Appendix

Section A provides a proof that isometry preserves angles. Section B derives the closed-form of the gradient projection on the tangent space at a point in the Stiefel manifold. Section C gives further experimental results. Section D lists the grid considered for hyper-parameters.

A Isometry Preserves Angles

Theorem A.1. T is an isometry iff it preserves inner products.

Proof. Suppose T is an isometry. Then for any $v, w \in V$,

$$
\|T(v) - T(w)\|^2 = \|v - w\|^2
$$

$$
\langle T(v) - T(w), T(v) - T(w) \rangle = \langle v - w, v - w \rangle
$$

$$
\|T(v)\|^2 + \|T(w)\|^2 - 2\langle T(v), T(w) \rangle = \|v\|^2 + \|w\|^2 - 2\langle v, w \rangle.
$$

Since $\|T(u)\| = \|u\|$ for any $u \in V$, all the length squared terms in the last expression above cancel out and we get

$$
\langle T(v), T(w) \rangle = \langle v, w \rangle.
$$

Conversely, if T preserves inner products, then

$$
\langle T(v - w), T(v - w) \rangle = \langle v - w, v - w \rangle,
$$

which implies

$$
\|T(v - w)\| = \|v - w\|,
$$

and since T is linear,

$$
\|T(v) - T(w)\| = \|v - w\|.
$$

This shows that T preserves distance.

B Closed-form of Projection in Tangent Space

This section closely follows the arguments of Tagare [2011]. Let $\{X \in \mathbb{R}^{n \times p} | X^\top X = I\}$ defines a manifold in Euclidean space $\mathbb{R}^{n \times p}$, where $n > p$. This manifold is called the Stiefel manifold. Let T_X denotes a tangent space at X.

Lemma B.1. Any $Z \in T_X$ satisfies:

$$
Z^\top X + X^\top Z = 0
$$

i.e. $Z^\top X$ is a skew-symmetric $p \times p$ matrix.

Note, that X consists of p orthonormal vectors in \mathbb{R}^n. Let X_\perp be a matrix consisting of the additional $n - p$ orthonormal vectors in \mathbb{R}^n. X_\perp is orthogonal compliment of X, $X^\top X_\perp = 0$. The concatenation of X and X_\perp, $[XX_\perp]$ is $n \times n$ orthonormal matrix. Then, any matrix $U \in \mathbb{R}^{n \times p}$ can be represented as: $U = XA + X_\perp B$, where A is a $p \times p$ matrix, and B is a $(n - p) \times p$ matrix.

Lemma B.2. A matrix $Z = XA + X_\perp B$ belongs to the tangent space at a point on Stiefel manifold T_X iff A is skew-symmetric.

Let $G \in \mathbb{R}^{n \times p}$ be the gradient computed at X. Let the projection of the gradient on the tangent space is denoted by $\pi_{T_X}(G)$.

Lemma B.3. Under the canonical inner product, the projection of the gradient on the tangent space is given by $\pi_{T_X}(G) = AX$, where $A = GX^\top - XG^\top$.

13
Proof. Express $G = XG_A + X\bot G_B$. Let Z be any vector in the tangent space, expressed as $Z = XZ_A + X\bot Z_B$, where Z_A is a skew-symmetric matrix according to B.2. Therefore, \[
\pi_T X(G) = \text{tr}(G^\top Z),
= \text{tr}((XG_A + X\bot G_B)^\top (XZ_A + X\bot Z_B)),
= \text{tr}(G_A^\top Z_A + G_B^\top Z_B). \tag{11}
\]
Writing G_A as $G_A = \text{sym}(G_A) + \text{skew}(G_A)$, and plugging in (11) gives, \[
\pi_T X(G) = \text{tr}(\text{skew}(G_A)^\top Z_A + G_B^\top Z_B). \tag{12}
\]
Let $U = XA + X\bot B$ is the vector that represents the projection of G on the tangent space at X. Then, \[
\langle U, Z \rangle_c = \text{tr}(U^\top (I - \frac{1}{2} XX^\top) Z),
= \text{tr}((XA + X\bot B)^\top (I - \frac{1}{2} XX^\top)(XZ_A + X\bot Z_B)),
= \text{tr}(\frac{1}{2} A^\top Z_A + B^\top Z_B). \tag{13}
\]
By comparing (12) and (13), we get $A = 2\text{skew}(G_A)$ and $B = G_B$. Thus, \[
U = 2X\text{skew}(G_A) + X\bot G_B,
= X(G_A - G_A^\top) + X\bot G_B, \quad \therefore \text{skew}(G_A) = \frac{1}{2}(G_A - G_A^\top)
= XG_A - XG_A^\top + G - XG_A, \quad \therefore G = XG_A + X\bot G_B
= G - XG_A^\top,
= G - XG^\top X, \quad \therefore G_A = X^\top G,
= GX^\top X - XG^\top X,
= (GX^\top - XG^\top)X
\]

C More Results

Table 3: Accuracy (2) and Forgetting (3) results of continual learning experiments for larger episodic memory sizes. 2, 3 and 5 samples per class per task are stored, respectively. Top table is for Split CIFAR. Bottom table is for Split miniImageNet.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ACCURACY</th>
<th>FORGETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEM</td>
<td>52.2 (±2.59)</td>
<td>56.1 (±1.52)</td>
</tr>
<tr>
<td>ER-RING</td>
<td>61.9 (±1.92)</td>
<td>64.8 (±0.77)</td>
</tr>
<tr>
<td>ORTHOG-SUBSPACE</td>
<td>64.7 (±0.53)</td>
<td>66.8 (±0.83)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ACCURACY</th>
<th>FORGETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEM</td>
<td>45.2 (±2.35)</td>
<td>47.5 (±2.59)</td>
</tr>
<tr>
<td>ER-RING</td>
<td>51.2 (±1.99)</td>
<td>53.9 (±2.04)</td>
</tr>
<tr>
<td>ORTHOG-SUBSPACE</td>
<td>53.4 (±1.23)</td>
<td>55.6 (±0.55)</td>
</tr>
</tbody>
</table>

D Hyper-parameter Selection

In this section, we report the hyper-parameters grid considered for experiments. The best values for different benchmarks are given in parenthesis.
• Multitask
 – learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
 0.1 (MNIST perm, rot), 0.3, 1.0]

• Finetune
 – learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
 0.1 (MNIST perm, rot), 0.3, 1.0]

• EWC
 – learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
 0.1 (MNIST perm, rot), 0.3, 1.0]
 – regularization: [0.1, 1, 10 (MNIST perm, rot, CIFAR,
 miniImageNet), 100, 1000]

• AGEM
 – learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
 0.1 (MNIST perm, rot), 0.3, 1.0]

• MER
 – learning rate: [0.003, 0.01, 0.03 (MNIST, CIFAR,
 miniImageNet), 0.1, 0.3, 1.0]
 – within batch meta-learning rate: [0.01, 0.03, 0.1
 (MNIST, CIFAR, miniImageNet), 0.3, 1.0]
 – current batch learning rate multiplier: [1, 2, 5 (CIFAR,
 miniImageNet), 10 (MNIST)]

• ER-Ring
 – learning rate: [0.003, 0.01, 0.03 (CIFAR, miniImageNet),
 0.1 (MNIST perm, rot), 0.3, 1.0]

• ORTHOG-SUBSPACE
 – learning rate: [0.003, 0.01, 0.03, 0.1 (MNIST perm, rot),
 0.2 (miniImageNet), 0.4 (CIFAR), 1.0]
Figure 3: Histogram of inner product of current task and memory gradients in all layers in Split CIFAR.