A Analysis of Existing Algorithms

Let f** denote a function that incorporates an attacker strategy. When k = 0, f*15(D, Wy, Gy, k)
is the result of applying the CH inequality to the IS weighted returns, obtained from D, which
additionally includes k copies of a trajectory with an IS weight of w, and return of g,.. Notice that
f** is written in terms of IS weights. The following defines fC VIS written in terms of IS weights,
when k = 0:
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For the rest of the paper, we use the following notation. LetZ = {I : Ja € A,3s € §,I =

| Y e(Ar = a, Sy = s)/my(Ay = a, S; = 5)}, i.e., the set of all IS weights that could be obtained
from policies 7. and 7. The maximum and minimum IS weight is denoted by i* = max(Z)
and i™® = min(Z), respectively. For shorthand, let the sum of IS weights in D be written as
B =>"1 , w;. Also, we assume that 3 > 0 to ensure that WIS is well-defined.

Next, we define a new term to describe how an attacker can increase the 1 — § confidence lower
bound on the mean of a bounded and real-valued random variable. We say that f** is adversarially
monotonic given its inputs, if an attacker can maximize f** by maximizing the value of the added
samples. For brevity, we say that f** is adversarially monotonic.

Definition 1. f** is adversarially monotonic for n > 1, k > 0, my, . and D if both

1. There exists two constants p > 0 and q € [0,1], with pg € [0,i*], such that
f**(D,p,q,k) > f**(D,p,q,0), i.e., adding k copies of pq does not decrease f;

2. a%yf*’*(D,i*,gy, k) > 0and ﬁf*’*(D, wy, 1, k) > 0, with no local maximums, i.e., f is
a non-decreasing function w.r.t. the IS weight and return added by the attacker, respectively.

Deﬁnitionmeans that f** is maximized when w, and g, is maximized. In other words, the optimal
strategy is to add k copies of the trajectory with the maximum IS weight and return. Notice that
f** does not incorporate all possible attack functions, M: specifically, the set of attacks, where the
attacker can choose to add k different trajectories, is omitted. As described in Theorem ] to perform
a worst-case analysis, only the optimal attack must be incorporated as part of f**.

In the following two lemmas, we show that a couple well-known Seldonian algorithms are adversari-
ally monotonic.

Lemma 1. Under Assumptions and fER 1S is adversarially monotonic.

Proof. Let w, > 13" w;g; + ("Hc) (b 211(17(;{‘2) -b ln(lrfa)> and g, = 1. To show that

wygy € [0,4*] as stated in (1) in Deﬁmtlonl 1] it must be that w,, € [0 i*]. Foralli € {1,...,n},
w;g; € [0,4*]. Thus, for any given dataset, 0 < 1/n)." | w;g; < t*/n. Using this fact, for any
given D, the range of w,, is
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Therefore, w,, can be selected such that wy g, € [0,i*]. It follows that

H, I In(1/s)
fC S(D wy71 k kalgz )(1)—b m

= n+ k) [ In(1/s) /ln 1/5 In(Y/s)
n—i—kz wigs + n+k< Z wigi + 2(n+ k) 2(n+ k)

1 Z In( ;/6)

:fCH’IS(D7wyvgy70)~

Next, we show that (Z) in Definition[T]holds.
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Notice that both partial derivatives are non-negative when g, = 1 and w, = ", re-

spectively. To find any critical points, the following equations are solved simultaneously:
9/0gy fMVIS(D,wy, gy, k) = 0 and 8/0w, f*VIS(D, w,, g,, k) = 0. Notice that points along
the line (w4, 0) and (0, g, ) are all critical points. The following partial derivatives are computed to
classify these points:
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Using the second partial derivative test, the critical points are substituted into the following equation:
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which is less than zero. Therefore, points along the line (wgy,0) and (0, g,) are saddle points. [

Lemma 2. Under Assumptions and 2} f* W s adversarially monotonic.



Proof. First, we show that (T)) in Definition[T]holds with g, = 1 and w, = 0.
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where (]I[) follows from b4/ % > b 211(]7(114{‘2) . Second, we show that in Deﬁnitionholds.
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Notice that (2)) is non-negative: 1) When g, = 1, @) is positive as long as there exists at least one
gi < 1forie {1,...,n};2)Ifall g; = 1 in D, then () is zero. The following is the derivative of
JEVS(D w,, gy, k) wrt. g,
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which is also non-negative. To find any critical points, the following equations are solved simulta-
neously: 9/9g, fVI8(D,wy, g,, k) = 0 and 9/0w, f*WS(D, w,, g,, k) = 0. Notice that (3) is
zero when w,, = 0. Plugging w, = 0 into 8/0w,, f*Y15(D, w,, g,, k) = 0, and then solving for
gy, yields the x coordinate of a critical point.
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The following partial derivatives are computed to classify whether (0, 2i=: wigi/g) is a minimum,
maximum or saddle point:
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Using the second partial derivative test, the critical point is substituted into the following equation:
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which is less that zero. Therefore, (w, = 0, g, = i1 wi9:/s) is a saddle point. O

Next, we describe the trajectory that must be added to D to execute the optimal attack.
Definition 2 (Optimal Attack). An optimal attack strategy for k > 0 is to select

argmaxf*’*(D,wy =w(H, 7., ), gy = g(H),k).

HeM,

Definition 3 (Optimal Trajectory). Given that a maximum exists, let (a’,s') € arg max 7;283
acA,seS ’

If:zgz i) > 1, let H* = {SO = S/,AQ = a’,RO = 1,...,57-_1 = S/,AT_l = a/,R.,-_l = 1}

Otherwise, let H* = {Sy = s, Ag = a/, Ry = 1}.

Theorem 1. For any adversarially monotonic off-policy estimator, the optimal attack strategy is to
add k repetitions of H* to D.

Proof. An optimal attack strategy is equivalent to

argmaxf*’*(D,w(H,We,m,),g(H),k): arg max f*’*(DJ*,g*,k).
HeHr, i*€Z,g*€[0,1]

For any off-policy estimator that is adversarially monotonic, by (I)) of Definition|[T] there exists a pg
such that

f*’*(D7p,q,k‘) > f*’*(D,p,q,O).

A return that maximizes f** (D, wy, gy, k) implies that

max f**(D,p,g", k) >f"*(D,p,q,k).
g*€[0,1]

fCH, IS and

FEHWIS are non-decreasing w.r.t. the return. Therefore,

argmax f**(D,p,g", k) = max g
g*€[0,1] g*€[0,1]

Setting g* = 1, an importance weight that maximizes f**(D, w,, 1, k) implies that
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fEH-WIS are also non-decreasing w.r.t. the importance weight. So,

argmax f**(D,*, 1, k) = maxi*.
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Since the IS weight is a product of ratios over the length of a trajectory, the ratio at a single time step
is maximized.
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To create H*, if the ratio at a single time step is greater than 1, o’ and s’ is repeated for the maximum
length of the trajectory, 7; otherwise, a’ and s’ is repeated only for a single time step. Thus, H*
represents the trajectory with the largest return and importance weight. O

Next, we show how Equations (2)) and (), that define quasi-a-security and a-security, respectively,
apply to L**. Specifically, we show that a safety test using L** as a metric is a valid safety test that
first predicts the performance of . using D, and then bounds the predicted performance with high
probability. If L**(w., D) > J(m), the safety test returns True; otherwise it returns False.

Lemma 3. A safety test using L** is quasi-a--secure if Vm € M, Pr (L*’* (7re, m(D, k)) > J(mp)+
o) < Pr (L (me, D) > J(m)).

Proof. Forx € NT,let P : Il x D™ — R* denote any function to predict the performance of some
7. € II, using data D collected from 7,. Also, let B : R* x [0,1] — R denote any function that

bounds performance with high probability, 1 — §, where § € [0, 1]. Starting with the definition of
quasi-a-security, we have that Vm € M,

Pr (cp(ﬂe,m(D,k),J(wb) +a) = True) <P ( (e, D, J(m3)) = True)
— Pr (B(P(we,m(D,k)),é) J(m) + ) < Pr (B(P(We,D),d) > J(m,))
— Pr <L*’*(7re7m(D,k)) > J(m) + a) < Pr (L*’*(ﬂ'e,D) > J(m,)).
0

Lemma 4. A safety test using L** is a-secure if Vm € M, Pr (L*’* (Te,m(D, k) > J(m) +a) <
J.

Proof. Forx € N, let P : II x DT — R* denote any function to predict the performance of some
7. € II, using data D collected from 7,. Also, let B : R* x [0,1] — R denote any function that
bounds performance with high probability, 1 — §, where § € [0, 1]. Starting with the definition of
a-security, we have that Vm € M,

Pr (g@(ﬂ'e, m(D, k),J (m) + ) = True) <d
— Pr (B(P(ﬂe,m(D,k)),é) > J(m) + a) <4
— Pr (L*’*(we,m(D7k)) > J(m) + a) <.

O

In Lemma 5] we describe a condition that must hold in order to compute a valid . The condition
states that a valid v must be equal to or greater than the largest increase in the 1 — § confidence lower
bound on J(.) across all datasets D € D7t and all attack strategies (i.e., the optimal attack).

Lemma 5. A safety test using L** is quasi-a-secure or a-secure if VD € D and Ym € M,
L*”‘(We,m(D7 k:)) < L**(me, D) + .



Proof. If L** (e, m(D, k)) < L**(m¢, D) + c, then

L** (e, D) > L** (m0, m(D, k)) — o @)
A safety test checks whether L** (7., D) > J (7). When (@) holds VD € DIt and Ym € M,
Pr(L**(we, D) > J(m)) > Pr(L*”* (We,m(D,k)) —a > J(m)), 5)

and hence via algebra that
Pr(L** (me,m(D, k) > J(m) + @) < Pr(L**(me, D) > J(m)),

which, by Lemma (3], implies that a safety test using L** is quasi-a-secure. In the case of a-security,
by Assumption[3} we require a “safe” safety test. That is,

Pr(L**(me, D) > J(mp)) < 4. (6)
From the transitive property of >, we can conclude from (3 and (6) that
Pr(L** (me,m(D, k) — a > J(my)) <6,
and hence via algebra that
Pr(L*’*(ﬂe,m(D, k)) > J(m) + ) < 4,
which, by Lemma (@), implies that a safety test using L** is a-secure. O

B Proof of Theorem 1]

The result of (3) for the estimator that uses CH and IS is the following:
o = max fS(Di* 1,k) — LN S(x,, D)
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Recall that b represents the upper bound of all IS weighted returns. Let b = ¢*, and g; = 0 for all

1e{l,...,n}.
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The result of (3)) for the estimator that uses CH and WIS is the following:
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Letg; =0foralli € {1,...,n}. Also, notice that b = 1 because importance weighted returns are in
range [0, 1] for WIS.
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C Panacea: An Algorithm for Safe and Secure Policy Improvement

Table 1: a—security of Panacea.

Estimator «
In(1/5) In(1/5) k
CH, IS C(\/ 2n/A - \/2(n+k) + (n+k))
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CH’ WIS on 2(n+k) (amintkc)

Algorithm 1 Panacea(D, 7., a, k)

1: Compute ¢, using « and k, given estimator
2: for H € D do

3: if IS weight computed using H is greater than ¢ then
4: Set IS weight to ¢
5: return clipped D

C.1 Proof of Corollary/l]

Let o and k' denote the user-specified inputs to Panacea. Based on Table RIS —

of (Il — [ 4 k) if B = k. Recall that b is the upper bound on all IS weighted

returns. Due to clipping, b = ¢S ‘and let g; = 0 for all i € {1,...,n}. The result of (6)) for the
estimator that uses CH and IS is the following:

max 15 (Panacea(D, M%), <M 1 k) — LS (7, Panacea(D, %))
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For WIS, recall that no matter how the clipping weight is set, b < 1 because importance weighted
returns are in range [0, 1], and 8 # 0. So, let w; = 0 foralli € {1,...,n — 1} and w,, = ™",

Also, let g; = 0 forall i € {1,...,n}. Based on Table CHWIS — jmin (o/ — lngl/‘;) +

21?15:{‘2) ) /k (1 —o + 1“;{6) - ;?ﬁi‘%) if k" = k. The result of (6) for the estimator that uses



CH and WIS is the following:
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C.2 Proof of Corollary 2

Let o and &’ denote the user-specified inputs to Panacea. If &’ = £k, i.e., the user inputs the correct
number of trajectories added by the attacker, the result of (6) for the estimator that uses CH and IS is
the following:

o= max f(Panacea(D,c),c,1,k) — L"(r,, Panacea(D, c))
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If &' = k, the result of (6] for the estimator that uses CH and WIS is the following:
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Setting the right-hand side of to a, and solving for c equals:
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