clarity, we simplify s^t, G^t and a^t as s, G and a, respectively.

High-level policy Given s, the high-level agent picks G according to the high-level policy $\pi_\theta(G \mid s)$ parameterized by θ. As mentioned in Sec. 3, G is obtained by applying in turn the merge and check process. Denoting the decisions made in the merge and check process at layer l as M_l and C_l, they are governed by parameters θ_M and θ_C, respectively. A high-level action G is indeed a sequence of M and C as $(M_1C_1 \cdots M_LC_L)$, where L represents the highest layer. Therefore, $\pi_\theta(G \mid s)$ is expanded as:

$$
\pi_\theta(G \mid s) = \prod_{l=1}^L \pi_{\theta_M}(M_l \mid s, M_{<l}, C_{<l}) \pi_{\theta_C}(C_l \mid s, M_{<l+1}, C_{<l}),
$$

where π_{θ_M} is implemented by a Tree-LSTM with a learnable query vector q (mentioned in Sec. 3.2). Assuming there are K parent node candidates for layer l, M_l is a one-hot vector drawn from a K-dimensional categorical distribution $\pi_{\theta_M}(M_l \mid s, M_{<l}, C_{<l})$ with the weight (p_1, \cdots, p_K). For the k-th parent node candidate, represented by r_k^{l+1}, its selection probability p_k is computed by normalizing over all merging scores (mentioned in Sec. 3.2) as:

$$
p_k = \frac{\exp \left(\langle q, r_k^{l+1} \rangle \right)}{\sum_{k=1}^K \exp \left(\langle q, r_k^{l+1} \rangle \right)}.
$$

As for $\pi_{\theta_C}(C_l \mid s, M_{<l+1}, C_{<l})$ in the check process, it follows a Bernoulli distribution with expectation $p_c = \sigma(W_c r_k^{l+1} + b_c)$, where $\theta_c = \{W_c, b_c\}$ are learned parameters. p_c is indeed the trigger probability p_c mentioned in Sec. 3.2.
As for data splits, we split each dataset into the train set and the test set for all tasks according to

where

where the policy

Limit
can be further decomposed into a sequence of actions and state transitions:

\[
\pi_\varphi(a = (a_1 \cdots a_M) | G, s) = \prod_{m=1}^{M} \pi_\varphi(a_m | G, s, a_{<m}), \tag{10}
\]

where \(M \) is the number of decoding steps and \(a_m \) represents an action word (e.g. \text{JUMP}), or a
destination variable (e.g. \$Y\) which will be replaced by its corresponding constant \text{DstExp} stored in
Memory. At each decoding step, \(a_m \) is sampled from a categorical distribution, whose sample space
consists of all action words and destination variables with non-empty value slots.

C Chain Rule Derivation

Looking back to Eq.\[2\] the parameters \(\theta \) and \(\varphi \) can be optimized by ascending the following gradient:

\[
\nabla_{\theta, \varphi} J(\theta, \varphi) = \mathbb{E}_{\tau \sim \pi_{\theta, \varphi}} R(\tau) \nabla_{\theta, \varphi} \log \pi_{\theta, \varphi}(\tau),
\]

where the policy \(\pi_{\theta, \varphi}\) can be further decomposed into a sequence of actions and state transitions:

\[
\pi_{\theta, \varphi}(\tau) = p(s^1 G^1 a^1 \cdots s^T G^T a^T) = p(s^1) \prod_{t=1}^{T} \pi_{\theta}(a^t, G^t | s^t) p(s^{t+1} | s^t, G^t, a^t). \tag{12}
\]

Consider that the low-level action \(a^t \) is conditioned on the high-level action \(G^t \), which means that
\(\pi_{\theta, \varphi}(a^t, G^t | s^t) = \pi_{\theta}(G^t | s^t) \pi_{\varphi}(a^t | G^t, s^t) \), and thus \(\pi_{\theta, \varphi}(\tau) \) can be expanded as:

\[
\pi_{\theta, \varphi}(\tau) = p(s^1) \prod_{t=1}^{T} \pi_{\theta}(G^t | s^t) \pi_{\varphi}(a^t | G^t, s^t) p(s^{t+1} | s^t, G^t, a^t). \tag{13}
\]

Since the state at step \(t+1 \) is fully determined by the state and actions at step \(t \), not dependent on the
policy parameters \(\theta \) and \(\varphi \), the gradients of \(p(s^{t+1} | s^t, G^t, a^t) \) and \(p(s^t) \) with respect to \(\theta \) and \(\varphi \) are
0. Therefore, \(\nabla_{\theta, \varphi} J(\theta, \varphi) \) can be expanded as:

\[
\nabla_{\theta, \varphi} J(\theta, \varphi) = \mathbb{E}_{\tau \sim \pi_{\theta, \varphi}} R(\tau) \nabla_{\theta, \varphi} \log \pi_{\theta, \varphi}(\tau),
\]

\[
= \mathbb{E}_{\tau \sim \pi_{\theta, \varphi}} R(\tau) \nabla_{\theta, \varphi} \sum_{t=1}^{T} \left[\log \pi_{\theta}(G^t | s^t) + \log \pi_{\varphi}(a^t | G^t, s^t) \right], \tag{14}
\]

\[
= \mathbb{E}_{\tau \sim \pi_{\theta, \varphi}} R(\tau) \sum_{t=1}^{T} \left[\nabla_{\theta, \varphi} \log \pi_{\theta}(G^t | s^t) + \nabla_{\theta, \varphi} \log \pi_{\varphi}(a^t | G^t, s^t) \right].
\]

D Data Splits

As for data splits, we split each dataset into the train set and the test set for all tasks according to
previous works. More details about train and test sizes can be seen in Tab.\[4\]. More specifically,
except for the task \textit{Limit}, we further randomly take 20% training data as the development set to tune
the hyperparameters, with the rest being the train set.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Simple</th>
<th>Add Jump</th>
<th>Around Right</th>
<th>Length</th>
<th>MCD (1/2/3)</th>
<th>SCAN-ext</th>
<th>MiniSCAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train Size</td>
<td>16728</td>
<td>14670</td>
<td>15225</td>
<td>16990</td>
<td>8365</td>
<td>20506</td>
<td>14</td>
</tr>
<tr>
<td>Test Size</td>
<td>4182</td>
<td>7706</td>
<td>4476</td>
<td>3920</td>
<td>1045</td>
<td>4000</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 4: The dataset splits for all tasks.