We thank all reviewers for valuable comments. We commit to improving clarity of definitions/approximations/algorithm details and add more discussions on related works in the camera-ready version.

Usage of entropy: Entropy is used to measure sufficiency, compactness and uniqueness. Sufficiency is measured by \(H(r_i|s_i,a) \) in def.1, where the sufficient sub-state set \(M_i \) represents all sub-states \(\hat{s}_i \) that are as informative as the whole state \(s \) in terms of inferring \(r_i \). Compactness is measured by \(H(s_i) \) in def.1&2, where \(C \) represents all sets of sub-rewards (and corresponding sub-states) that is non-trivial. Uniqueness/diversity) is measured by \(H(s_i|s_j) \), and \(H(r_i|s_j,a) \) as an alternative. One may argue that, it is easier to use feature number to capture compactness and uniqueness, for example using \(|s_i - s_j| \) to capture diversity/uniqueness. This is a good and simple formulation under factored MDP in Section 3 when all features are independent. However, for features learnt by networks, independence is not guaranteed and even when \(m_i \) and \(m_j \) does not overlap, the mutual information between \(s_i \) and \(s_j \) could still be high. The usage of entropy \((H(s_i|s_j) \) and \(H(r_i|s_j,a) \)) allows us to discourage such case while \(|s_i - s_i \cap s_j| \) cannot.

Explanation of \(L_{div1} \): \(L_{div1} \) computes the sum of \(H(\hat{s}_i|\hat{s}_j) \), which can be interpreted as randomness of sub-state \(\hat{s}_i \) given sub-state \(\hat{s}_j \). To further explain the intuition behind, consider a factored MDP where a factor is either chosen or not chosen for each sub-states. Note that a factor \(x_k \) will only contribute to \(H(\hat{s}_i|\hat{s}_j) \) if \(x_k \) is chosen by \(\hat{s}_i \) and not chosen by \(\hat{s}_j \), i.e. \(m_{i,k} = 1 \) and \(m_{j,k} = 0 \). A simple way to extend this boolean expression is to use ReLU \((m_{i,k} - m_{j,k}) \). We admit that the approximation \(L_{div1} \) for \(H(s_i|s_j) \) does not deal with the correlated case of \(s_i \) and \(s_j \) as well as \(L_{div2} \), which may explain the good performance of \(L_{div2} \) over \(L_{div1} \) in Atari Games where the feature could be correlated rather than independent as in well-defined factored MDP (e.g. our toy case).

Explanation of \(L_{div2} \): The usage of variance to approximate entropy was discussed in L203. Note the definition of variance \(\text{Var}(r_i|s_j,a) = \mathbb{E}[(r_i - \mathbb{E}[r_i|s_j,a])^2] \). To obtain an estimation for \(\mathbb{E}[r_i|s_j,a] \), we use a network \(\hat{r}_i = g_{\theta}(\hat{s}_j,a) \) and minimize \(\text{MSE}(r_i,\hat{r}_i) \) over parameter \(\theta_i \). Then we can use \(\hat{r}_i \) as an estimation for \(\mathbb{E}[r_i|s_j,a] \) and \(\text{MSE}(r_i,\hat{r}_i) \) as a surrogate for \(\text{Var}(r_i|s_j,a) \) and maximize \(\text{MSE}(r_i,\hat{r}_i) \) over \(\hat{s}_j \) to increase variance/entropy. We apologize for the ambiguity and will refine it in the camera-ready version.

Downstream sub-Q learning: The detailed version of RD^2 algorithm can be found in Appendix A. In brief, sub-Q functions are trained with both full reward TD and sub-reward TD. The usage of global action \(a_{t+1} \) instead of local actions (i.e. \(a_{t+1} = \arg\max_{a} Q(s_{t+1},a) \) assures invariant optimal Q-function \(Q^* \).

Ablation study for each loss term: To investigate the contribution of each loss term, we show that ablative performance. Specifically, we compare three variants of RD^2: (1) RD^2 without \(L_{sum} \) in Eq.4; (2) RD^2 without \(L_{mini} \) in Eq.5; (3) RD^2 without \(L_{div2} \) in Eq.7. As shown in Figure[1] when we drop the \(L_{sum} \) term, RD^2 is equivalent to learn with randomly decomposed reward. Therefore, the performance deteriorates dramatically. When we drop the diversity encouraging term \(L_{div2} \), we get the half-half reward decomposition, which is not helpful to accelerate the training process. Finally, we find that the minimal sufficient regularization term \(L_{mini} \) mainly contributes to the later training process.

To Reviewer 1: Q1: Dynamics blind. A1: Decomposing dynamics is also an interesting topic that we would love to look into, however it may require stricter assumptions on the environment. Q2: How were the games for Atari chosen? A2: We follow prior work [Lin et al.’19] and test our algorithm on the Atari games that have multiple sources of reward. We will run our algorithm in more environments and provide the results in Appendix.

To Reviewer 2: Q1: Beyond K=2. A1: We found that in environments with more than two reward sources, using K>2 will achieve better performance. Moving beyond prior info about K, self-tuning K would be an interesting future work.

To Reviewer 3: Q1: About the runtime of estimation of approximating loss. A1: Despite the estimation of approximating loss, our efficient implementation can train at roughly 80% of Rainbow’s speed. Q2: Sensitivity to hyperparameters. A2: We provide the hyperparameter search range in appendix B. In practice, we found that our algorithm can work well if the value of hyperparameters are in a reasonable range. For example, on one hand, since the sub-Q loss and \(L_{mini} \) serve as regularization terms, we set their corresponding learning rate to a relatively small value; on the other hand, we keep the learning rate of \(L_{sum} \) and \(L_{div2} \) in the same scale of original Rainbow. Overall, our algorithm is not sensitive to the hyperparameters.

To Reviewer 4: Q1: The use of the property \(H(cX) = H(X) + \log(|c|) \). A1: We are aware that this does not apply when \(c \) is dependent on \(X \). The cause of this gap is that we let \(m_i \) (i.e. chosen factors) be dependent on \(s \), while in section 3 \(s_i \) is fixed. If we dig deeper, the root of this gap is that features can not be viewed as factors. A factor could be \(x \) coordinate of the agent, but without additional supervision it is impossible for networks to extract such compact information. One way to view features is to see them as index-varying factors. E.g., at timestep \(t \) a feature could be \(\{x_1,x_2,x_3\} \) but at timestep \(t+1 \) it could be \(\{x_3,x_1,x_2\} \). Then we can let \(m_i \) be fixed and introduce a permutation matrix \(P(s) \) that is dependent on \(s \) and let sub-state \(s_i = m_iP(s) \cap f(s) \). It is easy to show that \(H(m_iP(X) \cap X) = H(X) + \log(|c|) \).

However, we did not implement the permutation form in our paper, mainly due to that there are still flaws in the index-varying factor perspective of features and that current RD^2 has already achieved significant performance.