
Supplementary material for “RELATE: Physically plausible
Multi-Object Scene Synthesis Using Structured Latent Spaces”

In this supplementary material we provide further details about RELATE. This manuscript is organised
as follow. We first give additional object decomposition score in section A1. Further discussions
about the method are presented in section A2. We describe the losses we use in more details in
section A3. We follow with a more in-depth description of implementation details in section A4.
Section A5 is dedicated to explain in more details how the various baselines were trained. Section A6
contains a more thorough explanation of every dataset and data collection when applicable. Finally
we provide more qualitative results in section A7.

A1 Additional experiments

Table A1: Disentanglement score. For each dataset of table 2 we report respectively the distance and correlation
score described in section A1. Our model outperforms BlockGAN2D in the most complex scenario: ShapeStacks
and BALLSINBOWL. Both model reach similar scores for the other scenes.

CLEVR-5 CLEVR-5vbg CLEVR ShapeStacks REALTRAFFIC BALLSINBOWL
General General General Ordered General General

BlockGAN2D 19.0 18.0 18.0 272.0 22.0 98.0
Ours 17.0 17.0 19.0 17.0 23.0 26.0

To provide more quantitative insights of the disentanglement capabilities of our model we ran
additional experiments. While measures such as MIG [26] can be used, computing this score is
not applicable in our case since our model does not feature an inference component to compute the
posterior q(z|x). As an alternative, we toggle each object individually (out of 5 objects generated),
looking at how the generated image changes. We then report the distance between the pixel location
corresponding to the maximum image change and the location (scaled θi) of the object that was
toggled. In table A1 we report the median distance between θi and the pixel location corresponding to
the maximum image change. We note that in general that our model outperforms BlockGAN2D, most
notably for ShapeStacks where BlockGAN isn’t disentangling different objects at all. In addition we
note that for the model trained on ShapeStacks, the discriminator can predict bottom object position
with 11.3 mean pixel errors on the test set.

A2 Further Discussions

As noted in the conclusion, this paper only tackles 2D representations. However our model is generic
enough to be exported to 3D and could be for instance plugged directly into BlockGAN[29]. This
would result in longer training time. Besides one would need to adapt the architecture so as to generate
image with similar size as this paper (our generated images are twice as large as BlockGAN[29]
ones). Finally while this work is limited to object represented by centroid positions, another possible
extension could be to combine it with [1] in order to also provide segmentation maps for each objects.

A3 Losses

Our final loss is the sum of three losses mentioned in the main text:
Ltot = LGAN(Î , I) + Lstyle(Î , I) + min

G,Γ,P
‖θ̌k − P (G(W (z0, zk, θk)))‖22,

where LGAN(Î , I) is the standard GAN loss:

LGAN(Î , I) = min
G,Γ

max
D

E[log(1−D(G(W (Z,Θ)))] + E[log(D(I))]

The style loss follows the implementation of BlockGAN [29]. The input of the style discriminator Dl

are mean µl and variance σ2
l across spatial dimensions of Φl(x) ∈ RWl×Hl×Cl , the output of the lth

layer of D taken before the normalization step:

µl(Φl(x)) =
1

Wl ×Hl

∑
i

∑
j

Φl(x)i,j ,

1



Table A2: Hyper-parameters for each datasets. Epoch nums are the number of epochs we trained for.
Dataset Learning rate Epoch nums M Kmin −Kmax H′ Nb Nf H′′/H sampling range

BALLSINBOWL 0.001 60 1 2-2 8 3 1 [−0.8, 0.8]2

CLEVR5 0.0001 40 2 2-5 4 1 90 [−0.6, 0.6]2

CLEVR5-vbg 0.0001 30 2 2-5 4 1 90 [−0.6, 0.6]2

CLEVR 0.0001 40 2 3-6 4 1 90 [−0.6, 0.6]2

ShapeStacks 0.001 30 2 2-5 4 12 64 [−0.6, 0.6]× [0, 0.6]

REALTRAFFIC 0.0001 20 2 1-5 6 1 20 [−0.6, 0.6]2

σ2
l (Φl(x)) =

1

Wl ×Hl

∑
i

∑
j

(Φl(x)i,j − µl(Φl(x)))2.

The style discriminator Dl for each layer is then implemented as a linear layer followed by a sigmoid
activation function. The resulting style loss is:

Lstyle(Î , I) = max
D

∑
l

E[log(1−Dl(Î))] + E[log(Dl(I))]

A4 Implementation details

Infrastructure and framework For all experiments we use PyTorch 1.4. We train all models on a
single NVIDIA Tesla V100 GPU.

Training hyperparameters We initialize all weights (including instance normalization ones) by
drawing from a random normal distribution N (0, 0.02). All biases were initialized to 0. For each
update of the discriminator we update the generator M number of times. We use Adam parameters
(β1, β2) = (0., 0.999) for all datasets except BALLSINBOWL where β1 = 0.5. Similarly W was a
max-pooling operator in all datasets except BALLSINBOWL where we used a sum pooling operator.
As in BlockGAN[29], background and foreground decoders each start from a learned constant tensors
Tb and Tf respectively with sizes H ×H × 256 and H ′ ×H ′ × 512. For BALLSINBOWL we use a
tensor Tf for each object and use a constant style vector of one.

In the case of dynamic scenarios we reuse same hyperparameters as in the static case except that we
use a learning rate of 0.0001 and β1 = 0.

Full details of the parameters for each dataset can be found in table A2

Evaluation details For FID scores computation we draw 10 000 samples from our model which
we compare against the same number of images drawn from the test set. To compute FVD score
on each dataset, we sample 500 videos of 30 frames from our model and compare them against the
videos of the respective test sets (500 for BALLSINBOWL and 275 videos for REALTRAFFIC). This
also applies to the time shuffled baseline.

To be able to compare with other methods we resize our generated images to 96× 96 on CLEVR5
and CLEVR5-vbg and 64× 64 for ShapeStacks. For the simple generative baselines, DRAGAN and
DCGAN we evaluate FID score on the generated 64× 64 images from these models. We evaluate on
the generated 128× 128 images otherwise.

We empirically found that background was rendered with better quality for lower values of z0. Hence
at test time we sampled z0 from U([−0.5, 0.5]Nb) for optimal results.

A4.1 Architecture details

Generator. In this work we maintain the core of our architecture fixed as much as possible. Since
the dimension of the sample zi does not necessarily match the channel dimension where it is injected
before applying Adaptive Instance Normalisation (AdaIN) to a layer l we map zi to a vector ẑi
transformed such that

ẑi = max(WT
l zi + bl, 0)

Where (Wl, bl) are learnable parameters. AdaIN is applied at the end of the layers (after the activation).
All LeakyReLU layers are using a parameter of 0.2.

2



Table A3: Network architecture for the foreground object generator Ψf .
Layer name Layer Type Input size Output size Kernel Size Stride Activation Norm.

Style_f Id H′ ×H′ × 512 H′ ×H′ × 512 - - Id AdaIn

Convtf_1 ConvTranspose H′ ×H′ × 512 H′ ×H′ × 512 3× 3 1 LeakyReLU AdaIn

Convtf_2 ConvTranspose H′ ×H′ × 512 H′ ×H′ × 256 3× 3 1 LeakyReLU AdaIn

Pad Padding H′ ×H′ × 512 H ×H × 256 - - - -

Table A4: Network architecture for the background object generator Ψb.
Layer name Layer Type Input size Output size Kernel Size Stride Activation Norm.

Style_b Id H ×H × 256 H ×H × 512 - - Id AdaIn

Convtb_1 ConvTranspose H ×H × 512 H ×H × 512 3× 3 1 LeakyReLU AdaIn

Convtb_2 ConvTranspose H ×H × 512 H ×H × 256 3× 3 1 LeakyReLU AdaIn

Table A9: Network architecture for module f0.

Layer
name

Layer
Type

Input size Output
size

Activation

FCf0_1 Linear Nf +Nb+2 128 LeakyReLU

FCf0_2 Linear 128 64 LeakyReLU

FCf0_3 Linear 64 2 Tanh

Table A10: Network architecture for module f1.

Layer
name

Layer Type Input size Output
size

Activation

FCf1_1 Linear Nf +Nb 128 LeakyReLU

FCf1_2 Linear 128 64 LeakyReLU

FCf1_3 Linear 64 2 None

Posout Sigmoid(x) 2 2 None
Tanh(y)

Discriminator We describe the architecture of the discriminator network in more details in ta-
ble A11. We use spectral normalization [27] at almost every layer. Positions are directly regressed
from the last feature output of the discriminator (see last line Pend). Therefore in practice P and D
share the same backbone Db (see table table A11 until flatten) for every image I:

P (I) = Pend(Db(I)), D(I) = Disc(Db(I)).

Input for style discriminator are taken after the convolution of (Convd_2, Convd_3, Convd_4,
Convd_5) in table A11 before the normalization. Spectral Normalization was not applied to any Dl.

A5 Baselines

DCGAN[30] and DRAGAN[20]. We used an online pytorch implementation3 with default hyper-
parameters. We trained these models to generate 64× 64 images and therefore only evaluated FID
score at the same resolution (see section A4).

OCF. OCF results were copied from original paper of [1].

BlockGAN2D. We use the same hyperparameters and network architecture as RELATE except for
learning rate and M . In all cases we report the best results over models trained with variations of
learning rate in (0.001, 0.0001) and M in (2,3).

GENESIS. We use the official implementation4 of GENESIS for all experiments. For the ShapeS-
tacks dataset, we use the official model snapshot released with the original paper5. For all other
datasets, we train GENESIS for 500,000 iterations with the default learning parameters and select the
last model checkpoint for evaluation. When training GENESIS we use constrained ELBO optimiza-
tion [31] controlled via g_goal in the training script which influences the decomposition capability
of GENESIS. We perform a grid search over g_goal in the range of 0.5635 to 0.5655 and select the
model with the lowest ELBO after 500,000 iterations.

3https://github.com/LynnHo/DCGAN-LSGAN-WGAN-GP-DRAGAN-Pytorch
4https://github.com/applied-ai-lab/genesis
5https://drive.google.com/drive/folders/1uLSV5eV6Iv4BYIyh0R9DUGJT2W6QPDkb?usp=

sharing

3

https://github.com/LynnHo/DCGAN-LSGAN-WGAN-GP-DRAGAN-Pytorch
https://github.com/applied-ai-lab/genesis
https://drive.google.com/drive/folders/1uLSV5eV6Iv4BYIyh0R9DUGJT2W6QPDkb?usp=sharing
https://drive.google.com/drive/folders/1uLSV5eV6Iv4BYIyh0R9DUGJT2W6QPDkb?usp=sharing


Table A5: Network architecture for the generator G. Outputs of all K foreground object generators Ψf and
background generator Ψb are stacked on the first dimension before entering layer W (third row).

Layer name Layer Type Input size Output size Kernel Size Stride Activation

Ψf (see table A3) - H′ ×H′ × 512 16× 16× 256 - - -

Ψb (see table A4) - H ×H × 512 16× 16× 256 - - -

W Max/Sum Pool (K + 1)× 16× 16× 256 16× 16× 256 - - -

Convtg_1 ConvTranspose 16× 16× 256 32× 32× 128 4× 4 2 LeakyReLU

Convtg_2 ConvTranspose 32× 32× 128 64× 64× 64 4× 4 2 LeakyReLU

Convtg_3 ConvTranspose 64× 64× 64 64× 64× 64 3× 3 1 LeakyReLU

Convtg_4 ConvTranspose 64× 64× 64 128× 128× 64 4× 4 2 LeakyReLU

Convtg_5 ConvTranspose 128× 128× 64 128× 128× 3 3× 3 1 Tanh

Table A6: Network architecture for module f and fv . * indicates modification of fv
Layer name Layer Type Input size Output size Activation

FCf_1 Linear 2× (Nf + 2 + 2∗) 32 LeakyReLU

FCf_2 Linear 32 32 LeakyReLU

FCf_3 Linear 32 32 None

A6 Datasets

BALLSINBOWL. This dataset is a replica of the two balls synthetic dataset of [6]. It consists of
2500 training sequences and 500 test sequences of two balls of different fixed colour rolling in bowls
of various shapes. We count an epoch as 10,000 iterations over the data. In figure A1 we show some
sample data from this dataset.

CLEVR. We used the official CLEVR from [16]. We train on data from train and validation set
and evaluate on the test set. Both ours and BlockGAN2D were trained on the subset containing 3 to 6
objects and evaluated on the entire test set.

CLEVR5/CLEVR5-vbg. We use online code provided by the authors6 to generate CLEVR5 and
CLEVR5-vbg. As done in [1] we generate 100,000 images keep 90,000 for training and 10,000 for
testing.

ShapeStacks We use the official release of the ShapeStacks dataset7. We use the default parti-
tioning provided with the dataset and merge the training and validation splits for a total of 264,384
training images. All FID comparisons are made against 10,000 images randomly sampled from the
test set which contains 46,560 images in total. Since the original resolution of the images is 224×224
pixels, we re-scale them to 128× 128 before feeding them to our network.

REALTRAFFIC. We recorded 5 hours from Youtube8 of a live traffic camera at a crossing. The
video was then unrolled at 10 fps and manually processed to keep only sequences with a number of
cars in [1,5]. We kept 560 videos for the training set and 123 in test (80/20 ratio). This dataset will be
publicly released.

A7 Qualitative results

We provide additional qualitative generation results. Figure A2 shows a failure case of BlockGAN2D
mentionned in the paper. In fact, when the scene is more structured BlockGAN2D fails to be object
centric and let the background render the entire scene. In addition figures A3, A5, A6, A7 and A8
provide more samples on every dataset for all the models we trained. In particular we can see
that when inter-objects relations are weak in CLEVR5 or CLEVR5-vbg, BlockGAN2D performs
qualitatively similar to ours (see figures A5 and A6). However when the scene is more crowded and

6https://github.com/TitasAnciukevicius/clevr-dataset-gen.
7https://shapestacks.robots.ox.ac.uk/#data
8https://www.youtube.com/watch?v=5_XSYlAfJZM

4

https://github.com/TitasAnciukevicius/clevr-dataset-gen.
https://shapestacks.robots.ox.ac.uk/#data
https://www.youtube.com/watch?v=5_XSYlAfJZM


Table A7: Network architecture for module g and gv . * indicates modification of gv
Layer name Layer Type Input size Output size Activation

FCg_1 Linear 32 +Nf + 2 + 2∗ +Nb 32 LeakyReLU

FCg_2 Linear 32 32 LeakyReLU

FCg_3 Linear 32 2 Tanh

Table A8: Network architecture for module ev .
Layer name Layer Type Input size Output size Activation

FCev_1 Linear Nf + 2 +Nb 128 LeakyReLU

FCev_2 Linear 128 128 LeakyReLU

FCev_3 Linear 128 3× 2 Tanh

the objects have higher correlation BlockGAN2D quality decreseases significantly (see figures A3,
A7 and A8).

5



Table A11: Network architecture for the discriminators. Note that the Instance Normalization weights were
also subjected to spectral normalization. P and D shares weights until Flatten layer.

Layer name Layer Type Input size Output size Kernel Size Stride Activation Norm.

Convd_1 Conv 128× 128× 3 64× 64× 64 5× 5 2 LeakyReLU -

Convd_2 Conv 64× 64× 64 32× 32× 128 5× 5 2 LeakyReLU IN/Spec. Norm.

Convd_3 Conv 32× 32× 128 16× 16× 256 5× 5 2 LeakyReLU IN/Spec. Norm.

Convd_4 Conv 16× 16× 256 8× 8× 512 5× 5 2 LeakyReLU IN/Spec. Norm.

Convd_5 Conv 8× 8× 512 4× 4× 1024 5× 5 2 LeakyReLU IN/Spec. Norm.

Flatten Id 4× 4× 1024 1× 1× 16384 - - - -

Disc Linear 1× 1× 16384 1 - - Sigmoid None/Spec. Norm.

Pend Linear 1× 1× 16384 2 - - Tanh None/Spec. Norm.

Figure A1: Sample data from BALLSINBOWL. The dataset consists of two balls of different colors rolling in
elliptical bowls of various shapes.

Figure A2: BlockGAN2D scene decomposition on ShapeStacks. We display in order (generated, background,
object_1, ..., object_5) for BlockGAN2D model. We see that in this case BlockGAN doesn’t capture objectness
at all and render everything in the background. This shows how, for structured scenes, prior work fails to capture
correlations between objects.

6



Figure A3: Generated scenes for models trained on BALLSINBOWL. Qualitatively RELATE generates
images of higher quality compared to BlockGAN2D[29].

7



Figure A4: Generated scenes for models trained on ShapeStacks. Despite qualitative similar rendering,
BlockGAN2D isn’t rendering a scene component-wise as opposed to ours (see figure A2).

8



Figure A5: Generated scenes for models trained on CLEVR5. For less crowded scenes our model and
BlockGAN2D reach similar performances.

9



Figure A6: Generated scenes for models trained on CLEVR5-vbg. This scenario reaches similar conclusion
as figure A5.

10



Figure A7: Generated scenes for models trained on CLEVR. When the scene gets more crowded RELATE
gets an advantage as it can push objects apart resulting in higher qualitative rendering.

11



Figure A8: Generated scenes for models trained on REALTRAFFIC. Our model qualitatively renders higher
fidelity images. BlockGAN2D sometimes suffers from background mode collapse (see first, second and fourth
rows of second block).

12


