A Algorithm

Algorithm provides pseudo code for RD? on the Atari environment, which learns sub-Q network
with jointly learned reward decomposition. Note that RD? can plug in any Q-learning based methods.
We found that the second variant of £4;,, works better in Atari. At each time step, we first interact
with environments, collect samples in replay buffer (Line [3]to[6). We then train the sub-reward
prediction network to predict the total reward with minimal sufficient supporting sub-state (Line [J).
We also train the auxiliary prediction network to predict sub-reward r; using sub-state 5; (Line@l) to
compute L g;,,2. After that, we update the mask network m; to encourage diversity between sub-states

(Line [T3).
To train our RL agent, we first perform standard Q-learning using TD error (Line with the full
reward. Simultaneously, we use the decomposed sub-rewards to directly train sub-Q network with a

global action (Line 20} 21).

Algorithm 1 RD?: Reward Decomposition with Representation Decomposition

1: Initialize replay buffer D, the parameters of sub-Q network ¢;, sub-reward prediction net-
work 6;(1 = 1,2,..,K), auxiliary prediction network 6,;(i # j), and mask network
m;(i=1,2,...,K).

2: for time step t do
3: Receive observation s; from environment.
4: Select action using e-greedy policy a; <— argmax, >, Q4, (s¢, a).
5: Take action a,, receive reward 7, and next state ;11
6: Append (St, g, Tt, St+1) to D.
7: if t mod n,,,5,,; == O then
8: Sample training experiences (s, a, 7, s’) from D.
9: Update parameters 6; to minimize the Ly, in Eq.[|and L, in Eq.[9}
10: Update parameters 6;; in Eq.|L1f ming, (gg, (3:,a) — ga,, (35, a))?
11: if t mod ng4;, == 0 then
12: Sample training experiences (s, a, r, s") from D.
13: Update parameters m,; to minimize Lg;,2 in Eq. [IT]
14: if ¢ mod 1y pdqate == 0 then
15: Sample training experiences (s, a, r, s’) from D.
16: Perform standard Q-learning to update agent’s parameters ¢ to minimize TD error
2 .
17: @i+ ¢; — MV, (ZZ Qp,(5,a) — (r +ymaxy Y ; Q, (', a’))) , Vi
18: if ¢ mod nyp == 0 then
19: Sample training experiences (s, a, r, s’) from D.
20: Compute next action a’ = argmax,, y . Q4,(s',a’)
21: Update parameters of sub-Q network ¢; with decomposed reward r; = gy, (5;, a)
2 .
22: $i 4 ¢ — 12V, (Qg,(5,a) — (ri +7Qg,(s',a)))", Vi

B Hyper-parameters

We build our code using the supplied implementation of [Castro et al.| 2018]]. For all experiments
we use K = 2. However, K could vary depending on the games we choose. Following (Castro
et al.| [2018]], we use 1; = 6.25e — 5. We use a large learning rate (o« = 10 X 7;) to minimize
L sum. We sweep the learning rate 3, -y, 72 in {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001} xn; and finally
choose B = 0.0001 x 11, ¥ = 0.1 x 0y, n2 = 0.0001 x 1;. In RD?, we update parameters with
Nomini = 4, Naiv = 16, Nypdate = 4, Nsupqg = 4. We use Adam [Kingma and Ba, [2014]] to optimize
all parameters.

C Ablation Study

To investigate the contribution of each loss term in algorithm we we compare three variants of RD?:
(1) RD? without Ly,; (2) RD? without £,,;,,i; (3) RD? without Lg;,2. As shown in Figure[6] when

12

we drop the Ly, term, RD? is equivalent to learn with randomly decomposed reward. Therefore,
the performance deteriorates dramatically. When we drop the diversity encouraging term L g;,2, We
get the trivial reward decomposition, which is not helpful to accelerate the training process. Finally,
we find that the minimal sufficient regularization term £,,;,; mainly contributes to the later training
process.

UpNDown
—— DRDRL
400007 ___ panBow
—— RD?
— 2
30000 4 RD* w/o Lsym
—— RD? w/o Ly,

—— RD? w/o L

Average Score
N
o
(=]
o
o

10000 4

0 5 10 15 20 25 30 35 40
Frames (Millions)

Figure 6: Ablation study

D Network Architecture

FigureIZl shows the diagram of RD? to demonstrate the workflow. r; can then be plugged into any
Q-learning algorithm with multiple sub-Q functions. Note that only one of L 4;,1 or Lg4;,2 is required.
In our toy experiment, we use Lg;,1. In Atari, we use Lg;y2.

Shared
features

State s

Feature Feature Lomini
map f(s) masks Laiv1
m;(s)
®
[|
Sub-state Sub-state Sub-state Lo

<. s 5 div2

1 2 k

n T2 Tk

\ J
I

Figure 7: RD? work flow.

Figure 8 shows the detailed network architecture. Multiple arrows indicate different network for each
of the K reward channels.

13

Feature map masks

relu

’ relu relu

11x11x64

- (F
rel u / —p

84x84x4 21x21x32 11x11x64 11x11x64 11x11x64

Sub-rewards
reI u

7744 512 1

Figure 8: Network architecture of RD?.

14

