
A Algorithm

Algorithm 1 provides pseudo code for RD2 on the Atari environment, which learns sub-Q network
with jointly learned reward decomposition. Note that RD2 can plug in any Q-learning based methods.
We found that the second variant of Ldiv works better in Atari. At each time step, we first interact
with environments, collect samples in replay buffer (Line 3 to 6). We then train the sub-reward
prediction network to predict the total reward with minimal sufficient supporting sub-state (Line 9).
We also train the auxiliary prediction network to predict sub-reward ri using sub-state ŝj (Line 10) to
compute Ldiv2. After that, we update the mask network mi to encourage diversity between sub-states
(Line 13).

To train our RL agent, we first perform standard Q-learning using TD error (Line 16) with the full
reward. Simultaneously, we use the decomposed sub-rewards to directly train sub-Q network with a
global action (Line 20, 21).

Algorithm 1 RD2: Reward Decomposition with Representation Decomposition

1: Initialize replay buffer D, the parameters of sub-Q network φi, sub-reward prediction net-
work θi(i = 1, 2, ...,K), auxiliary prediction network θij(i 6= j), and mask network
mi(i = 1, 2, ...,K).

2: for time step t do
3: Receive observation st from environment.
4: Select action using ε-greedy policy at ← argmaxa

∑
iQφi(st, a).

5: Take action at, receive reward rt and next state st+1

6: Append (st, at, rt, st+1) to D.
7: if t mod nmini == 0 then
8: Sample training experiences (s, a, r, s′) from D.
9: Update parameters θi to minimize the Lsum in Eq. 4 and Lmini in Eq. 9.

10: Update parameters θij in Eq. 11: minθij (gθi(ŝi, a)− gθij (ŝj , a))2

11: if t mod ndiv == 0 then
12: Sample training experiences (s, a, r, s′) from D.
13: Update parameters mi to minimize Ldiv2 in Eq. 11.
14: if t mod nupdate == 0 then
15: Sample training experiences (s, a, r, s′) from D.
16: Perform standard Q-learning to update agent’s parameters φ to minimize TD error
17: φi ← φi − η1∇φi

(∑
iQφ̄i

(s, a)− (r + γmaxa′
∑
iQφi(s

′, a′))
)2
, ∀i

18: if t mod nsubq == 0 then
19: Sample training experiences (s, a, r, s′) from D.
20: Compute next action a′ = argmaxa′

∑
iQφi

(s′, a′)
21: Update parameters of sub-Q network φi with decomposed reward ri = gθi(ŝi, a)

22: φi ← φi − η2∇φi

(
Qφ̄i

(s, a)− (ri + γQφi(s
′, a′))

)2
, ∀i

B Hyper-parameters

We build our code using the supplied implementation of [Castro et al., 2018]. For all experiments
we use K = 2. However, K could vary depending on the games we choose. Following Castro
et al. [2018], we use η1 = 6.25e − 5. We use a large learning rate (α = 10 × η1) to minimize
Lsum. We sweep the learning rate β, γ, η2 in {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001}×η1 and finally
choose β = 0.0001 × η1, γ = 0.1 × η1, η2 = 0.0001 × η1. In RD2, we update parameters with
nmini = 4, ndiv = 16, nupdate = 4, nsubq = 4. We use Adam [Kingma and Ba, 2014] to optimize
all parameters.

C Ablation Study

To investigate the contribution of each loss term in algorithm 1, we we compare three variants of RD2:
(1) RD2 without Lsum; (2) RD2 without Lmini; (3) RD2 without Ldiv2. As shown in Figure 6, when

12



we drop the Lsum term, RD2 is equivalent to learn with randomly decomposed reward. Therefore,
the performance deteriorates dramatically. When we drop the diversity encouraging term Ldiv2, we
get the trivial reward decomposition, which is not helpful to accelerate the training process. Finally,
we find that the minimal sufficient regularization term Lmini mainly contributes to the later training
process.

Figure 6: Ablation study

D Network Architecture

Figure 7 shows the diagram of RD2 to demonstrate the workflow. ri can then be plugged into any
Q-learning algorithm with multiple sub-Q functions. Note that only one of Ldiv1 or Ldiv2 is required.
In our toy experiment, we use Ldiv1. In Atari, we use Ldiv2.

Figure 7: RD2 work flow.

Figure 8 shows the detailed network architecture. Multiple arrows indicate different network for each
of the K reward channels.

13



84x84x4 21x21x32 11x11x64 11x11x64

11x11x64

11x11x64

relu

relu

relu relu

7744 512

relu

1

Sub-rewards

Feature	map	masks

relu
relu

Figure 8: Network architecture of RD2.

14


