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Abstract

Visual and audio modalities are highly correlated, yet they contain different infor-
mation. Their strong correlation makes it possible to predict the semantics of one
from the other with good accuracy. Their intrinsic differences make cross-modal
prediction a potentially more rewarding pretext task for self-supervised learning
of video and audio representations compared to within-modality learning. Based
on this intuition, we propose Cross-Modal Deep Clustering (XDC), a novel self-
supervised method that leverages unsupervised clustering in one modality (e.g.,
audio) as a supervisory signal for the other modality (e.g., video). This cross-modal
supervision helps XDC utilize the semantic correlation and the differences between
the two modalities. Our experiments show that XDC outperforms single-modality
clustering and other multi-modal variants. XDC achieves state-of-the-art accuracy
among self-supervised methods on multiple video and audio benchmarks. Most
importantly, our video model pretrained on large-scale unlabeled data significantly
outperforms the same model pretrained with full-supervision on ImageNet and
Kinetics for action recognition on HMDBS51 and UCF101. To the best of our knowl-
edge, XDC is the first self-supervised learning method that outperforms large-scale
fully-supervised pretraining for action recognition on the same architecture.

1 Introduction

Do we need to explicitly name the actions of “laughing” or “sneezing” in order to recognize them? Or
can we learn to visually classify them without labels by associating characteristic sounds with these
actions? Indeed, a wide literature in perceptual studies provides evidence that we rely heavily on
hearing sounds to make sense of actions and dynamic events in the visual world. For example, objects
moving together are perceived as bouncing off each other when the visual stimulus is accompanied
by a brief sound [55], and the location and timing of sounds are leveraged as important cues to direct
our spatiotemporal visual attention [19, 42]. The influence of hearing sounds in visual perception is
also suggested by perceptual studies showing that individuals affected by profound deafness exhibit
poorer visual perceptual performance compared to age-matched hearing controls [1 1, 39].

In this work, we investigate the hypothesis that spatiotemporal models for action recognition can
be reliably pretrained from unlabeled videos by capturing cross-modal information from audio and
video. The motivation for our study stems from two fundamental challenges facing a fully-supervised
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line of attack to learning video models. The first challenge is the exorbitant cost of scaling up
the size of manually-labeled video datasets. The recent creation of large-scale action recognition
datasets [5, 15, 25, 26] has undoubtedly enabled a major leap forward in video models accuracies.
However, it may be argued that additional significant gains by dataset growth would require scaling up
existing labeled datasets by several orders of magnitude. The second challenge is posed by the unclear
definition of suitable label spaces for action recognition. Recent video datasets differ substantially in
their label spaces, which range from sports actions [25] to verb-noun pairs for kitchen activities [7].
This suggests that the definition of the “right” label space for action recognition, and more generally
for video understanding, is still very much up for debate. It also implies that finetuning models
pretrained on large-scale labeled datasets is a suboptimal proxy for learning models for small- or
medium-size datasets due to the label-space gap often encountered between source and target datasets.

In this paper, we present three approaches for training video models from self-supervised audio-visual
information. At a high-level, the idea behind all three frameworks is to leverage one modality
(say, audio) as a supervisory signal for the other (say, video). We posit that this is a promising
avenue because of the simultaneous synergy and complementarity of audio and video: correlations
between these two modalities make it possible to perform prediction from one to the other, while
their intrinsic differences make cross-modal prediction an enriching self-supervised task compared to
within-modality learning. Specifically, we adapt the single-modality DeepCluster work of Caron et
al. [6] to our multi-modal setting. DeepCluster was introduced as a self-supervised procedure for
learning image representation. It alternates between unsupervised clustering of image features and
using these cluster assignments as pseudo-labels to revise the image representation. In our work,
the clusters learned from one modality are used as pseudo-labels to refine the representation for the
other modality. In two of our approaches—Multi-Head Deep Clustering (MDC) and Concatenation
Deep Clustering (CDC)—the pseudo-labels from the second modality are supplementary, i.e., they
complement the pseudo-labels generated in the first modality. The third approach—Cross-Modal
Deep Clustering (XDC)—instead uses the pseudo-labels from the other modality as an exclusive
supervisory signal. This means that in XDC, the audio clusters drive the learning of the video
representation and vice versa. Our experiments support several interesting conclusions:
* All three of our cross-modal methods yield representations that generalize better to the downstream
tasks of action recognition and audio classification, compared to their within-modality counterparts.
¢ XDC (i.e., the cross-modal deep clustering relying on the other modality as an exclusive supervi-
sory signal) outperforms all the other approaches. This underscores the complementarity of audio
and video and the benefits of learning label-spaces across modalities.
 Self-supervised cross-modal learning with XDC on a large-scale video dataset yields an action
recognition model that achieves higher accuracy when finetuned on HMDB51 or UCF101, com-
pared to that produced by fully-supervised pretraining on Kinetics. To the best of our knowledge,
this is the first method to demonstrate that self-supervised video representation learning outper-
forms large-scale fully-supervised pretraining for action recognition. Moreover, unlike previous
self-supervised methods that are only pretrained on curated data (e.g., Kinetics [26] without action
labels), we also report results of XDC pretrained on a large-scale uncurated video dataset.

2 Related work

Early unsupervised representation learning. Pioneering works include deep belief networks [20],
autoencoders [21, 64], shift-invariant decoders [51], sparse coding algorithms [32], and stacked
ISAs [31]. While these approaches learn by reconstructing the input, our approach learns from a
self-supervised pretext task by generating pseudo-labels for supervised learning from unlabeled data.

Self-supervised representation learning from images and videos. Several pretext tasks exploit
image spatial context, e.g., by predicting the relative position of patches [8] or solving jigsaw
puzzles [40]. Others include creating image classification pseudo-labels (e.g., through artificial
rotations [ | 3] or clustering features [6]), colorization [77], inpainting [46], motion segmentation [45],

and instance counting [41]. Some works have extended image pretext tasks to video [27, 68, 75].
Other video pretext tasks include frame ordering [9, 33, 38, 74], predicting flow or colors [30, 67],
exploiting region correspondences across frames [22, 23, 71, 72], future frame prediction [35, 36, 57,

, 60], and tracking [73]. Unlike this prior work, our model uses two modalities: video and audio.
Cross-modal learning and distillation. Several works [2, 16] train a fully-supervised encoder on
one modality and distill its discriminative knowledge to an encoder of a different modality. Other
works learn from unlabeled data for a specific target task [78, 53]. Unlike these methods, our work

is purely self-supervised and aims at learning representations that transfer well to a wide range



Figure 1:Overview of our framework. We present Single-Modality Deep Clustering (SDC) baseline vs. our

three multi-modal deep clustering models: Multi-Head Deep Clustering (MDC), Concatenation Deep Clustering
(CDC), and Cross-Modal Deep Clustering (XDC). The video and audio encdele@(dE 1) map unlabeled

videos to visual and audio featurds @ndf,). These features, or their concatenations, are clustered using
k-means. The cluster assignments are then used as pseudo-labels to train the encoders. We start with randomly-
initialized encoders, then alternates between clustering to generate pseudo-labels and training to improve the
encoders. The four models employ different ways to cluster features and generate self-supervision signals.
lllustration video is from [60].

of downstream tasks. Previous cross-modal self-supervised methods most relevant to our work
include audio-visual correspondendg, [deep aligned representatiori§, [audio-visual temporal
synchronizationi8, 43], contrastive multiview codingi{?], and learning image representations using
ambient sound44]. While [1, 3, 44, 67] use only a single frame, we use a video clip. Unlike our
method, {14] clusters handcrafted audio features and does not iterate on the pseudo-ighels] [
require constructing positive/negative examples for in-sync and out-of-sync video-audio pairs. This
sampling strategy makes these approaches more dif cult to scale compared to ours, as many potential
out-of-sync pairs can be generated, yielding largely different results depending on the sampling
choice Pg. Recent works, such as MIL-NCET] and CBT [51], learn from unlabeled instructional
videos using text from ASR, while our approach makes use of the audio signal instead.

3 Technical approach

Here, we brie y discuss previous work on single-modality deep clustering in imagesen, we
introduce our three multi-modal deep clustering frameworks for representation learning (Figure 1).

3.1 Single-modality deep clustering

Caronet al. [6] proposed DeepCluster for self-supervised representation learning from images.
DeepCluster iteratively clusters deep features from a single-modality encoder, and then uses the cluster
assignments to train the same encoder to improve its representation. Inspired by the simplicity of this
work, our paper studies deep clustering in the large-scale multi-modal setting. For completeness, we
summarize DeepCluster details. Détbe the set of unlabeled inputs.g, images)E be an encoder

that maps an input 2 X to a deep feature vectbr2 RY. DeepCluster iterates between clustering

the feature§ = ff = E(X) j x 2 X g and discriminative training to improve using the clustering
assignments as pseudo-labels. The process starts with a randomly-initialiaed only the weights

of the classi cationfc -layer are reset between clustering iterations when the supervision-taxonomy
is switched. DeepCluster uses a 2D CNN\g(ResNet50) for E and clusters the features after each
epoch usingk-means. We refer to DeepClusteriagle-Modality Deep Clustering (SDC)

3.2 Multi-modal deep clustering

Contrary to the single-modality case, there exist multiple encoders in a multi-modal setting, each
of which encodes a different modality of the input. In our paper, we consider two modalities, the
visual and the audio modalities from the unlabeled training video clips. In particulr, betthe

set of unlabeled video clips, artg, andE, be the visual and audio encoders, respectively. Let
Fy=ffy, = Ey(x) 2 R™ jx 2 XgandF, = ff, = Ea(x) 2 R% jx 2 X gbe the set of visual
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