
A Outline of the Appendix

Here we briefly outline the structure of the Appendix, which contains the proofs of the main The-
orems as well as some simple simulations and experiments validating the theory. Each item below
corresponds to a single section in the Appendix.

1. Preliminaries: we explain some fundamental facts about GGMs and fix the notation we use
throughout the rest of the paper.

2. Structural results for walk-summable models: In this section, we use the connection be-
tween walk-summability, SDD matrices, and electrical circuits to establish a number of
new structural results about walk-summable GGMs that will be useful for learning them.
As mentioned earlier, the fundamental fact we establish in this section which is needed in
all of our algorithms is that a single step of a greedy method (Orthogonal Matching Pur-
suit) can serve as a “weak preconditioner” for sparse linear regression, in terms of `1/`∞
geometry. In particular, we establish the key Lemma 1 stated above.

3. Estimating changes in conditional variance: In this section, we recall the various facts we
will need about ordinary least squares regression and prove a useful quantitative estimate
for estimating changes in conditional variance.

4. Learning all attractive GGMs efficiently: we use further structural results about supermod-
ularity in attractive GGMs and the results developed in the previous two sections to prove
Theorem 1.

5. Information-theoretic optimal learning of attractive GGMs: In this section, we show how
the result of the previous section can be improved as far as sample complexity if we are
willing to sacrifice runtime, by giving a very precise analysis of a natural algorithm using
`0-constrained squares, proving Theorem 2.

6. Hybrid `1-regression guarantees: In this section, in preparation for proving our results
about learning general walk-summable models, we develop the needed statistical guaran-
tees for a variant of the LASSO where a single coordinate in the regression is left unreg-
ularized and also give an analysis of Orthogonal Matching Pursuit in essentially the same
setup.

7. Regression and structure learning in walk-summable models: In this section, we first show
that supermodularity fails in walk-summable models, even if we ask for supermodularity
to only hold approximately. We then proceed to establish Theorem 4 for sparse linear
regression in general walk-summable models and use this result to derive Theorem 3 for
structure recovery in κ-nondegenerate walk-summable models.

8. Simulations and Experiments: In this section, we compare the methods proposed in this
paper to those in a number of previous works on both simulated and real data. The simula-
tions show that all previous methods indeed fail to achieve competitive sample complexity
in simple settings where the precision matrix is not well-conditioned.

9. Some difficult examples: In this short final section, we give some examples which are not
walk-summable and which break both the algorithms proposed previous to this paper and
in this paper as well. We show that these examples are, however, not computationally hard
to learn.

B Preliminaries

In this section we set out some notation and basic facts about GGMs which will be used throughout.

Notations. Given a GGM with precision matrix Θ, d will always denote the maximum degree
of the underlying graph. Thus, Θ has at most d + 1 nonzero entries in each row. For a vector x
and index i, X∼i = ((Xj) : j 6= i). For a square matix S ∈ Rk×k and I ⊆ [k], SI denotes the
I × I principal submatrix of S. We will say a symmetric matrix M is SDD (Symmetric Diagonally
Dominant) if its diagonal is nonnegative and for every row i, Mii ≥

∑
j 6=i |Mij |. We often use the

notation Ê to denote the empirical expectation, i.e. expectation taken over the sample of data given
to the algorithm.
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We recall that conditioning on Xi = xi for any xi yields a new GGM with the precision matrix
having row i and column i deleted. In particular, the conditional precision matrix does not depend
on the value of xi chosen. Similarly, the value of the mean µ does not affect the covariance structure
at all — so µ does not play an interesting role in the structure learning problem and the reader may
safely assume µ = 0. We summarize the facts that we use the most below.

Fact 1 ([51]). Let X be drawn from a mean 0 GGM with precision matrix Θ. Then, for any
i, Xi|X∼i = x∼i is distributed as N(〈w(i), x∼i〉, 1/Θii) where w(i) is the vector with w(i)

j =

−Θij/Θii.

Thus, if we fix an index i, then samples X from the GGM can be interpreted as a linear regression
problem as (X∼i, Xi) where Xi = 〈w(i), Xi〉+N(0, 1/Θii). This establishes the basic connection
between learning GGMs and linear regression: if we can solve the above regression problem well,
perhaps we can recover the non-zero entries of Θ from the coefficients. But as is well known in
the literature, just fitting the coefficients using ordinary least squares is not sufficient (or necessarily
possible) as we have very few samples.

By positive definiteness, we have Θi,i ≥ 0 and Θi,iΘj,j−Θ2
i,j ≥ 0, or equivalently 0 ≤ |Θi,j |√

Θi,iΘj,j

≤
1. To identify the graph we need the present edges to not be too weak. So it makes sense to assume
(following the notation of [16, 14]) there is a κ > 0 such that

κ ≤ |Θi,j |√
Θi,iΘj,j

≤ 1 (1)

Definition 1 ([16, 14]). We say a GGM is κ-nondegenerate if it satisfies (1) for all i, j such that
Θij 6= 0.

Conditional Variance. Conditional variances of the form Var(Xi|XS) play a central role in all
our algorithms. We first review the basic definition and some of their properties.

Definition 2 (Conditional Variance). For X an arbitrary real-valued random variable and Y an
arbitrary random variable or collection of random variables on the same probability space, let10

Var(X|Y ) := E[(X − E[X|Y ])2].

By the Pythagorean Theorem, conditional variance obeys the law of total variance [52]:

Var(X) = Var(X|Y ) + Var(E[X|Y ]).

and more generally, Var(X|Y ) = Var(X|Y,Z) + Var(E[X|Y, Z]|Y ). The last identity is also
sometimes referred to as the law of total conditional variance.

The κ-nondegeneracy assumption implies a quantitative lower bound on conditional variances
Var(Xi|XS) when the conditioning set does not include all of i’s neighbors.

Lemma 2. Fix a node i in a κ-nondegenerate GGM, and let S be set of nodes not containing all
neighbors of i. Then

Var(Xi|XS) ≥ 1 + κ2

Θii

Proof. Let j /∈ S be a neighbor of i. By the law of total conditional variance, we have

Var(Xi|XS) = Var(Xi|X∼i) + Var(E[Xi|X∼i]|XS) =
1

Θii
+ Var(E[Xi|X∼i]|XS),

where in the last equality we used Fact 1. Thus, as E[f2] ≥ Var(f), and the definition of κ-
nondegeneracy

Var(Xi|XS)− 1

Θii
= Var(E[Xi|X∼i]|XS) = E[(E[Xi|X∼i]− E[Xi|XS ])2]

10In an alternate convention which we do not use, Var(X|Y ) is defined to be the random variable E[(X −
E[X|Y ])2|Y ] and our definition is the same as EVar(X|Y ).
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≥ Var(E[Xi|X∼i]− E[Xi|XS ]|X∼j) =
Θ2
ij

Θ2
iiΘjj

≥ κ2

Θii

where the last equality follows from Fact 1 and the last inequality is by the definition of κ. The
Lemma follows by rearranging.

The following basic fact about Gaussians will be useful:

Lemma 3. IfX and Y are jointly Gaussian random variables then E[X|Y ] = E[X]+Cov(X,Y )
Var(Y ) (Y−

E[Y ]) and Var(X)−Var(X|Y ) = Cov(X,Y )2

Var(Y ) .

Proof. Because the random variables are jointly Gaussian, we know that E[X|Y ] must be an affine
function of Y . From E[E[X|Y ]] = E[X] and Cov(E[X|Y ], Y ) = Cov(X,Y ) the coefficients
are determined, proving the first formula. Then the second formula follows from the law of total
variance, Var(X)−Var(X|Y ) = Var(E[X|Y ]).

We will also use the following concentration inequality often. Recall that a χ2-random variable with
D degrees of freedom is just

∑D
i=1 Z

2
i where Zi ∼ N(0, 1) are independent standard Gaussians.

Lemma 4 (Lemma 1, [53]). Suppose U is χ2-distributed with D degrees of freedom. Then Pr(U −
D ≥ 2

√
D log(1/δ) + 2 log(1/δ)) ≤ δ and Pr(D − U ≥ 2

√
D log(1/δ)) ≤ δ. In particular,

U ≤ 2D with probability at least 1− δ as long as D ≥ 8 log(1/δ).

C Structural results for walk-summable models

C.1 Background: Walk-Summable Models are SDD after rescaling

Definition 3 ([36]). A Gaussian Graphical Model with invertible precision matrix Θ � 0 is walk-
summable if D − A � 0 where Θ = D − A decomposes Θ into diagonal and off-diagonal compo-
nents, and A is the matrix with Aij = |Aij |.

It is well-known (and immediate) that the class of walk-summable matrices includes the class of
SDD matrices. Indeed, the motivation for introducing walk-summable matrices was to generalize
the notion of SDD matrices.
Definition 4. A matrix M is symmetric diagonally dominant (SDD) if it is symmetric and Mii ≥∑
j:j 6=i |Mij | for every i.

Perhaps less well-known, a natural converse holds: all walk-summable matrices are simply rescaled
SDD matrices, where the rescaling is in the natural sense for a bilinear form. Furthermore, this
rescaling is easy to find algorithmically (if we have access to Θ), requiring just a top eigenvector
computation. This result can be found explicitly in [39]; it also appears in [38] and closely related
results for M -matrices appear in [54].
Theorem 5 (Theorem 4.2 of [39]). Suppose Θ is walk-summable. Then there exists a diagonal
matrix D with positive entries such that DΘD is an SDD matrix.

Proof. We include the proof for completeness — it is the same as in [39].

First, we observe that we can reduce to the case diag(Θ) = ~1 by replacing Θ by D1ΘD1 where D1

is the diagonal matrix with (D1)ii = 1/
√

Θii. Next, let Θ = I − A and note that when we write
the decomposition 0 ≺ Θ = I − A that A has all nonnegative entries, so we can apply the Perron-
Frobenius Theorem to find an eigenvector v with positive entries and eigenvalue λ = ‖A‖ < 1.
Now define D2 = diag(v), and we claim that D2ΘD2 is an SDD matrix. It suffices to check that
0 ≤ D2ΘD2

~1 = D2Θv entry-wise, and because D2 is diagonal with nonnegative entries it suffices
to check that Θv ≥ 0. This follows as

Θv = (I −A)v = (1− λ)v ≥ 0

entrywise.
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Example 2. In Example 1 of [36] it was observed that the matrix 1 −r r r
−r 1 r 0
r r 1 r
r 0 r 1


itself stops being SDD when r > 1/3, but remains walk-summable until a little past r =
0.39. When r = 0.39, the corresponding Perron-Frobenius eigenvector for A is roughly
(0.557, 0.435, 0.557, 0.435) and applying the rescaling from Theorem 5 we get 0.310634 −0.0945889 0.121147 0.0945889

−0.0945889 0.189366 0.0945889 0.
0.121147 0.0945889 0.310634 0.0945889
0.0945889 0. 0.0945889 0.189366


which is an SDD matrix.

The SDD rescaling given by Theorem 5 will play a key role in our analysis. Conceptually, converting
a walk-summable matrix to its SDD form is a way to take the extra degrees of freedom in the model
specification (arbitraryness in the scaling of the Xi) and fix them in a way that is useful in the
analysis – i.e. a gauge fixing. In particular, under the SDD rescaling there are meaningful relations
between the different rows of Θ which fail to hold in general.

C.2 Background: SDD systems, Laplacians, and electrical flows

Definition 5. A matrix L is a generalized Laplacian if it is SDD and for every i 6= j, Lij ≤ 0.
We think of this graph theoretically as the Laplacian of the weighted graph with edge weights −Lij
between distinct i and j and self loops of weight Lii −

∑
j 6=i |Lij | at vertex i.

We review the standard reduction between solving SDD systems and Laplacian systems. Suppose
Θ is an SDD matrix. Then we can write Θ = L − P where L is a (generalized) Laplacian having
positive entries on the diagonal and nonnegative entries off the diagonal, and P has negative off-
diagonal entries and corresponds to the positive off-diagonal entries of Θ. Now we observe that[

L P
P L

] [
x
−x

]
=

[
Θx
−Θx

]
(2)

and the left matrix is itself a (generalized) Laplacian matrix on a weighted graph which we will refer
to as the “lifted graph”.

The inverse of a Laplacian has a natural interpretation in terms of electrical flows, where the edge
weights are interpreted as conductances of resistors. In this case the self loops can be thought of as
resistors connected directly to electrial ground. In the next Lemma we summarize the relevant facts
about this interpretation, as can be found in e.g. [55]
Lemma 5. Suppose that L is a (generalized) Laplacian matrix. Then if L+ is the pseudo-inverse of
L, and we define the effective resistance Reff(i, j) := (ei − ej)TL+(ei − ej) then Reff satisfies:

• (Nonnegativity) Reff(i, j) ≥ 0.

• (Monotonicity) Reff(i, j) ≤ 1
|Lij | , and more generally Reff decreases when adding edges to

the original adjacency matrix.

• (Triangle inequality) Reff(i, k) ≤ Reff(i, j) +Reff(j, k) for any i, j, k.

In the generalized Laplacian case, we can think of Var(Xi|XS) as being the effective resistance
from node i to ground when all of the nodes in S are connected by wires (without resistance) to
ground.

C.3 Key structural results for Walk-Summable GGM

First we prove a fundamental fact about κ-nondegeneracy in walk-summable models, mentioned
earlier: the maximum degree d always satisfies d = O(1/κ2) in κ-nondegenerate walk-summable
models. This result is tight for star graphs.
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Lemma 6. In a κ-nondegenerate walk-summable GGM, the maximum degree of any node is at most
1/κ2.

Proof. Rescale the coordinates so that the diagonal of Θ is all-1s, and reorder them so that X1

corresponds to the node of maximum degree d with neighbors 2, . . . , d + 1. Define Θ to be the
sign-flipped version of Θ such that all off-diagonal entries are negative; by the definition of walk-
summability we know Θ is still PSD. Let v = (1, κ, . . . , κ) ∈ Rd+1 and S = {1, . . . , d + 1};
then using that the off-diagonals are negative, κ-nondegeneracy we find that Θd+1,d+1v ≤ (1 −
dκ2, 0, . . . , 0) coordinate-wise, hence using Θ � 0 we find

0 ≤ vTΘd+1,d+1v ≤ vT (1− dκ2, 0, . . . , 0) = 1− dκ2.

Rearranging we see that d ≤ 1/κ2.

In the remainder of this subsection we prove some key structural results about walk-summable/SDD
GGM using the SDD to Laplacian reduction and the electrical interpretation of the inverse Lapla-
cian; these results will be crucial for analyzing the algorithms for both attractive and general walk-
summable GGMs.

The following key Lemma, which shows that the variance between two adjacent random variables
in the SDD GFF cannot differ by too much, will be crucial in the analysis of our algorithm in
non-attractive models. Why is this useful? Informally, this is because for the greedy method to
significantly reduce the variance of node i, at least one neighbor of i needs to provide a good “signal-
to-noise ratio” for estimatingXi, and under the SDD scaling, this inequality shows that the neighbors
do not have too much extra noise (compared to |Θij |which roughly corresponds to the level of signal
between nodes i and j).

Lemma 7. Suppose that Θ is an invertible SDD matrix. Let Σ = Θ−1. If Θij 6= 0, then

Σii ≤ 1/|Θij |+ Σjj .

Proof. Let M be the generalized Laplacian matrix resulting from applying the SDD to Laplacian
reduction from Σ, i.e. M is the left hand-side of (2). Let the standard basis for R2n be denoted
e1, . . . , en, e

′
1, . . . , e

′
n. Observe from (2) that

Σii = eTi Θ−1ei = eTi M
+(ei − e′i) =

1

2
(ei − e′i)TM+(ei − e′i).

Let node label i be the node corresponding to ei in the graph corresponding to M , and label i′ be
that corresponding to e′i. Observe that in the graph corresponding to M , either i is adjacent to j and
i′ is adjacent to j′, or i is adjacent to j′ and i′ is adjacent to j. Let r = Reff(i, j) in the first case
and r = Reff(i, j

′) in the second case. By the triangle inequality (Lemma 5) and monotonicity of
effective resistance (Lemma 5),

2Σii = Reff(i, i
′) ≤ 2r +Reff(j, j

′) ≤ 2/|Θij |+ 2Σjj

which proves the result.

Remark 1. Note that the above Lemma is for Θ under the true SDD scaling. It would not make
sense for general Θ, because the left hand and right hand sides do not behave the same way when
we rescale Xi and Xj .

The following two lemmas show that in a SDD GGM, the variance of a single node can be bounded
as long as we condition on any of its neighbors. In comparison, if we don’t condition on anything
then the variance can be arbitrarily large: consider the Laplacian of any graph plus a small multiple
of the identity.

Lemma 8. Suppose that i is a non-isolated node in an SDD GGM. Then for any neighbor j it holds
that

Var(Xi|Xj) ≤
1

|Θij |
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Proof. This result can be obtained from the previous Lemma 7 by taking an appropriate limit which
sends Σjj → 0. We give an alternate and direct proof below.

Apply the SDD to Laplacian reduction to the precision matrix (with row and column j eliminated)
as in Lemma 7 to get a generalized Laplacian L, and then form the standard Laplacian M by adding
an additional row and column n+ 1 with Mi,n+1 = Lii−

∑n
j=1 Lij and Mn+1,n+1 =

∑n
j=1Mj,n.

Then u = Lv iff there exists z s.t. (u, z) = M(v, 0) where (v, 0) denotes the vector in Rn+1 given
by adding final coordinate 0. Furthermore it must be that

∑
i ui + z = 0 because (u, z) lies in

the span of M . Using the relation between L and M and the triangle inequality and monotonicity
(Lemma 5) through the added node n+ 1 we observe

Var(Xi|Xj) =
1

2
(ei − e′i)TL−1(ei − e′i)

=
1

2
(ei − e′i)TM+(ei − e′i)

≤ 1

2
(ei − en+1)TM+(ei − en+1) +

1

2
(e′i − en+1)TM+(e′i − en+1)

≤ 1

2

1

Mi,n+1
+

1

2

1

Mi′,n+1
≤ 1

|Θij |
.

Lemma 9. Suppose that i is a non-isolated node with d neighbors in an SDD GGM. Then for at
least one neighbor j it holds that

Var(Xi|Xj) ≤
4d

Θii

Proof. We establish the following dichotomy: either Var(Xi) is already small, or if it is large then
there is a j s.t. 1/|Θij | is small so Var(Xi|Xj) is small. Observe by Cauchy-Schwartz that

ΘiiVar(E[Xi|X∼i]) = ΘiiCov(E[Xi|X∼i],E[Xi|X∼i]) =
∑
j

−ΘijCov(E[Xi|X∼i], Xj)

≤
∑
j

|Θij |
√

Var(E[Xi|X∼i])Var(Xj)

so

Θii

√
Var(E[Xi|X∼i]) ≤

∑
j

|Θij |
√

Var(Xj) ≤
∑
j

|Θij |
√

Var(Xi) + 1/|Θij |

≤
√

Var(Xi)
∑
j

|Θij |+
∑
j

√
|Θij |

≤
√

Var(Xi)
∑
j

|Θij |+
√
dΘii

where in the second inequality we used Lemma 7, in the third inequality we used
√
a+ b ≤

√
a +√

b, and in the fourth inequality we used Cauchy-Schwartz and the SDD assumption.

Suppose that Var(E[Xi|X∼i]) > 4d/Θii. Then by subtracting d
√

Θii from both sides we see

1

2
Θii

√
Var(E[Xi|X∼i]) ≤

√
Var(Xi)

∑
j

|Θij | ≤
√

Var(Xi)dmax
j
|Θij |

so using that Var(E[Xi|X∼i]) = Var(Xi)− 1/Θii ≥ Var(Xi)/2 under our assumption, we find

Θii

4d
≤ Θii

2d

√
Var(E[Xi|X∼i])

Var(Xi)
≤ max

j
|Θij |.

Let j be the maximizer, then from Lemma 8 we find Var(Xi|Xj) ≤ 1
|Θij | ≤

4d
Θii

, assuming that
Var(Xi) > 4d/Θii. Otherwise, by the law of total variance we know Var(Xi|Xj) ≤ Var(Xi) ≤
4d/Θii.
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Remark 2 (Electrical intuition for Lemma 9). We explain the electrical intuition behind Lemma 9 in
the case of attractive GGMs. First w.l.o.g. we rescale Θ to be a generalized Laplacian (Theorem 5).
By the electrical interpretation, we think of the edges of the graph are a collection of resistors
connecting the nodes, and we imagine connecting the plus end of a 1-volt battery to node i, so
the effective resistance between the plus and minus end of the battery is the reciprocal of the total
current which flows. Then 1/Θii is the effective resistance when we connect all of the neighbors of
node i directly to the negative end of the battery.

When we do this experiment, we know that a lot of the current is either (1) going directly from node
i to ground or (2) going from node i to one of its neighbors j. In case (1), Var(Xi) is already small.
Otherwise, we are in case (2). In this case, we would expect that if we only grounded node j, then
the resulting effective resistance Var(Xi|Xj) should already be quite small; more precisely, within
a O(d) factor of grounding all of them, and this is exactly what Lemma 9 says.

The following example shows that the assumption that the matrix is SDD (or walk-summable) is
necessary for the previous Lemmas to be true:
Example 3 (Failure of Lemma 8 in Non-SDD GGM). Consider for κ fixed and C large

Θ :=

 1 C −C
C C2/κ2 −C2/κ2 + 1
−C −C2/κ2 + 1 C2/κ2


We can verify that as C →∞ that the variances (i.e. diagonal of Θ−1) remain Θ(1) and the matrix
is positive definite; furthermore this model is κ-nondegenerate. However, even after conditioning
out the first node, the variance of the second (and third) node remains Ω(1)� 1/C.

D Estimating changes in conditional variance

As alluded to before, our algorithms rely on estimating (differences of) conditional variances
Var(Xi|XS). The classical approach for estimating them is to solve a linear regression problem
trying to predict Xi from XS . As we are working in a sample-starved regime and deal with ill-
conditioned matrices, we require very fine grained results about such estimates. We collect such
results in this section.

For the analysis of Algorithm HYBRIDMB we only need the basic facts from Section 4.1; for
the analysis of Algorithm GREEDYANDPRUNE the key additional fact we need is encapsulated as
Lemma 14 in Section 4.3 below; finally, for the analysis of the Algorithm SEARCHANDVALIDATE
we will also directly use the results stated in Section 4.2.

D.1 Background: Fixed Design Linear Regression

In this section we recall the standard model for linear regression with Gaussian noise and the usual
ordinary least squares estimator and some classical facts about it. See Chapter 14 of [18] for a
reference.
Definition 6 (Fixed design regression with Gaussian noise). The (well-specified) fixed design re-
gression model is specified by an unknown parameter w ∈ Rk, known design matrixX : m×k with
m > k and observations

Y = Xw + Ξ

where Ξ ∼ N(0, σ2I). In other words,Y ∼ N(Xw, σ2I).
Definition 7 (Ordinary Least Squares (OLS) Estimator). The OLS estimator forw in the fixed design
regression model is the minimizer of

min
w
‖Y −Xw‖22

explicitly given by
ŵ := (XTX)−1

X
T
Y

assuming thatX has maximal column rank. The corresponding estimator for σ is given by

σ̂2 :=
1

m− k
‖Y −Xŵ‖22.
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Fact 2 ([18]). Under the fixed design regression model with Gaussian noise, ŵ ∼
N(w, σ2(XTX)−1) and (m−k)σ̂2

σ2 ∼ χ2
m−k where χ2

m−k denotes a χ2-distribution with m − k
degrees of freedom. Furthermore, ŵ and σ̂ are independent.

Lemma 10. For any δ ∈ (0, 1),

Pr

(∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ > 2

√
log(2/δ)

m− k
+ 2

log(2/δ)

m− k

)
≤ δ.

Proof. Combine Fact 2 and and the concentration inequality from Lemma 4.

We end with a geometric interpretation of the OLS coordinates which is analogous to Lemma 3. In
statistics this is known as the equivalence of the regression t-test and the 1-variable regression F -test
[18].

Lemma 11.

min
w
‖Y −Xw‖22 − min

w:wi=0
‖Y −Xw‖22 =

ŵ2
i

[(XTX)−1]ii

Proof sketch. Let Xi be the i’th column of X. By the definition of the OLS estimate ŵ and the
Pythagorean theorem, the left hand side is equal to minw:wi=0 ‖Xŵ−Xw‖22. By another application
of the Pythagorean theorem, this equals ‖Xiŵi−ProjVi

Xiŵi‖22 = ŵ2
i ‖Xi−ProjVi

Xi‖22 where Vi
is the subspace spanned by the columns ofX except for i. Finally ‖Xi−ProjVi

Xi‖22 = 1
[(XTX)−1]ii

by applying Schur complement formulas.

D.2 Background: Random Design Linear Regression and Wishart Matrices

Under fixed design, the matrixX was considered to be a deterministic quantity. Random design (see
e.g. [56] for references) corresponds to the case where the rows of X are i.i.d. samples from some
distribution, which fits the usual setup in statistical learning theory.

Definition 8 (Random design linear regression with Gaussian covariates). The random design lin-
ear regression model with Gaussian covariates with m samples is given by a (typically unknown)
covariance matrix Σ : k × k, i.i.d. samples X(1), . . . , X(m) ∼ N(0,Σ) and corresponding obser-
vations

Y (i) = 〈X(i), w〉+ ξ(i), i = 1, . . . ,m (3)

where each ξ(i) ∼ N(0, σ2) is independent noise. (The assumption that ξ(i) is independent is
referred to as the model being well-specified.)

The OLS estimator is defined as before in Definition 7 where the rows of the design matrix X are
the samples X1, . . . , Xm andY = (Y (i))mi=1. From (2) we still have that for fixed X1, . . . , Xm (i.e.
considering only the randomness over ξ1, . . . , ξm)

ŵOLS ∼ N(w, σ2(XTX)−1).

Therefore reasoning about the OLS estimator under random design can be reduced to understanding
the random matrixXTX, which is referred to as a Wishart matrix (with m degrees of freedom). We
recall here a standard concentration inequality for Wishart matrices when Σ = I . (This inequality
generalizes to the sub-Gaussian case and we have specialized it for simplicity.)

Theorem 6 (Theorem 4.6.1, [43]). Suppose thatX(1), . . . , X(m) ∼ N(0, I) are independent Gaus-
sian random vectors in Rk, then∥∥∥∥∥ 1

m

m∑
i=1

X(i)(X(i))T − Id

∥∥∥∥∥ ≤ C1

(√
k

m
+

√
log(2/δ)

m

)
for some absolute constant C1 > 0, with probability at least 1− δ.

This leads to a multiplicative guarantee for general Wishart matrices:
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Lemma 12. Suppose ε ∈ (0, 1/2) and δ > 0. Then for any m such that ε ≤

C1

(√
k
m +

√
log(2/δ)

m

)
and X(1), . . . , X(m) ∼ N(0, I) we have that

(1− ε)Σ � 1

m

∑
i

XiX
T
i � (1 + ε)Σ

with probability at least 1− δ.

Proof. This is equivalent to showing that

(1− ε)I � 1

m

∑
i

Σ−1/2X(i)(Σ−1/2X(i))T � (1 + ε)I

since the PSD ordering is preserved under matrix congruence. The above follows from applying
Theorem 6 to X̄(i) = Σ−1/2X(i).

Definition 9. Given i.i.d. mean-zero random vectors X(1), . . . , X(m) the empirical covariance ma-
trix is

Σ̂ :=
1

m

∑
i

X(i)(X(i))T .

D.3 Estimating changes in conditional variance

We are now ready to state what we need for estimating changes in conditional variance. Recall the
basic setup: Given samples fromX from a GGM at various stages in our algorithm we use estimates
for conditional variances of the form Var(Xi|XS) by regressing Xi against XS . What we really we
need are not actual values of Var(Xi|XS) but to find a variable j /∈ S that gives non-trivial (or
even most) advantage in predicting Xi|XS∪{j}. So we need to quantify the relative advantage of
including an additional variable j on top of S.

We can abstract the above in the regression setting as follows: Given samples for regression (X,Y ),
and an index j check if Var(Y |X) = Var(Y |X∼j). That is, whether including feature xj gives
non-trivial advantage in regression. This is akin to the classical regression t-test in statistics (see
[18]) used to test the null hypothesis that wi = 0 in a linear regression problem.

In the greedy steps in our learning algorithm, we will need to not only find a feature which has
a nonzero value for predicting Y , but in fact we want to find one of the most predictive features.
We do so by exploiting what is known as a non-central F -statistic [18]. The following lemma
quantifies the usefulness of a particular coordinate for estimating Y . Crucially, this Lemma shows
we can estimate the (normalized) change in conditional variance much more accurately than we can
actually estimate the individual conditional variances. Note that by Lemma 11 that the term which
appears in the Lemma, |ŵj |2

(Σ̂−1)jj
, also equals the difference in squared loss over the data between the

OLS estimator constrained to wj = 0 and the unconstrained OLS estimator.
Lemma 13. Consider the Gaussian random design regression setup (3), fix j ∈ {1, . . . , k} and let

γ :=
Var(Y |X∼j)−Var(Y |X)

Var(Y |X)

where X∼j = (Xi)i 6=j . We have∣∣∣∣∣∣ |ŵj |

σ̂
√

(Σ̂−1)jj

−√γ

∣∣∣∣∣∣ ≤
√

4 log(4/δ)

m
+

√
γ
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and ∣∣∣∣∣∣ |ŵj |

σ
√

(Σ̂−1)jj

−√γ

∣∣∣∣∣∣ ≤
√

2 log(4/δ)

m
+

√
γ
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with probability at least 1− δ as long as m ≥ m0 = O(k + log(4/δ)).
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Proof. We prove this result directly. Alternatively and essentially equivalently, one could derive
a similar result by using classical results in the fixed design regression setting for non-central F-
statistics (Theorem 14.11 of [18], see also Section F below) and then analyzing their behavior under
random design using matrix concentration.

Recall from Lemma 3 (applied for fixed XS and then taking expectations) that

E[Y |X] = E[Y |X∼j ] +
Cov(Y,Xj |X∼j)

Var(Xj |X∼j)
(Xj − E[Xj |X∼j ])

and that

Var(Y |X∼j)−Var(Y |X) =
Cov(Y,Xj |X∼j)2

Var(Xj |X∼j)
so

w2
jVar(Xj |X∼j) = Var(Y |X∼j)−Var(Y |X). (4)

i.e.
w2

j

σ2(Σ−1)jj
= γ. We know that for fixed X , over the randomness of ξ we have ŵOLS ∼

N(w, σ
2

m Σ̂−1) by Fact 2, so

ŵj

σ
√

(Σ̂−1)jj

∼ N

 wj

σ
√

(Σ̂−1)jj

,
1

m

 .

Using that (Σ−1)jj = 1
Var(Xj |XS) , σ =

√
Var(Y |X), and γ =

Var(Y |X∼j)−Var(Y |X)
Var(Y |X) and (4) we

find
ŵj

σ
√

(Σ̂−1)jj

∼ N

(
±
√
γ

(Σ−1)jj

(Σ̂−1)jj
,

1

m

)

where the sign is the sign of wj . Applying ||a| − |b|| ≤ |a− b| and the Gaussian tail bound over the
randomness of ŵ we find

Pr

∣∣∣∣∣∣ |ŵj |

σ
√

(Σ̂−1)jj

−
√
γ

(Σ−1)jj

(Σ̂−1)jj

∣∣∣∣∣∣ > t

 ≤ Pr

∣∣∣∣∣∣ ŵj

σ
√

(Σ̂−1)jj

∓
√
γ

(Σ−1)jj

(Σ̂−1)jj

∣∣∣∣∣∣ > t

 ≤ 2e−mt
2/2.

Applying Lemma 10 gives ∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ 2

√
log(4/δ)

m− k − 1
+ 2

log(4/δ)

m− k − 1

with probability at least 1 − δ/2. Therefore as long as m ≥ m1 = O(k + log(4/δ)) we have
σ̂
σ ∈ (7/8, 9/8). Taking t =

√
2 log(4/δ)/m we have∣∣∣∣∣∣ |ŵj |

σ̂
√

(Σ̂−1)jj

−√γ

∣∣∣∣∣∣ ≤
√
σ

σ̂

∣∣∣∣∣∣ |ŵj |

σ
√

(Σ̂−1)jj

−
√
γ
σ̂

σ

∣∣∣∣∣∣+√γ
∣∣∣∣∣∣1−

√
(Σ̂−1)jj
(Σ−1)jj

∣∣∣∣∣∣ ≤
√

4 log(4/δ)

m
+

√
γ
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applying Lemma 12 and requiring m ≥ m2 = O(k + log(4/δ)), with probability at least 1 − δ. A
simpler variant of this argument gives the result for |ŵj |

σ
√

(Σ̂−1)jj
as well.

In our analysis we will often need to estimate multiplicative changes in a quantity of the form
Var(Y |X∼j) − V (where e.g. V = Var(Y |X,X ′) for some X ′) so we will use the following
variant of the previous Lemma:

Lemma 14. Consider the Gaussian random design regression setup (3), fix j ∈ {1, . . . , k}, let
V > 0 be arbitrary s.t. V < Var(Y |X) and let

γ′ :=
Var(Y |X∼j)−Var(Y |X)

Var(Y |X∼j)− V
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where X∼j = (Xi)i 6=j . We have∣∣∣∣∣∣
√

1

Var(Y |X∼j)− V
|ŵj |√

(Σ̂−1)jj

−
√
γ′

∣∣∣∣∣∣ ≤
√

Var(Y |X)

Var(Y |X∼j)− V
· 2 log(4/δ)

m
+

√
γ′
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with probability at least 1− δ as long as m ≥ m0 = O(k + log(4/δ)).

Proof. This follows from Lemma 13 after multiplying through in the guarantee by
√
γ′/γ, using

that σ =
√

Var(Y |X).

E Learning all attractive GGMs efficiently

Definition 10. We say that a GGM is attractive (or ferromagnetic) if Θij ≤ 0 for all i 6= j. (This is
the same as requiring that Θ is an M -matrix.)

Lemma 15. If Θ is the precision matrix of an attractive GGM, then there exists an invertible diag-
onal matrix D with nonnegative entries such that DΘD is a generalized Laplacian.

Proof. This follows immediately from Theorem 5.

A particularly important example of an attractive GGM is the discrete Gaussian free field — see
[23] for a reference to this and the closely related literature on the continuum Gaussian free field.

Definition 11. The discrete Gaussian free field on a weighted graph G with zero boundary condi-
tions on S is the GGM with Θ the Laplacian of G, after eliminating the rows and columns corre-
sponding to the nodes in S.

Without boundary conditions, the GFF should be translation invariant and so it does not exist as a
probability distribution. One can approach the free boundary situation by taking the Laplacian and
adding εI to make it invertible, which gives a learnable model that is arbitrarily poorly conditioned.

Example 4 (Gaussian simple random walk). Consider the discrete Gaussian free field on a path
of length n with zero boundary condition on the first node. This process is the same as a simple
random walk withN(0, 1) increments. That is the resulting distribution is of the form (X1, . . . , Xn)
where Xi =

∑
j≤i ηj for independent and identical ηj ∼ N(0, 1). From the GFF perspective, we

can think of this as a discretization of Brownian motion (the one-dimensional (continuum) Gaussian
free field).

Remark 3. Every attractive GGM can be realized from a Gaussian Free Field on a weighted graph
in the following way: given an attractive GGM, first rescale the coordinates using the above Lemma
so that it is a generalized Laplacian. Then, by adding one node to the model we can make the
precision matrix into a standard Laplacian on some weighted graph, and conditioning out the added
node recovers the original precision matrix.

Our main theorem of this section is a sample-efficient algorithm for learning attractive GGMs:

Theorem 7. Fix a κ-nondegenerate attractive GGM. Algorithm GREEDYANDPRUNE returns the
true neighborhood of every node i with probability at least 1 − δ for ν = κ2/

√
32,K =

64d log(4/κ2) + 1 as long as the number of samples m ≥ m1 for m1 = O((1/κ2)(K log(n) +
log(4/δ))). The combined run-time (over all nodes) of the algorithm is O(K3mn2).

Note that the above immediately implies Theorem 1.

As mentioned in the introduction, Algorithm GREEDYANDPRUNE learns the neighborhood of a
node by doing greedy forward selection to minimize the conditioned variance, and then doing prun-
ing to remove non-neighbors from the candidate neighborhood. The greedy forward selection step is
known in the compressed sensing literature as Orthogonal Matching Pursuit (OMP) (see e.g. [57]).
We give a description of the OMP algorithm in the general setting of Section D.1 below, along with
pseudocode for GREEDYANDPRUNE.
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Algorithm ORTHOGONALMATCHINGPURSUIT(T,X,Y):
1. Set S0 := {}.
2. For t from 1 to T :

(a) Choose j which minimizes

min
w : supp(w)⊂St−1∪{j}

‖Y −Xw‖22

(b) Set St := St−1 ∪ {j}
3. Return ST .

Algorithm GREEDYANDPRUNE(i, ν, T ):
1. Run ORTHOGONALMATCHINGPURSUIT for T steps to predictXi from the other columns

ofX, i.e. settingY = Xi andX′ = X∼i.

2. Define Θ̂ii by 1/Θ̂ii = V̂ar(Xi|XS).
3. For j ∈ S:

(a) Let S′ := S \ {j} and ŵ := ŵ(i, S′).

(b) If V̂ar(Xi|XS′)− V̂ar(Xi|XS) < ν/Θ̂ii, set S := S′.
4. Return S.

Remark 4 (Implementation: Merging neighborhoods). In order to return an actual estimate for
the inverse precision matrix, we add in our implementation of GREEDYANDPRUNE a merging step
which includes an edge (i, j) iff it is in the computed neighborhood of node i and in the computed
neighborhood of node j. Then to estimate the entries, we use OLS to predict node Xi from its
neighbors and estimate the conditional variance of Xi. We define Θ̂ii to be the inverse of the
estimated conditional variance, and −Θ̂ij/Θ̂ii to be the OLS coefficient. Finally, we symmetrize Θ̂

by picking the smaller of absolute norm between Θ̂ij and Θ̂ji; the same step is used in CLIME [58].

E.1 Proof of supermodularity

As a first step toward proving Theorem 7, we first show that the conditional variance function is
supermodular.
Definition 12. Given a universe U , a function f : 2U → R is supermodular if for any S ⊂ T ,

f(S)− f(S ∪ {j}) ≥ f(T )− f(T ∪ {j}).
(This is the same as saying −f is submodular.)

Supermodularity of the conditional variance of a node in the GFF (and hence, by using the reduction
from Remark 3, all attractive GGMs) was previously shown independently in [26, 30] using two
different methods. The proof in [26] is algebraic using the Schur complement formula, whereas
the proof in [30] converts the problem into one about electrical flows and argues via Thomson’s
principle. We give a third different proof which has the benefit of being transparent and using only
basic linear algebra.
Theorem 8. For any node i in a ferromagnetic GGM, Var(Xi|XS) is a monotonically decreasing,
supermodular function of S.

Proof. By rescaling we may assume w.l.o.g. that Θii = 1 for all i. Define ΘS to be the precision
matrix corresponding to conditioning S out (i.e. Θ with the rows and columns of S removed), and
ΣS = Θ−1

S . Then, if we write ΘS = I − AS , by Neumann series formula (as ΘS � 0, ‖AS‖ < 1
using Perron-Frobenius), we see

ΣS = (I −AS)−1 =

∞∑
k=0

AkS . (5)
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Writing this out explicitly for (ΣS)i,i gives

Var(Xi|XS) =

∞∑
k=0

∑
v1,...,vk /∈S

(−Θiv1) · · · (−Θvki), (6)

where the k = 0 term in the sum is interpreted to be 1, so Var(Xi|XS) is a nonnegative weighted
sum over walks avoiding S and returning to i in the final step. The above expression is clearly
monotonically increasing in S as all off-diagonal entries of Θ are negative (and also follows from
law of total variance); to verify supermodularity, we just need to check that

Var(Xi|XS)−Var(Xi|XS∪{j}) =

∞∑
k=0

∑
v1,...,vk /∈S,
j∈{v1,...,vk}

(−Θiv1) · · · (−Θvki)

is a monotonically decreasing function of S ⊆ [n] \ {i, j}, but this is clear once we apply (6) as the
set of cycles that are eliminated from the sum by adding j only shrinks as we increase S.

Supermodularity of the conditional variance has the following consequence which will later be use-
ful in showing that the greedy algorithm makes non-trivial progress in each step.

Lemma 16. For any node i in a ferromagnetic GGM, if S is a set of nodes that does not contain i
or all neighbors of i, and T is the set of neighbors of i not in S, then there exists some node j ∈ T
such that

Var(Xi|XS)−Var(Xi|XS∪{j}) ≥
Var(Xi|XS)− 1/Θii

|T |
.

Proof. This is a standard consequence of supermodularity – we include the proof for completeness.

Consider adjoining the elements of T to S one at a time, and then apply supermodularity to show

Var(Xi|XS)−Var(Xi|XS∪T ) ≤
∑
j∈T

(Var(Xi|XS)−Var(Xi|XS∪{j}))

≤ |T |max
j∈T

(Var(Xi|XS)−Var(Xi|XS∪{j})).

Rearranging and using Var(Xi|XS∪T ) = 1/Θii (by the Markov property) gives the result.

From (5) we see immediately that the entries of the covariance Σ of an attractive GGM are always
nonnegative (this is why they are called attractive/ferromagnetic); we record this fact for future use.

Lemma 17 (Griffith’s inequality). In an attractive GGM, Cov(Xi, Xj) ≥ 0 for any i, j.

This fact is very well-known, holds for arbitrary ferromagnetic graphical models (i.e. not just Gaus-
sian) and is referred to as Griffith’s inequality. See [59] for a more general proof.

E.2 Greedy Subset Selection in Attractive Models

In this section we give a guarantee for subset selection using OMP, by showing that after a small
number of rounds OMP finds a set S such that Var(Xi|XS) is close to minimal. The sample com-
plexity analysis is complicated by the fact that supermodularity holds at the level of the population
loss (i.e. for an infinite amount of data) whereas it would be more convenient if it held for the em-
pirical conditional variance, so we have to deal with both the regression noise and the randomness
of the regressors. First we prove the following lemma which gives a stronger version of Lemma 2
for ferromagnetic GGMs:

Lemma 18. Fix i a node in a κ-nondegenerate ferromagnetic GGM, and let S be set of nodes and
let T be the set of neighbors of i not in S. Then

Var(Xi|XS) ≥ 1 + |T |κ2

Θii
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Proof. By the law of total variance, Griffith’s inequality (Lemma 17), and the law of total variance
again

Var(Xi|XS)− 1

Θii
= Var(E[Xi|X∼i]|XS) = Var(

∑
j∈T

−Θij

Θii
Xj |XS)

≥
∑
j∈T

Θ2
ij

Θ2
ii

Var(Xj |XS) ≥ 1

Θii

∑
j∈T

Θ2
ij

ΘiiΘjj
≥ |T |κ

2

Θii
.

Lemma 19. Suppose that X is distributed according to an κ-nondegenerate ferromagnetic GGM
and i is a node of degree at most d. Let σ2 := 1

Θii
andw∗j =

−Θij

Θii
for all j 6= i. Then using T rounds

of OMP to predict Xi given X∼i from m i.i.d. samples, we have that Var(E[Xi|X∼i]|XS) ≤ (1−
1/2d)T−1 8d

Θii
with probability at least 1−δ provided thatm = Ω((d+1/κ2)(T log(n)+log(2/δ))).

Proof. We prove by induction that for every 1 ≤ t ≤ T that

Var(E[Xi|X∼i]|XSt) ≤ (1− 1/2d)t−1 8d

Θii
.

Note that by Lemma 9 there exists a node j such that Var(Xi|Xj) ≤ 4d
Θii

. By taking a union bound,
we may assume that:

1. Var(Xi|XS1) ≤ 8d
Θii

using the above fact combined with Lemma 10 assuming that m =

Ω(log(n/δ)) to guarantee that the estimated conditional variances have small multiplicative
error.

2. For all subsets U of [n] of size at most T and j ∈ [n], applying Lemma 14 we have∣∣∣∣∣ 1√
Var(Xi|XU\{j})− 1/Θii

R̂(U, j)−
√
γ′

∣∣∣∣∣ ≤
√

Var(Xi|XU )

Var(Xi|XU\{j})− 1/Θii

√
4(T log(n) + log(12/δ))

m
+

√
γ′
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where

γ′ = γ′(U, j) :=
Var(Xi|XU\{j})−Var(Xi|XU )

Var(Xi|XU\{j})− 1/Θii

and

R̂(U, j) :=
(ŵU )j

((Σ̂U,U )−1)jj
=
√
‖Xi −XŵU‖22 − ‖Xi −XŵU\{j}‖22

using Lemma 11 in the last equality where ŵU is the OLS estimate using only the coordi-
nates in U . This holds assuming that m = Ω(T log(4n) + log(1/δ)).

Before proceeding, we observe that√
Var(Xi|XU )

Var(Xi|XU\{j})− 1/Θii
≤

√
Var(Xi|XU\{j})

Var(Xi|XU\{j})− 1/Θii
≤ max(

√
2,
√

2/d′κ2) (7)

where d′ is the degree of node i in the graph with the nodes in U \ {j} removed, by the law
of total variance (first inequality) and the following case analysis: either Var(Xi|XU\{j}) ≥
2/Θii, in which case Var(Xi|XU\j})

Var(Xi|XU\{j})−1/Θii
≤ 2, or Var(Xi|XU\{j}) ≤ 2/Θii in which case

Var(Xi|XU\{j})

Var(Xi|XU\{j})−1/Θii
≤ 2/d′κ2 by Lemma 18.

The first point above gives the base case for the induction. By Lemma 16, if Var(E[Xi|X∼i]|St) 6= 0
then there exists a k such that

γ′(St ∪ {k}, k) =
Var(E[Xi|X∼i]|XSt)−Var(E[Xi|X∼i]|XSt∪{k})

Var(E[Xi|X∼i]|XSt∪{k}})
≥ 1

d′
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where (as above) d′ is the degree of i in the set of non-neighbors of St. Combined with (7) and
d′ ≤ d we now see that the second guarantee above ensures that at every time t, the j selected by
OMP (i.e. j where St+1 = St ∪ {j}) satisfies γ′(St ∪ {j}, j) ≥ 1/2d as long as m = Ω((d +
1/κ2)(T log(n) + log(12/δ))). We therefore have that

Var(Xi|XSt
)− 1/Θii ≤ (1− 1/2d)(Var(Xi|XSt−1

)− 1/Θii)

for all 1 < t ≤ T , which combined with the induction hypothesis gives the result (using that
Var(Xi|XSt)− 1/Θii = Var(E[Xi|X∼i]|XSt) by law of total variance).

E.3 Structure Recovery for Attractive GGMs

To give a final result for structure recovery, we show how to combine the previous analysis of greedy
forward selection with a simple analysis of pruning (backward selection).
Lemma 20. Let i be a node of degree at most d in a κ-nondegenerate attractive GGM. Fix δ > 0
and suppose that m = Ω((d + 1/κ2)(T log(n) + log(2/δ))) where T = Θ(d log(2d/κ2)). Then
with probability at least 1 − δ, the neighborhod of node i is correctly recovered by Algorithm
GREEDYANDPRUNE with ν = Θ(κ2).

Proof. By Lemma 19 with T = 1 + 2d log(16d/κ2), with probability at least 1 − δ/2 we
have that Var(E[Xi|X∼i] | XS) ≤ κ2/2 where S is the set returned by OMP as long as
m = Ω((d+ 1/κ2)(T log(n) + log(24/δ))). From Lemma 2 we see this implies that S contains the
true neighborhood of node i.

We now analyze the pruning step for any S which is a superset of the true neighborhood of size at
most T . By Lemma 2 and the Markov property, we know that if j is a true neighbor then γ(S, j) ≥
κ2, and otherwise γ(S, j) = 0. Applying Lemma 13 and taking the union bound over the at most
nT possible sets, we find that exactly the true edges are kept with probability at least 1−δ/2 as long
as m = Ω((T log(n) + log(8/δ))/κ2). Therefore the entire neighborhood recovery succeeds with
probability at least 1− δ.

Theorem 9. Let X be distributed according to a κ-nondegenerate GGM on n nodes with maximum
degree d. Fix δ > 0, then with probability at least 1 − δ Algorithm GREEDYANDPRUNE run at
every node with T = Θ(d log(2d/κ2)) and ν = Θ(κ2) successfully recovers the true graph as long
as m = Ω((1/κ2)(d log(2d/κ2) + log(2/δ)) log(n)).

Proof. This follows from Lemma 20 by taking the union bound over the n nodes and recalling from
Lemma 6 the bound d ≤ 1/κ2.

Remark 5 (Input specification). In the description of the algorithms throughout this paper, we
assume we have access to i.i.d. samples from the distribution. However, it is straightforward to
verify that the algorithms only depend on the empirical covariance matrix, and can be run given
only the empirical covariance matrix in polynomial time.

F Information-theoretic optimal learning of attractive GGMs

In this section we give an O(nd) time algorithm for recovering attractive GGMs which matches the
information-theoretic lower bounds up to constants, improving the result of the previous section at
the cost of computational efficiency.

F.1 Noncentral F-statistics

In the analysis of the O(nd) time algorithm, we will need to compare empirical variances between
predictors supported on very different sets of variables. In comparison, in the analysis of greedy
methods we only needed to consider adding or removing a single variable at a time. In order to
handle the new setting, we recall the definition of noncentral F-statistics and their connection to
fixed design regression.
Definition 13. Suppose Z1 ∼ N(δ, 1) and for j > 1, Zj ∼ N(0, 1) with Z1, . . . , Zm indepen-
dent. Then we write

∑
i Zi ∼ χ2

m(δ2) where χ2
m(δ2) is the noncentral chi-square distribution with

noncentrality parameter δ2 and m degrees of freedom.
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Definition 14. If V ∼ χ2
k(δ2) and W ∼ χ2

m is independent of V , then we write

V/k

W/m
∼ Fk,m(δ2)

where Fk,m(δ2) is the noncentral F-distribution with degrees of freedom k and m and noncentrality
parameter δ2.

Theorem 10 (Theorem 14.11 of [18]). In the (Gaussian) fixed design regression model (Sec-
tion D.1), let H be a q-dimensional subspace of Rk. Define

T :=
m− k
k − q

‖Y −Xŵ0‖2 − ‖Y −Xŵ‖2

‖Y −Xŵ‖2
=
m− k
k − q

‖Xŵ −Xŵ0‖2

‖Y −Xŵ‖2

where ŵ is the unrestricted OLS estimator and ŵ0 is the least squares estimator constrained to
be inside of subspace H . (The second equality holds by the Pythagorean theorem.) Then T ∼
Fk−q,m−k(γ) where

γ :=
minw0∈H0

‖X(w − w0)‖2

σ2
.

More specifically, 1
σ2 ‖Y −Xŵ‖2 ∼ χ2

m−k and 1
σ2 ‖Xŵ −Xŵ0‖2 ∼ χ2

k−q(γ) and these random
variables are independent.

We also recall a convenient concentration inequality for noncentral χ2-distributed random variables:

Lemma 21 (Lemma 8.1 of [60]). Suppose that V ∼ χ2
m(δ2). Then

Pr(V ≥ (m+ δ2) + 2
√

(m+ 2δ2)t+ 2t) ≤ e−t

and
Pr(V ≤ (m+ δ2)− 2

√
(m+ 2δ2)t) ≤ e−t.

F.2 Structure learning by `0-constrained least squares

We perform structure recovery by, for every node i, performing several `0-constrained regressions
and pruning the result. In the context of learning Gaussian graphical models, some algorithms in
a similar spirit referred to as SLICE and DICE were proposed in [14] and they proved a sample
complexity bound of O(d/κ2 log(n)) for the more sample-efficient method, DICE. We show our
estimator SEARCHANDVALIDATE actually achieves optimal sample complexity O((1/κ2) log(n))
in the setting of attractive GGMs, and always achieves a sample complexity of O((d/κ2) log(n))
which gives a faster algorithm with the same sample complexity as DICE from [14], which has a
slower runtime of O(n2d+1). (It matches the runtime guarantee for SLICE in [14], which has a
worse sample complexity guarantee.)

In Algorithm SEARCHANDVALIDATE, the key step is performing `0-constrained regression to pre-
dict Xi; the loop in step 2 is required only because we do not know a priori the exact degree of
node i, only an upper bound. With high probability, the support of one of the wd′ will equal the
exact neighborhood of node i, and then a straightforward validation procedure in step 3 (which uses
a similar idea to Algorithm DICE in [14]) allows us to identify the correct wd′ successfully. For the
purposes of the analysis, for every pair of sets S0 ⊂ S not containing i define (as in Theorem 10)

T (S0, S) :=
n− |S|
|S| − |S0|

‖Xi −Xŵ0‖2 − ‖Xi −Xŵ‖2

‖Xi −Xŵ‖2
=

n− |S|
|S| − |S0|

‖Xŵ −Xŵ0‖2

‖Xi −Xŵ‖2

where ŵ0 is the OLS estimator restricted to supp(w0) ⊂ S0 and ŵ is the OLS estimator restricted
to supp(w) ⊂ S.

The following Lemma analyzes the key step in the above algorithm; it shows that when d′ equals
the true degree of node i, the true support is returned. The crucial part which requires that the GGM
is attractive is the application of Lemma 18, which guarantees that candidate supports which are far
away from the true neighborhood perform much worse than the true neighborhood. This is crucial
because there are many candidate neighborhoods far away from the true neighborhood, which means
we need an improved bound to handle them and overcome the cost of taking the union bound.
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Algorithm SEARCHANDVALIDATE(i,d,ν):

1. We assume the data has been split into two equally sized sample sets 1 and 2. Let Ê1 and
Ê2 denote the empirical expectation over these two sets and define V̂ar2 similarly.

2. For d′ in 0 to d:
(a) Find wd′ minimizing

min
w:wi=0,| supp(w)|≤d′

Ê1[(Xi − wd′ ·X)2]

3. For d′ in 0 to d (outer loop):
(a) For d′′ in 0 to d except d′ (inner loop):

i. Let Sd′,d′′ := supp(wd′) ∪ supp(wd′′).
ii. For j in supp(wd′′) \ supp(wd′)

A. If V̂ar2(Xi|XSd′,d′′\{j})− V̂ar2(Xi|XSd′,d′′ ) > νV̂ar2(Xi|XSd′,d′′ ), continue
to next iteration of outer loop.

(b) Return supp(wd′).

Lemma 22. In a κ-nondegenerate attractive GGM, if i is a node of degree d then `0 constrained
regression over vectors with support size at most d returns the true neighborhood of node i with
probability at least 1− δ as long as m = Ω(log(n)/κ2 + log(2/δ)/κ2).

Proof. First we consider the randomness over the samples of X∼i, i.e. over X with column i
removed. By Lemma 12 and the union bound over all subsets S of [n] \ {i} with |S| ≤ 2d, it holds
with probability at least 1− δ/2 that for all w with wi = 0 and | supp(w)| ≤ 2d,

1

2
E[(wTX)2] ≤ 1

2
wT
(

1

m
X
T
X

)
w ≤ E[(wTX)2] (8)

as long as m = Ω(d log(n) + log(2/δ)). (Recall from Lemma 6 that d ≤ 1/κ2, so this holds under
the hypothesis of the theorem.) We condition on this event and consider the remaining randomness
overXi. Let S∗ be the set of true neighbors of node i and let S0 be any other subset of size at most
d. Define S := S∗ ∪ S0. Since the OLS estimators are defined by projection onto spans of the
columns ofX, we can apply the Pythagorean theorem to get

‖Xi −XŵS∗‖2 = ‖Xi −XwS‖2 + ‖XŵS∗ −XŵS‖2

and
‖Xi −XŵS0‖2 = ‖Xi −XwS‖2 + ‖XŵS0 −XŵS‖2.

Subtracting, we get that

‖Xi −XŵS0
‖2 − ‖Xi −XŵS∗‖2 = ‖XŵS0

−XŵS‖2 − ‖XŵS∗ −XŵS‖2.

To prove the result, it suffices to show with high probability that for any S0 which does not contain
S∗ that the leftmost term is positive — then no such S0 can be the minimizer of the `0-constrained
regression, since S∗ corresponds to a feasible point with smaller objective value. We achieve this by
showing the right hand side is positive. Observe

‖XŵS0
−XŵS‖2 − ‖XŵS∗ −XŵS‖2 =

d− q
n− |S|

‖Y −XŵS‖2(T (S0, S)− T (S∗, S)).

where q = |S0| = |S∗| so it suffices to show that T (S0, S) − T (S∗, S) ≥ 0. In fact, canceling out
denominators, dividing by σ2 and rearranging it suffices to show

1

σ2
‖XŵS −XŵS0

‖2 ≥ 1

σ2
‖XŵS −XŵS∗‖2

where by Theorem 10 the left hand side is according to χ2
d−q(γ) with γ :=

minsupp(w0)⊂S ‖X(w0−w∗)‖2

σ2 and the right hand side is distributed according to χ2
d−q , where
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σ2 := 1/Θii. Observe by (8) that

γ ≥ m

2

minsupp(w0)⊂S E[(XT (w0 − w∗))2]

σ2
=
m

2

minsupp(w0)⊂S Var(XT (w0 − w∗))]
σ2

≥ mκ2(d− q)
2

(9)
where the last inequality is by Lemma 18, since w0 is supported on S0 which is missing d− q of the
neighbors of node i. Applying Lemma 21

Pr(
1

σ2
‖XŵS −XŵS0‖2 ≤ (d− q + γ)− 2

√
(d− q + 2γ)t) ≤ e−t

and applying Lemma 4

Pr(
1

σ2
‖XŵS −XŵS∗‖2 ≥ (d− q) + 2

√
(d− q)t+ 2t) ≤ e−t.

Letting t = log(4dnd−q/δ), and taking the union bound over the at most nd−q possible values of
S0 and then over the at most d possible values of q, we find that with probability at least 1− δ/2 for
all possible S0 and q that

1

σ2
‖XŵS−XŵS0

‖2− 1

σ2
‖XŵS−XŵS∗‖2 ≥ γ−2

√
(d− q + 2γ)t−2

√
(d− q)t ≥ γ−4

√
(d− q + 2γ)t.

Finally, we see this is nonnegative as long as γ = Ω(t) = Ω((d−q) log(n)+log(2/δ)), which by (9)
holds as long as m = Ω( log(n)+log(2/δ)

κ2 ). Therefore the desired result holds with total probability at
least 1− δ, completing the proof.

Theorem 11. Fix δ > 0. In a κ-nondegenerate attractive GGM, as long asm = Ω((1/κ2) log(n)+
log(2/δ)/κ2) it holds with probability at least 1 − δ that Algorithm SEARCHANDVALIDATE with
ν = κ2/2 returns the true neighborhood of every node i.

Proof. By applying Lemma 22 and taking the union bound over nodes i, we know that as long as
m = Ω((1/κ2) log(n) + log(2/δ)/κ2) then with probability at least 1− δ/2 for every node i, for d′
equal to the true degree of node i that wd′ returned in step 2 of Algorithm SEARCHANDVALIDATE
is supported on exactly the true neighborhood of node i.

Furthermore, conditioned on the previous event (which only involves sample set 1), it holds with
probability at least 1− δ/2 by taking the union bound over the possible values of d′, d′′ that (similar
to the pruning argument used in analysis of Algorithm GREEDYANDPRUNE):

1. in step 3(a).ii, for every d′ less than the true degree of node i and for d′′ equal to the true
degree of node i that the outer loop continues to the next step by applying Lemma 13,
Lemma 11, and Lemma 2 and considering any j in the true neighborhood and missing
from the support of wd′ .

2. In step 3 when d′ equals the true degree of node i, step 3(b) is reached and the true support
of node i is returned by applying Lemma 13 and Lemma 11.

as long as m = Ω((d + 1/κ2) log(n) + log(2/δ)/κ2). Using that d ≤ 1/κ2 by Lemma 6, we see
the requirement on m holds and as desired, the algorithm succeeds with total probability at least
1− δ.

A simplified argument in the general (non-attractive) case, using the weaker bound from Lemma 2
instead of Lemma 18, yields the following result in the general case.

Theorem 12. Fix δ > 0. In a κ-nondegenerate (not necessarily attractive) GGM with maximum
degree d, as long as m = Ω((d/κ2) log(n) + log(2/δ)/κ2) it holds with probability at least 1 − δ
that Algorithm SEARCHANDVALIDATE with ν = κ2/2 returns the true neighborhood of every node
i.
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G Hybrid `1 regression guarantees

In the next section, we will discuss algorithms for regression and structure learning in general walk-
summable models. Since (as we will see) the conditional variance is not supermodular in these
models, we need some fundamentally new tools to analyze this setting. It turns out that we will
need to analyze a variant of `1-constrained least squares regression, which we do in this section as
preparation.
Definition 15. We define the hybrid `1-regression model to be given by

Y = 〈w∗, X − E[X|Z]〉+ a∗Z + ξ

where ‖w‖1 ≤W and conditioned on Z, X −E[X|Z] ∼ N(0,Σ) with Σ : n× n, Σii ≤ R2 for all
i, EZ2 = 1 (w.l.o.g.), and Eξ2 = σ2 with the noise ξ independent of X,Z.

The corresponding function class is

F := {(x, z) 7→ 〈w, x−E[X|Z = z]〉+az : ‖w‖1 ≤W} = {(x, z) 7→ 〈w, x〉+a′z : ‖w‖1 ≤W}.

and the Empirical Risk Minimizer (ERM) is given by taking the minimizer of

min
‖w‖1≤W,a′

Ê[(Y − 〈w,X〉 − a′Z)2].

As mentioned in the introduction, it will be crucial in the analysis to look at the parameterization
with a instead of a′ even though algorithmically the ERM will be computed using the variable a′ (as
the change of basis given by subtracting off the conditional expectations is unknown and could only
be approximated from data).

G.1 Guarantees for Empirical Risk Minimization (ERM)

There is a vast literature on generalization bounds for empirical risk minimization (and natural vari-
ants) using tools such as (local) Rademacher complexity, stability, etc. (see e.g. [61, 41, 62] and
many related references); however, many of these methods are not well-optimized for our setting
because the noise and covariates are drawn from unbounded distributions and the squared loss is
not uniformly Lipschitz (see the discussion in [63]). Fortunately, the framework developed in [63]
avoids these issues and we are able to use it directly to give a good bound on the excess risk of the
empirical risk minimizer.

G.1.1 Background: Learning without Concentration Framework

We recall the main result of [63]. In this framework, as with many results in statistical learning, the
empirical process is controlled by fixpoints of local Rademacher averages defined below. See e.g.
[61] for more context.

Let F be a class of (measurable) functions. Let X,Y be arbitrary random variables, suppose that f∗
is a minimizer of E[(Y −f(X))2] over f ∈ F (which we assume exists) and define ξ := Y −f∗(X).
Let ‖f‖L2 =

√
E[f2] and let D2(f) be the L2 ball of radius 1 around f , i.e. D2(f) = {g :

E[(g − f)2] = 1}. The following two quantities, defined by fixed point equations, appear in the
generalization bound: the intrinsic parameter (which does not depend on the noise model)

β∗m(γ) = inf

{
r > 0 : E sup

f∈F∩rDf∗

∣∣∣∣∣ 1√
m

m∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ ≤ γr√m
}

and the noise-sensitive parameter

α∗m(γ, δ) = inf

{
s > 0 : Pr

(
sup

f∈F∩sDf∗

∣∣∣∣∣ 1√
m

m∑
i=1

εiξi(f − f∗)(Xi)

∣∣∣∣∣ ≤ γs2
√
m

)
≥ 1− δ

}
.

Theorem 13 (Theorem 3.1, [63]). Suppose F is a closed, convex class of functions and
f∗, X, Y, α∗, β∗ are defined as above. Let τ > 0, define

q := inf
f∈F−F

Pr(|f | ≥ 2τ‖f‖L2)
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and assume that q > 0 (this is called the small-ball condition). Then for any γ < τ2q/16 and
for every δ > 0 it holds that for any f̂ which is an empirical risk minimizer for i.i.d. samples
{(X(i), Y (i))}mi=1,

‖f̂ − f∗‖L2
≤ 2 max {α∗m(γ, δ/4), β∗m(τq/16)}

with probability at least 1− δ − e−mq/2.

G.1.2 ERM Risk Bound

We return to the specific setting of hybrid `1-constrained regression and prove our desired bound.
Theorem 14. As long as m = Ω(log(n/δ)), if ŵ, â′ is the empirical risk minimizer for hybrid L1
regression from m i.i.d. samples then

E[(E[Y |X,Z]− 〈ŵ,X〉 − â′Z)2] = O

(
RWσ

√
log(2n/δ)

m
+
σ2 log(4/δ)

m
+
R2W 2 log(n)

m

)
with probability at least 1− δ.

Proof. We first deal with the small-ball condition. Let τ = 1/2. Observe that for any f1, f2 ∈ F
that f1(X,Z)− f2(X,Z) has a univariate Gaussian distribution, therefore

q := Pr(|f | ≥ 2τ‖f‖L2
) = 1− 1√

2π

∫ 2τ

−2τ

e−x
2/2dx ≥ 1/4.

We take γ = 1/300 < τ2q/32.

We now bound β∗. We have

E sup
f∈F∩rDf∗

∣∣∣∣∣ 1√
m

m∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣
= E sup

f∈F∩rDf∗

∣∣∣∣∣ 1√
m

m∑
i=1

εi(〈w − w∗, Xi − E[Xi|Zi]〉+ (a− a∗)Z)

∣∣∣∣∣
≤ 2RWE

∥∥∥∥∥ 1√
m

n∑
i=1

εi
Xi − E[Xi|Zi]

W

∥∥∥∥∥
∞

+ sup
f∈F∩rDf∗

|a− a∗|E|Z|

≤ C(RW
√

log(n) + sup
f∈F∩rDf∗

|a− a∗|)

where the first inequality is by Holder’s inequality and the triangle inequality, and the second is by
the standard Gaussian tail bound combined with the union bound. To complete the bound observe
that

E[(〈w − w∗, X − E[X|Z]〉+ (a− a∗)Z)2] ≥ (a− a∗)2

so a− a∗ ≤ r and

E sup
f∈F∩rDf∗

∣∣∣∣∣ 1√
n

m∑
i=1

εi(f − f∗)(Xi)

∣∣∣∣∣ ≤ C(RW
√

log(n) + r).

This is smaller than γr
√
m as long as r = Ω(RWγ

√
logn
m ) so β∗m = O(RWγ

√
logn
m ).

We proceed to bound α∗ similarly.

sup
f∈F∩sDf∗

∣∣∣∣∣ 1√
m

m∑
i=1

εiξi(f − f∗)(Xi)

∣∣∣∣∣
= sup
f∈F∩sDf∗

∣∣∣∣∣ 1√
m

m∑
i=1

εiξi(〈w − w∗, Xi − E[Xi|Zi]〉+ (a− a∗)Z)

∣∣∣∣∣
≤ C(RWσ

√
log(2n/δ) + σs

√
log(4/δ))
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with probability at least 1−δ as long asm ≥ m1 = O(log(n/δ)), where the inequality is by Holder’s
inequality and |a−a∗| ≤ s (as before), Bernstein’s inequality (Theorem 2.8.2 of [43]) using that the
product of sub-Gaussian r.v. (ξi and Xi − E[Xi|Zi]) is sub-exponential (Lemma 2.7.7 of [43]), and

the union bound. The last quantity is upper bounded by γs2
√
m as long as s2 = Ω(σγ

√
log(2n/δ)

m )

and s = Ω(σγ

√
log(4/δ)

m ). Therefore

(α∗)2 = O

(
RWσ

γ

√
log(2n/δ)

m
+
σ2 log(4/δ)

γ2m

)
.

Combining our estimates, it follows from Theorem 13 that

E[(f̂ − f∗)2] = O((α∗m)2 + (β∗m)2) = O

(
RWσ

γ

√
log(2n/δ)

m
+
σ2 log(4/δ)

γ2m
+
R2W 2 log(n)

γm

)

with probability at least 1−δ−e−m/8 ≥ 1−2δ as long asm = Ω(log(1/δ)+m1) = Ω(log(d/δ)).
Since γ is just a constant, this gives the result.

G.2 Guarantees for Greedy Methods

In this section we show that a simple greedy method can also solve this high-dimensional regres-
sion problem with the correct dependence on n, albeit with slightly worse dependence on the other
parameters. This is conceptually important as it shows that examples breaking greedy algorithms
(in the sense of requiring ω(log(n)) sample complexity) also suffice to break analyses based on
bounded `1-norm.

Lemma 23. In the hybrid `1-regression model, there exists an input coordinate j such that

Var(E[Y |X,Z] | Z,Xj) ≤ Var(E[Y |X,Z] | Z)

(
1− Var(E[Y |X,Z] | Z)

R2W 2

)
.

Proof. By expanding, applying Holder’s inequality and using the assumption on R we have

Var(E[Y |X,Z] | Z) =
∑
j

wjCov(E[Y |X,Z], Xj | Z)

≤W max
j
|Cov(E[Y |X,Z], Xj | Z)|

≤ RW max
j

∣∣∣∣∣Cov

(
E[Y |X,Z],

Xj√
Var(Xj |Z)

∣∣∣ Z)∣∣∣∣∣ .
Let j be the maximizer. Then by Lemma 3,

Var(E[Y |X,Z] | Z)−Var(E[Y |X,Z] | Z,Xj) =
Cov(E[Y |X,Z], Xj | Z)2

Var(Xj | Z)
≥ Var(E[Y |X,Z] | Z)2

R2W 2
.

Rearranging gives that

Var(E[Y |X,Z] | Z,Xj) ≤ Var(E[Y |X,Z] | Z)

(
1− Var(E[Y |X,Z] | Z)

R2W 2

)
.

The above bound naturally leads to analyzing the recursion x 7→ x − cx2, which we do in the next
Lemma.

Lemma 24. Suppose that x1 ≤ 1/2c and xt+1 ≤ (1− cxt)xt for some c < 1. Then

xt ≤
1

c(t+ 1)
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Proof. We prove this by induction. Observe that x(1− cx) is an increasing function in x for x ≤ 1
2c

since 1/2c corresponds to the vertex of the parabola, so using the assumption and the induction
hypothesis,

xt ≤ xt−1(1− cxt−1) ≤ 1/ct− 1/ct2 =
t− 1

ct2
≤ t− 1

c(t2 − 1)
≤ 1

c(t+ 1)
.

Lemma 25. In the hybrid `1-regression model,

Var(E[Y |X,Z] | Z) ≤ R2W 2.

Proof. By expanding, using Holder’s inequality and Cauchy-Schwartz

Var(E[Y |X,Z] | Z) =
∑
j

wJCov(E[Y |X,Z], Xj | Z)

≤W max
j
|Cov(E[Y |X,Z], Xj | Z)

≤W max
j

√
Var(E[Y |X,Z] | Z)Var(Xj | Z) ≤ RW

√
Var(E[Y |X,Z] | Z)

so Var(E[Y |X,Z] | Z) ≤ R2W 2.

Remark 6 (Connection to Approximate Caratheodory). From the previous two lemmas, we can give
a “matching pursuit” proof of the approximate Caratheodory theorem, which says that vectors of
bounded `1-norm are well approximated in `2 by sparse vectors [43]. The standard proof of this
result is probabilistic. Another proof, in a similar spirit, is given by using the guarantees of the
Frank-Wolfe algorithm (see [64]).

The remaining task is to analyze the behavior of the iteration under noise, which gives the main
result:
Theorem 15. For any ε ∈ (0, 1), iterate t of OMP in the hybrid regression model satisfies

Var(E[Y |X,Z]|Z,XSt) ≤ εσ2

as long as t = Ω(R2W 2/εσ2) and m = Ω(R
2W 2

ε2σ2 (t log(4n) + log(4/δ))).

Proof. The argument is structured similarly to the proof of Lemma 19. Fix ε ∈ (0, 1) to be optimized
later: we bound the number of steps of OMP during which Var(E[Y |X,Z]|Z,XSt

) ≥ εσ2. Note
that once this bounds holds for some t, it holds for all larger t by the law of total variance. Fix an
integer T > 0 to be optimized later.

First observe from Lemma 23 (applied after conditioning out XSt ) that there exists a node j∗ such
that

Var(E[Y |X,Z]|Z,Xj∗ , XSt) ≤ Var(E[Y |X,Z]|Z,XSt)(1−
Var(E[Y |X,Z]|Z,XSt

)

R2W 2
).

From Lemma 14 and taking the union bound over all sets S of size |S| ≤ T we have∣∣∣∣∣∣
√

1

Var(Y |XS\j)− σ2

|ŵj |√
(Σ̂−1)jj

−
√
γ′

∣∣∣∣∣∣ ≤
√

Var(Y |XS)

Var(Y |XS\j)− σ2
· 2 log(nT /δ)

m
+

√
γ′

64
≤
√

1 + ε

ε
· 2 log(nT /δ)

m
+

√
γ′

64

using that (1 + x)/x = 1/x+ 1 is monotone decreasing, where

γ′ = γ′(S, j) :=
Var(Xi|Z,XS\{j})−Var(Xi|Z,XS)

Var(Xi|Z,XS\{j})− σ2
.

Note that γ′(S, j∗) ≥ εσ2/R2W 2. Therefore as long as m = Ω(R
2W 2

ε2σ2 (T log(4n) + log(4/δ)))
then OMP chooses a node j s.t.

Var(E[Y |X,Z]|Z,Xj , XSt
) ≤ Var(E[Y |X,Z]|Z,XSt

)(1− Var(E[Y |X,Z]|Z,XSt)

2R2W 2
)
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as long as |St| ≤ T . Applying Lemma 25 and Lemma 24 we find that

Var(E[Y |X,Z]|Z,XSt) ≤
2R2W 2

t+ 1

for t ≤ T . Therefore if T ≥ t ≥ 2R2W 2/εσ2 we are guaranteed that Var(E[Y |X,Z]|Z,XSt
) ≤

εσ2. Taking ε = 2R2W 2/Tσ2 gives the result.

H Regression and Structure Learning in Walk-Summable Models

H.1 Failure of (weak) supermodularity in SDD models

The following example shows that the conditional variance is not supermodular in the SDD case,
unlike in the attractive/ferromagnetic case.
Example 5. Consider the GGM given by SDD precision matrix

Θ =

[
1 −1/2 −1/2
−1/2 1 1/2
−1/2 1/2 1

]
and label the nodes (in order) by i, j, k. One can see (e.g. by computing effective resistances
in the lifted graph) that 2Var(Xi) = 3, that 2Var(Xi|Xj) = 2Var(Xi|Xk) = 8/3, and
2Var(Xi|Xj , Xk) = 2. Since 3− 8/3 = 1/3 < 2/3 = 8/3− 2 this violates supermodularity.

The above example alone does not rule out the possibility that (negative) conditional variances in
SDD models always have submodularity ratio introduced by [32] lower bounded by a constant. We
recall the definition next:
Definition 16 ([32]). The submodularity ratio γ(k) of a function on subsets of a universe U , f :
2U → R≥0 is defined to be

γ(k) := min
L⊂U,|S|≤k,L∩S=∅

∑
x∈S f(L ∪ {x})− f(L)

f(L ∪ S)− f(L)

Note that γ(k) ≥ 1 for a submodular function.

The significance of this ratio for a function f is that if the ratio is lower bounded by a constant
then similar guarantees for submodular maximization follow ([32]); for this reason such an f is
sometimes called weakly submodular (as in e.g. [65]). Now, we give a counterexample showing
that for general SDD matrices, this ratio can be arbitrarily small.
Example 6. Fix M > 0 large. Let ε > 0 be a parameter to be taken small, and consider the
following precision matrix, which is SDD as long as ε < 1/2 < M :

Θ =

[
1 −ε ε
−ε M ε−M
ε ε−M M

]
.

This has inverse

Θ−1 =

(ε− 2M)/(ε+ 2ε2 − 2M) −(ε/(ε+ 2ε2 − 2M)) ε/(ε+ 2ε2 − 2M)
−(ε/(ε+ 2ε2 − 2M)) (ε2 −M)/(ε2 + 2ε3 − 2εM) (ε+ ε2 −M)/(ε2 + 2ε3 − 2εM)
ε/(ε+ 2ε2 − 2M) (ε+ ε2 −M)/(ε2 + 2ε3 − 2εM) (ε2 −M)/(ε2 + 2ε3 − 2εM)


so

Var(X1)− 1

Θ11
=

−2ε2

ε+ 2ε2 − 2M
and (by computing the inverse of the top-left 2x2 submatrix of Θ) we find

Var(X1|X3)− 1

Θ11
=

M

M − ε2
− 1 =

ε2

M − ε2

and the difference is

Var(X1)−Var(X3) =
ε3

(M − ε2)(2M − 2ε2 − ε)
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Algorithm WS-REGRESSION(γ, d):

1. Choose j to minimize V̂ar(Xi|Xj).

2. Let s2
0 := exp(blog(V̂ar(Xi|Xj)/8d)c − 1).

3. For ` in 0 to dlog(8d) + 3e:
(a) Let s2

` := s0e
`

(b) Solve for w, a in

min
w,a:‖w‖1≤λ

Ê2


Xi −

∑
k/∈{i,j}

wk
Xk√

V̂ar(Xk|Xj)
− aXj

2


where λ =
√

2ds` and Ê2 is empirical expectation over sample set 2.

(c) Let σ̂2 := Ê3

[(
Xi −

∑
k/∈{i,j} wk

Xk√
V̂ar(Xk|Xj)

− aXj

)2
]

where Ê3 is empirical

expectation over sample set 3. If λ2 ≥ 2dγ2σ̂2 (equivalently, s2
` ≥ γ2σ̂2), then exit

the loop.
4. Return w, a, j, σ̂2.

Therefore the submodularity ratio γ = γ(2) for f(S) = Var(X1)−Var(X1|XS) is upper bounded
by (taking L = ∅)

γ ≤ f({2}) + f({3})
f({2, 3})

= Θ

(
ε3/M2

ε2/M

)
= Θ(ε/M)

which is clearly arbitrarily small.

Remark 7 (Submodularity ratio and κ). It’s possible to show, based on Lemma 23 and the bounds
in the proof of Theorem 16 to derive a partial lower bound for the submodularity ratio when we
consider S ⊂ T and restrict to j which are neighbors of i, by showing:

f(S ∪ {j})− f(S) ≥ κ2

4d
(f(U)− f(S)) ≥ κ2

4d
(f(T ∪ {j})− f(T ))

using the monotonicity of f (which follows from the law of total variance) in the last step, and under
the assumption that the model is κ-nondegenerate and d-sparse. The above example shows that this
dependence on κ is tight: by taking a fixed small ε and sendingM →∞, the submodularity ratio can
be as small as O(κ2) since κ = ε/

√
M in this model. It remains unclear if the submodularity ratio

can be lower bounded in general in κ-nondegenerate models; even if such a bound did hold it could
not be used to prove Theorem 16 since that result holds without a κ-nondegeneracy assumption.

H.2 Sparse regression

In this section we describe an algorithm to find a good predictor of node Xi with bounded degree d
in a walk-summable GGM. To simplify the analysis, we assume the data has been split into 3 equally
sized sample sets, each of size m; when there is no explicit mention, averages are taken over sample
set 1.

The algorithm is conceptually straightforward: it does a single greedy step and then sets up an `1-
constrained regression. The only complication is that we do not know 1/Θii a priori, but this appears
in the `1-norm of the obvious regression we want to setup. Since we have multiplicative estimates
for 1/Θii, we can deal with this by searching over the possible values on a log scale.

We show this algorithm gives a result for sparse linear regression under the walk-summability as-
sumption which (1) depends on sparsity only, not on norms (unlike the slow rate bound for LASSO)
and (2) is computationally efficient (unlike brute force `0-constrained regression).
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Theorem 16. Let i be a node of degree d in an SDD GGM and σ2 := 1/Θii. Then WS-Regression(γ)
with γ2 = 2 returns w, a such that

E


E[Xi|X∼i]−

∑
k/∈{i,j}

wk
Xk√

V̂ar(Xk|Xj)
− aXj

2
 = O

(
σ2

√
d log(2n/δ)

m

)

and σ̂2 s.t. 1/2 ≤ Θiiσ̂
2 ≤ 2 with probability at least 1− δ, as long as m = Ω(log(n/δ)).

Proof. By Lemma 8, for any k ∼ i we have Var(Xi|Xj) ≤ 1/|Θik| therefore if we take j∗ which
minimizes Var(Xi|Xj∗) then

Var(Xi|Xj∗) ≤ 1/|Θij |
for all j. Similarly, applying Lemma 9 we know that

Var(Xi|Xj∗) ≤
4d

Θii

By using Lemma 10 and taking the union bound over the randomness of sample set 1, we may
assume that for every j, k, Var(Xk|Xj)/

√
2 ≤ V̂ar(Xk|Xj) ≤

√
2Var(Xk|Xj), with probability

at least 1− δ/3 as long as m = Ω(log(n/δ)). We condition on this event. Then for the j chosen in
step 1 of the algorithm, we have that

Var(Xi|Xj) ≤
√

2V̂ar(Xi|Xj) ≤
√

2V̂ar(Xi|Xj∗) ≤ 2Var(Xi|Xj∗) ≤ 2/|Θik|

for all i ∼ k, and similarly

Var(Xi|Xj) ≤
8d

Θii
. (10)

Furthermore,

Var

 Xk√
V̂ar(Xk|Xj)

∣∣∣∣∣∣Xj

 ≤ √2

and ∑
k

|Θik|
Θii

√
V̂ar(Xk|Xj) ≤

∑
k

|Θik|
Θii

√
2Var(Xk|Xj)

≤
∑
k

|Θik|
Θii

√
2(1/|Θik|+ Var(Xi|Xj))

≤
∑
k

|Θik|
Θii

√
2(3/|Θik|) =

√
6

Θii

∑
k

√
|Θik| ≤

√
6d/Θii

using Lemma 7 in the second inequality and Cauchy-Schwartz and the SDD property in the final
inequality. Given (10) we know that for one of the values of ` satisfies e/Θii ≤ s2

` ≤ e2/Θii; call
this `∗. By Theorem 14 we have that with probability at least 1−δ/3 that for all of the loop iterations
where 1/Θii ≤ s2

` (so the global optimal w∗, a is in the constraint set) and ` ≤ `∗

E


Xi −

∑
k/∈{i,j}

wk
Xk√

Var(Xk|Xj)
− aXj

2
 = O

(√
1/Θii

√
24d/Θii

√
2

√
log(n2/δ)

m

)
(11)

as long as m = Ω(log(n/δ)), using that d ≤ n in the union bound. Condition on this and consider
only the randomness over sample set 3. By Bernstein’s inequality and the union bound over the
loop iterations, with probability at least 1 − δ/3 as long as m = Ω(log(n/δ)), for the above value
of ` = `∗ we have that the test in 3(c) succeeds and the loop exits, and that if the loop exited in a
previous iteration then 1

Θii
= Var(Xi|X∼i) ≤ s2

` so we can apply the above guarantee (11), giving
the result.
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Algorithm HYBRIDMB(τ, γ, d):
1. We suppose the samples are split into 3 equally sized sets as in the description of

WS-REGRESSION.
2. For every node i, apply WS-REGRESSION which returns w(i), a(i), j(i), σ̂2(i).

3. Define u(i)j(i) = a(i) and u(i)k = w(i)k√
V̂ar(Xk|Xj)

.

4. Let E = {}.
5. For every pair of nodes a, b:

(a) If u(a)2
b σ̂

2(b) ≥ τ σ̂2(a) and u(b)2
aσ̂

2(a) ≥ τ σ̂2(b): add (i, j) to E.
6. Return edge set E.

H.3 Structure learning

Theorem 17. For an SDD, κ-nondegenerate GGM the following is true. Algorithm HYBRIDMB
with τ = κ2/8, γ = 2 returns the true neighborhood of every node i with probability at least 1− δ
as long as m ≥ m′1, where m′1 = O((d/κ4) log(n/δ)) where d is the max degree in the graph.

Proof. By Theorem 16 and the union bound, we may assume with probability at least 1− δ, as long
as m = Ω((d/κ4) log(n/δ)) that for every node i we have u(i) such that

E


E[Xi|X∼i]−

∑
k 6=i

u(k)Xk

2
 ≤ κ2

16Θii

and σ̂2(i) which is within a factor of 2 of 1/Θii. Applying the law of total variance and (??) we find
that (

u(k)√
Θkk

+
Θik

Θii

√
Θkk

)2

=

(
u(k) +

Θik

Θii

)2

Var(Xk|X∼k) ≤ κ2

64Θii

so if i and k are not neighbors, then Θik = 0 so

u(k)2σ̂2(k) ≤ 2u(k)2/Θkk ≤
κ2σ̂2

i

16

and if they are then |Θik| ≥ κ
√

ΘiiΘkk so using the reverse triangle inequality

u(k)2σ̂2(k) ≥ (1/2)u(k)2/Θkk ≥ (1/2)(κ2/
√

Θii−κ/8
√

Θii) ≥ (7/16)κ2/
√

Θii ≥ (7/32)κ2σ̂2(i).

From these inequalities we see that in step 5 (a) exactly the correct edges are chosen.

Theorem 18. For any SDD, κ-nondegenerate GGM the following is true. Algorithm GREEDYAND-
PRUNE with τ = κ2/8 and T = Θ(d/κ2) returns the true neighborhood of every node i with
probability at least 1 − δ as long as m = Ω((d2/κ6) log(n/δ)) where d is the max degree in the
graph.

Proof. The proof is the same as for Theorem 17 except that we use Theorem 15 instead of Theo-
rem 14, and use the slightly different pruning analysis from the proof of Theorem 7.

Remark 8 (Implementation). In experiments, to reduce the number of free parameters in HY-
BRIDMB we define γ′ = 2dγ2 and note that using γ′ instead of γ actually allows d to be eliminated
as a parameter. We also use a single sample set instead of sample splitting; we expect that the
algorithm can still be proved correct without the splitting, at the cost of a more lengthy analysis.

For completeness, we state a result for HYBRIDMB under the `1-bounded assumption used in pre-
vious work like [58, 42]. The proof follows the proof of our main result, except that we can ignore
the analysis of the first greedy step and simply use the a priori estimate for the `1 norm, which only
shrinks under conditioning.
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Theorem 19. For any κ-nondegenerate GGM with precision matrix Θ : n × n such that
maxi

∑n
j=1 |Θij | ≤ M , Algorithm HYBRIDMB with τ = O(κ2) returns the true neighborhood

of every node i with probability at least 1− δ as long as m = Ω(M2 log(n/δ)/κ4).

This guarantee matches [42], which itself improves on the guarantee in [58]. In the same setting,
GREEDYANDPRUNE achieves a sample complexity of O(M

4 log(n/δ)
κ6 ).

I Simulations and Experiments

In this section, we will compare our proposed method (GREEDYANDPRUNE) with popular meth-
ods previously introduced in the literature: the Graphical Lasso [9], the Meinhausen-Bühlmann
estimator (based on the LASSO) [10], CLIME [58], and ACLIME [42] (an adaptive version of
CLIME). In the first subsection, we consider simple attractive GGMS and show that our method al-
ways performs well compared to previous methods and sometimes outperforms them considerably.
In the second subsection, we compare the performance on a real dataset (from [50]) and show that
our methods HYBRIDMB and GREEDYANDPRUNE again compare favorably. Our experiment also
gives evidence that walk-summability is a reasonable assumption in practice.

I.1 Simple attractive GGMs where previous methods perform poorly

Three of the most popular methods for recovering a sparse precision matrix in practice are the Graph-
ical Lasso (glasso) [9], the Meinhausen-Bülhmann estimator (MB) based on the Lasso [10], and the
CLIME estimator [58]. The graphical lasso is the `1-penalized variant of the MLE (Maximum
Likelihood Estimator) for the covariance matrix; CLIME minimizes the `1-norm of the recovered
precision matrix Θ̂, given an `∞ constraint |ΣΩ − Id|∞ ≤ λ (where |M |∞ = ‖M‖1→∞ is the
entrywise max-norm). For Meinhausen-Bühlmann, we let the estimated Θ̂ have its rows be given by
the appropriate lasso estimate, scaled appropriately by the corresponding estimate for the conditional
variance. The current theoretical guarantees of these methods have very high sample complexity for
general GFFs and we find simple examples in which the scaling of their sample complexity with n
is poor. One example (which breaks the Meinhausen-Bühlmann estimator) is simply based off of a
simple random walk observed at large times; the other examples we use are simple combinations of
a path and cliques:

Example 7 (Path and cliques). Fix d and suppose n/2 is a multiple of d. Let B be a standard
Brownian motion in 1 dimension, and let X1, . . . , Xn/2 be the values of the B at equally spaced
points in the interval [1/2, 3/2], i.e. X1 = B(1/2), X2 = B((1/2) + 1/(n− 1)), . . . Equivalently,
let the covariance matrix of this block be Cov(Xi, Xj) = 1/2 + min(i, j)/n, or take the Laplacian
of the path and add the appropriate constant to the top-left entry.

Let the variables Xn/2+1,...,Xn
be independent of the Brownian motion, and let their precision

matrix be block-diagonal with d × d blocks of the form Θ1 where Θ1 is a rescaling of Θ0 so that
the coordinates have unit variance, and Θ0 = I − (ρ/d)~1~1T where ρ ∈ (0, 1). In all experiments,
we finally standardize the variables to have unit variance, following the usual recommendation
(although the variances in this example are already bounded between 0.5 and 1.5).

The results of running all methods11 on samples from this model are shown in Figure 2 for the
Frobenius error with a fixed number of samples (m = 150) where the clique degree is d = 4 and
the edge strength is ρ = 0.95. In Figure 3 we show the number of samples needed to recover
the true edge structure for the same example with d = 4 in two cases, ρ = 0.7 and ρ = 0.95.
We note that our definition of structure recovery is fairly generous — we apply a thresholding
operation to the returned Θ matrix using the true value of κ/2, so the algorithms are not penalized
for returning matrices with many small nonzero entries (which happens in practice at the optimal
tuning of parameters, even though in the theory of e.g. [10] neighborhood estimates are made just
from the support of the lasso estimate).

11For the Graphical Lasso we used the standard R packages recommended in the original papers. For
CLIME, we originally tested the standard R package but it was unable to reconstruct a path, presumably due
to numerical issues. To fix this, we reimplemented CLIME using Gurobi and used a similar implementation
for ACLIME.
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Figure 2: Normalized error (measured by ‖Θ̂−Θ‖1/n where ‖ · ‖1 denotes the `1 norm viewing the
matrix as a vector) in the precision matrix returned in Example 7 with ρ = 0.95. We note that this
quantity should be expected to scale at least linearly, because some entries of Θ grow with n. Errors
were averaged over 8 trials for each n and hyperparameters were chosen by grid search minimizing
the recovery error in a separate trial, for each value of n. The tested parameters for λ in glasso were
chosen from a log grid with 15 points from 0.0005 to 0.4, similarly for λ in MB, from 8 points from
1 to 32 for γ′ in HYBRIDMB (we set τ = 0 for a more direct comparison to MB), for CLIME from
a log grid with 15 points from 0.01 to 0.8, and for GREEDYANDPRUNE k from a rounded log grid
with 7 points from 3 to 24 and ν from a log grid with 8 points from 0.001 to 0.1.

Note in particular that from Figure 3, we see the sample complexity of GREEDYANDPRUNE scales
like O(log(n)), the information-theoretic optimal scaling which is in agreement with Theorem 7,
while in the first example (ρ = 0.7) the sample complexity of the Graphical Lasso scales roughly
like Θ(n) and in the second example (ρ = 0.95) the same is true for CLIME.

Recall that these examples are well-outside of the regime where the theoretical guarantees for meth-
ods like CLIME and Graphical Lasso can guarantee accurate reconstruction from O(polylog(n))
sammples, which is one reason we might expect them to be hard in practice. For example, the
analysis of CLIME requires a bound on the entries of the inverse covariance (after rescaling the
coordinates to have variance Θ(1)), but for the path Laplacian the entries of the precision matrix are
of order Θ(n).

We describe one additional intuition as to why the Graphical Lasso should fails on this example:
for the penalty λ‖Θ̂‖1 to respect the structure of the path (where conditional variances are small)
λ should be chosen small, but then the nodes in the cliques may gain spurious edges to the path
and other cliques. With CLIME there is a similar concern that the `1 penalty for the two types of
nodes does not scale properly. Different regularization parameters for the different types of edges
could help in this particular example — however, it is typically difficult know beforehand which
nodes have small and big conditional variances without effectively learning the GGM, as the way
to show a node has low conditional variance almost always involves finding a good predictor of it
from the other nodes. Concretely, in the case of ACLIME, it performed significantly worse than
CLIME in most of our tests. On the other hand, the rescaling performed by our proposed algorithm
HYBRIDMB does resolve this issue in a principled way.

In the above two examples we tried, the (thresholded) Meinhausen-Bühlmann estimator successfully
achieved similar sample complexity to our proposed methods, despite the fact that this example is
again well outside of the regime where its theoretical guarantees are good. However, as we see in
Figure 4 the sample complexity of this estimator is poor in another very simple example: a simple
random walk with Gaussian steps run from times n to 2n. (As before, this is the description of the
model before standardizing coordinates to variance 1.) This is again not so surprising, as we know
the Lasso (which the MB method is based upon) can only be guaranteed to obtain its “slow rate”
guarantee when the coordinates of the input are highly dependent, and the slow rate guarantee for
Lasso depends on norm parameters that are not sufficiently small in our example for good recovery
guarantee.
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Figure 3: (a) d = 4 and ρ = 0.7, (b) d = 4 and ρ = 0.95. Number of samples needed to
approximately recover true edge structure after thresholding using the test |Θ̂ij |√

Θ̂iiΘ̂jj

> κ/2, where

κ is the κ for the true precision matrix from the information-theoretic assumption (1). Samples are
drawn from the model in Example 7 with two different values for the edge strength ρ. Note that
the sample complexity of GREEDYANDPRUNE is consistent with the O(log(n)) bound established
in Theorem 7, whereas the graphical lasso and CLIME have sample complexity that appears to be
roughly Θ(n) in the left and right examples respectively. The m shown is the minimal number
of samples needed for the average number of incorrect edges per node (counting both insertions
and deletions) to be at most 1. Trials and parameter selection was performed the same way as in the
experiment for Figure 2, except that the parameters were chosen to minimize the number of incorrect
edges, instead of error in the `1 norm.
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Figure 4: Large initial time simple random walk example: the setup is the same as in Figure 3,
except that the ground truth model is a Gaussian simple random walk observed from times n to
2n. We observe in this example that the sample complexity of ACLIME and the Lasso-based
Meinhausen-Bühlmann estimator appear to scale roughly linearly in n, whereas the sample com-
plexity of GREEDYANDPRUNE and HYBRIDMB is in fact constant over the observed values of
n.
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Method CV Error CV Parameters # Non-zeros Cond. No. M ∆WS

Graphical Lasso 0.13 λ = 0.01 4378 968.6 54.8 8.7 %
CLIME 0.41 λ = 0.21 806 193.8 232.2 0.0 %
GREEDYANDPRUNE 0.27 k = 13, ν = 0.01 476 389.4 224 1.1 %
MB 0.17 λ = 0.05 1854 21439 156 1.1 %
HYBRIDMB 0.19 γ′ = 21 2758 1080843 324 2.2 %

Table 1: Results for precision matrix selected via 5-fold CV on Riboflavin dataset. The last 4
columns give summary statistics for the final recovered Θ̂ using the CV parameters on the entire
dataset: M is the maximum `1 row norm for any row of Θ, the same as in the guarantee for CLIME
cited earlier. The walk-summable relative error is ∆WS := ‖Θ̃−Θ̂‖F

‖Θ̂‖F
where Θ̃ is the closest walk-

summable matrix to Θ̂ in Frobenius norm. This shows that all of the estimated precision matrices
are either walk-summable or close to walk-summable.

Method Runtime (seconds)
Graphical Lasso 0.74

CLIME 2.12
GREEDYANDPRUNE 0.19

MB 0.48
HYBRIDMB 1.84

Table 2: Sequential runtime of methods on Riboflavin dataset with CV parameters, averaged over 10
runs. In all experiments, the graphical lasso implementation was from the glasso R package, CLIME
was implemented by calling Gurobi from R (due to numerical limitations of the standard package),
MB and HYBRIDMB were implemented using the glmnet package, and for GREEDYANDPRUNE
we used a naive R implementation.

I.2 Results for Riboflavin dataset

In this section we analyze the behavior of recovery algorithms on a popular dataset provided in
[50]. This dataset has m = 71 samples and describes (log) expression levels for n = 100 genes
in B. subtilis. We compared all of the methods listed above; our tables do not list the ACLIME
results because it did not achieve nontrivial reconstruction (it’s CV error as defined below was 0.98,
which is essentially the same as the score for returning the identity matrix). We selected parameters
using a 5-fold crossvalidation with the following least-squares style crossvalidation objective12, after
standardizing the coordinates to each have empirical variance 1 and mean 0:

E(Θ̂) :=
1

nmholdout

n∑
i=1

mholdout∑
k=1

(X
(k)
i +

∑
j 6=i

Θ̂ij + Θ̂ji

2Θ̂ii

X
(k)
i )2.

Note that the true Θ minimizes this objective as mholdout → ∞, making it equal to the sum of
conditional variances; when the initial variances are set to 1, this objective simply measures the
average amount of variance reduction achieved over the coordinates.

The results of the cross-validation process13 are shown in Table 1. As we see from the first 2 columns
of the table, Graphical Lasso achieved the greatest amount of variance reduction but returned the
densest estimate for Θ, MB and HYBRIDMB had slightly less variance reduction, GREEDYAND-
PRUNE had the sparsest estimate and achieved significantly more variance reduction that CLIME.
We see that the chosen precision matrices have large condition number and row `1-normM , compa-
rable to the number of nodes n, which is significant in that known guarantees for Graphical Lasso,
MB, CLIME and ACLIME are only interesting when these quantities are small (e.g. constant or
O(log n)). (Equivalently, the gap between variance and conditional variance is large; we note that
the true gap may be even larger if we had access to more data, since we might be able to find even

12An alternative which is sometimes used is the likelihood objective Tr(Σ̂Θ̂)−log det(Θ̂), but this objective
is not very smooth due to the log det term and may equal∞ even for entry-wise “good” reconstructions.

13Essentially the same as before, parameters for Graphical Lasso were chosen from a log-scale grid from
0.001 to 0.5 with 15 points, for CLIME similarly from 0.01 to 0.8 with 20 points, and for GREEDYANDPRUNE
from a rounded log-scale grid from 3 to 26 with 7 points and from 0.001 to 0.1 with 8 points.
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Method Number of Samples Needed Optimal Parameters
Graphical Lasso 500 λ = 0.005

CLIME 550 λ = 0.04
GREEDYANDPRUNE 550 k = 6, ν = 0.01

MB 550 λ = 0.01
HYBRIDMB 525 γ′ = 21

Table 3: Number of samples needed to achieve error of at most 0.25 incorrect edges per node after
thresholding in the semi-synthetic experiment: samples were drawn from a Θ given by thresholding
the graphical lasso estimate from the Riboflavin dataset. The details of the thresholding, etc. are the
same as in the synthetic experiment of Figure 3.

Figure 5: Left: thresholded graph from graphical lasso output on riboflavin data, used in semisyn-
thetic experiment (see Table 3). Right: unthresholded graph output by GREEDYANDPRUNE on
Riboflavin data.

better estimators for each Xi given the other coordinates.) On the other hand, the recovered matri-
ces are not far from walk-summable in Frobenius norm, suggesting that this is indeed a reasonable
assumption.

In Table 2 we record the sequential runtimes of all of the methods on this dataset using the CV
parameters. GREEDYANDPRUNE was the fastest method. For larger datasets it is important to use
parallelism, and we note we note that CLIME, MB, HYBRID.MB and GREEDYANDPRUNE are
“embarassingly parallelizable”, as each node can be solved independently, but this is not the case
for the Graphical Lasso. In practice, on our synthetic datasets and using 24 cores, CLIME becomes
faster than the Graphical Lasso and GREEDYANDPRUNE stays the fastest. In our experiment, we
did not test our proposed method SEARCHANDVALIDATE or the methods of [14], although they
have good sample complexity guarantees, due to computational limitations; in [14], they report their
methods requires on the order of days to run on this example.

We also performed a “semi-synthetic” experiment on this dataset, by taking the recovered (dense)
Θ from Graphical Lasso, thresholding it to have κ = 0.15 and computing the sample complexity to
recover the edges of the graphical model from sampled data (as in the synthetic experiments, with
error of at most 0.25 incorrect edges per node, after thresholding at κ/2). All methods performed
similarly on this test: the results are shown in Table 3.

Remark 9. Several papers have been written on faster implementations of the graphical lasso, e.g.
the Big & Quic estimator of [66]. However, these methods have mostly been developed/tested in the
regime where λ is quite large: e.g. the documentation for the R package BigQuic implementing Big
& Quic suggests using λ ≥ 0.4 and that λ = 0.1 is too small to run in a reasonable time on large
datasets. In practice, these methods may even fail to return the true optimum when given small λ;
however, the above experiment suggests this is an important regime in practice.
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J Some difficult examples

In this appendix, we continue the discussion of difficult non-walk summable examples from Sec-
tion 4.
Remark 10. Part of the motivation for the use of nearly-duplicated random variables is that one
can prove (using essentially a modified version of Lemma 23)) that in a general sparse GGM there
always exists at least one node i with at least one neighbor j such that Var(Xi|Xj) is noticeably
smaller than Var(Xi). In this example, this is trivially true but is not useful for discovering connec-
tions between unpaired variables.

Example 8 (Harder Example). The previous example, while it breaks GREEDYANDPRUNE, cannot
be a hard example in general because the edge structure is easy to determine from the covariance
matrix. (The covariance matrix is roughly block diagonal and each block corresponds to a clique).
The following variant seems significantly harder: start with Σ0 from the previous example, and then
Schur complement (i.e. condition) out d/4 many of the nodes to yield Σ′0. Then the covariance
matrix of the whole model is block diagonal with Σ′0 repeated n/(d/4) times. Finally, we randomly
permute the rows/columns.

Experimentally, it seems that Example 8 breaks the methods considered in our experiments in the
high-dimensional regime where the number of samples is much less than the dimension n. However,
this example itself cannot be computationally hard to learn: a simple algorithm to learn it thresholds
the covariance matrix to find the sub-blocks made up of the paired nodes from a block, then picks
a sub-block, conditions it out, and finds the remaining nodes from this block as the nodes whose
conditional variance went down significantly.
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