A Algorithm

Algorithm 1 provides pseudo code for RD² on the Atari environment, which learns sub-Q network with jointly learned reward decomposition. Note that RD² can plug in any Q-learning based methods. We found that the second variant of \mathcal{L}_{div} works better in Atari. At each time step, we first interact with environments, collect samples in replay buffer (Line 3 to 6). We then train the sub-reward prediction network to predict the total reward with minimal sufficient supporting sub-state (Line 9). We also train the auxiliary prediction network to predict sub-reward r_i using sub-state \hat{s}_j (Line 10) to compute \mathcal{L}_{div2} . After that, we update the mask network m_i to encourage diversity between sub-states (Line 13).

To train our RL agent, we first perform standard Q-learning using TD error (Line 16) with the full reward. Simultaneously, we use the decomposed sub-rewards to directly train sub-Q network with a global action (Line 20, 21).

Algorithm 1 RD²: Reward Decomposition with Representation Decomposition

1:	Initialize replay buffer \mathcal{D} , the parameters of sub-Q network ϕ_i , sub-reward prediction net-
	work $\theta_i (i = 1, 2,, K)$, auxiliary prediction network $\theta_{ij} (i \neq j)$, and mask network
	$m_i(i=1,2,,K).$
2:	for time step t do
3:	Receive observation s_t from environment.
4:	Select action using ϵ -greedy policy $a_t \leftarrow \operatorname{argmax}_a \sum_i Q_{\phi_i}(s_t, a)$.
5:	Take action a_t , receive reward r_t and next state s_{t+1}
6:	Append (s_t, a_t, r_t, s_{t+1}) to \mathcal{D} .
7:	if $t \mod n_{mini} == 0$ then
8:	Sample training experiences (s, a, r, s') from \mathcal{D} .
9:	Update parameters θ_i to minimize the \mathcal{L}_{sum} in Eq. 4 and \mathcal{L}_{mini} in Eq. 9.
10:	Update parameters θ_{ij} in Eq. 11: $\min_{\theta_{ij}} (g_{\theta_i}(\hat{s}_i, a) - g_{\theta_{ij}}(\hat{s}_j, a))^2$
11:	if $t \mod n_{div} == 0$ then
12:	Sample training experiences (s, a, r, s') from \mathcal{D} .
13:	Update parameters m_i to minimize \mathcal{L}_{div2} in Eq. 11.
14:	if $t \mod n_{update} == 0$ then
15:	Sample training experiences (s, a, r, s') from \mathcal{D} .
16:	Perform standard Q-learning to update agent's parameters ϕ to minimize TD error
17:	$\phi_i \leftarrow \phi_i - \eta_1 \nabla_{\phi_i} \left(\sum_i Q_{\bar{\phi}_i}(s, a) - \left(r + \gamma \max_{a'} \sum_i Q_{\phi_i}(s', a') \right) \right)^2, \ \forall i$
18:	if $t \mod n_{subg} == 0$ then
19:	Sample training experiences (s, a, r, s') from \mathcal{D} .
20:	Compute next action $a' = \operatorname{argmax}_{a'} \sum_{i} Q_{\phi_i}(s', a')$
21:	Update parameters of sub-Q network $\overline{\phi_i}$ with decomposed reward $r_i = g_{\theta_i}(\hat{s}_i, a)$
22:	$\phi_i \leftarrow \phi_i - \eta_2 \nabla_{\phi_i} \left(Q_{\bar{\phi}_i}(s, a) - (r_i + \gamma Q_{\phi_i}(s', a')) \right)^2, \ \forall i$

B Hyper-parameters

We build our code using the supplied implementation of [Castro et al., 2018]. For all experiments we use K = 2. However, K could vary depending on the games we choose. Following Castro et al. [2018], we use $\eta_1 = 6.25e - 5$. We use a large learning rate ($\alpha = 10 \times \eta_1$) to minimize \mathcal{L}_{sum} . We sweep the learning rate β , γ , η_2 in {1.0, 0.1, 0.01, 0.001, 0.0001} $\times \eta_1$ and finally choose $\beta = 0.0001 \times \eta_1$, $\gamma = 0.1 \times \eta_1$, $\eta_2 = 0.0001 \times \eta_1$. In RD², we update parameters with $n_{mini} = 4$, $n_{div} = 16$, $n_{update} = 4$, $n_{subq} = 4$. We use Adam [Kingma and Ba, 2014] to optimize all parameters.

C Ablation Study

To investigate the contribution of each loss term in algorithm 1, we we compare three variants of RD²: (1) RD² without \mathcal{L}_{sum} ; (2) RD² without \mathcal{L}_{mini} ; (3) RD² without \mathcal{L}_{div2} . As shown in Figure 6, when

we drop the \mathcal{L}_{sum} term, RD² is equivalent to learn with randomly decomposed reward. Therefore, the performance deteriorates dramatically. When we drop the diversity encouraging term \mathcal{L}_{div2} , we get the trivial reward decomposition, which is not helpful to accelerate the training process. Finally, we find that the minimal sufficient regularization term \mathcal{L}_{mini} mainly contributes to the later training process.

Figure 6: Ablation study

D Network Architecture

Figure 7 shows the diagram of RD² to demonstrate the workflow. r_i can then be plugged into any Q-learning algorithm with multiple sub-Q functions. Note that only one of \mathcal{L}_{div1} or \mathcal{L}_{div2} is required. In our toy experiment, we use \mathcal{L}_{div1} . In Atari, we use \mathcal{L}_{div2} .

Figure 7: RD^2 work flow.

Figure 8 shows the detailed network architecture. Multiple arrows indicate different network for each of the K reward channels.

