
A Analysis of Existing Algorithms

Let f∗,? denote a function that incorporates an attacker strategy. When k = 0, fCH, IS(D,wy, gy, k)
is the result of applying the CH inequality to the IS weighted returns, obtained from D, which
additionally includes k copies of a trajectory with an IS weight of wy and return of gy. Notice that
f∗,? is written in terms of IS weights. The following defines fCH, WIS, written in terms of IS weights,
when k = 0:

fCH, WIS(D,wy, gy, 0) =
1∑n
i=1 wi

n∑
i=1

wigi − b
√

ln(1/δ)

2n
.

For the rest of the paper, we use the following notation. Let I = {I : ∃a ∈ A,∃s ∈ S, I =∏τ−1
t=0 πe(At = a, St = s)/πb(At = a, St = s)}, i.e., the set of all IS weights that could be obtained

from policies πe and πb. The maximum and minimum IS weight is denoted by i∗ = max(I)
and imin = min(I), respectively. For shorthand, let the sum of IS weights in D be written as
β =

∑n
i=1 wi. Also, we assume that β > 0 to ensure that WIS is well-defined.

Next, we define a new term to describe how an attacker can increase the 1 − δ confidence lower
bound on the mean of a bounded and real-valued random variable. We say that f∗,? is adversarially
monotonic given its inputs, if an attacker can maximize f∗,? by maximizing the value of the added
samples. For brevity, we say that f∗,? is adversarially monotonic.

Definition 1. f∗,? is adversarially monotonic for n > 1, k > 0, πb, πe and D if both

1. There exists two constants p ≥ 0 and q ∈ [0, 1], with pq ∈ [0, i∗], such that
f∗,?(D, p, q, k) ≥ f∗,?(D, p, q, 0), i.e., adding k copies of pq does not decrease f ;

2. ∂
∂gy

f∗,?(D, i∗, gy, k) ≥ 0 and ∂
∂wy

f∗,?(D,wy, 1, k) ≥ 0, with no local maximums, i.e., f is
a non-decreasing function w.r.t. the IS weight and return added by the attacker, respectively.

Definition 1 means that f∗,? is maximized when wy and gy is maximized. In other words, the optimal
strategy is to add k copies of the trajectory with the maximum IS weight and return. Notice that
f∗,? does not incorporate all possible attack functions,M: specifically, the set of attacks, where the
attacker can choose to add k different trajectories, is omitted. As described in Theorem 1, to perform
a worst-case analysis, only the optimal attack must be incorporated as part of f∗,?.

In the following two lemmas, we show that a couple well-known Seldonian algorithms are adversari-
ally monotonic.

Lemma 1. Under Assumptions 1, 2 and 3, fCH, IS is adversarially monotonic.

Proof. Let wy ≥ 1
n

∑n
i=1 wigi + (n+k)

k

(
b
√

ln(1/δ)
2(n+k) − b

√
ln(1/δ)
2n

)
and gy = 1. To show that

wygy ∈ [0, i∗] as stated in (1) in Definition 1, it must be that wy ∈ [0, i∗]. For all i ∈ {1, . . . , n},
wigi ∈ [0, i∗]. Thus, for any given dataset, 0 ≤ 1/n

∑n
i=1 wigi ≤ i∗/n. Using this fact, for any

given D, the range of wy is

1

n

n∑
i=1

(0) +
(n+ k)

k

(
b

√
ln(1/δ)

2(n+ k)
− b
√

ln(1/δ)

2n

)
≤wy ≤

1

n

n∑
i=1

(i∗) +
(n+ k)

k

(
b

√
ln(1/δ)

2(n+ k)
− b
√

ln(1/δ)

2n

)

b(n+ k)

k

(√
ln(1/δ)

2(n+ k)
−
√

ln(1/δ)

2n︸ ︷︷ ︸
<0

)
≤wy ≤

i∗

n
+
b(n+ k)

k

(√
ln(1/δ)

2(n+ k)
−
√

ln(1/δ)

2n

)
︸ ︷︷ ︸

<0

≤ i∗.

1

Therefore, wy can be selected such that wygy ∈ [0, i∗]. It follows that

fCH, IS(D,wy, 1, k) =
1

n+ k

n∑
i=1

wigi +
k

n+ k
(wy)(1)− b

√
ln(1/δ)

2(n+ k)

≥ 1

n+ k

n∑
i=1

wigi +
k

n+ k

(
1

n

n∑
i=1

wigi +
(n+ k)

k

(
b

√
ln(1/δ)

2(n+ k)
− b
√

ln(1/δ)

2n

))
− b

√
ln(1/δ)

2(n+ k)

=
1

n

n∑
i=1

wigi − b
√

ln(1/δ)

2n

=fCH, IS(D,wy, gy, 0).

Next, we show that (2) in Definition 1 holds.

∂

∂wy
f∗,?(D,wy, gy, k) =

∂

∂wy

(n∑
i=1

wigi
n+ k

)
+
kwygy
n+ k

− b

√
ln(1/δ)

2(n+ k)

=
kgy
n+ k

∂

∂wy
f∗,?(D,wy, 1, k) =

k

n+ k
.

∂

∂gy
f∗,?(D,wy, gy, k) =

∂

∂gy

(n∑
i=1

wigi
n+ k

)
+
kwygy
n+ k

− b

√
ln(1/δ)

2(n+ k)

=
kwy
n+ k

∂

∂gy
f∗,?(D, i∗, gy, k) =

ki∗

n+ k
.

Notice that both partial derivatives are non-negative when gy = 1 and wy = i∗, re-
spectively. To find any critical points, the following equations are solved simultaneously:
∂/∂gyf

CH, WIS(D,wy, gy, k) = 0 and ∂/∂wyfCH, WIS(D,wy, gy, k) = 0. Notice that points along
the line (wg, 0) and (0, gy) are all critical points. The following partial derivatives are computed to
classify these points:

∂

∂(wy)2
(D,wy, gy, k) =0.

∂

∂(gy)2
(D,wy, gy, k) =0.

∂

∂gywy
(D,wy, gy, k) =

k

n+ k
.

Using the second partial derivative test, the critical points are substituted into the following equation:

∂

∂(wy)2
· ∂

∂(gy)2
−
(

∂

∂gywy

)2

=−
(

k

n+ k

)2

,

which is less than zero. Therefore, points along the line (wg, 0) and (0, gy) are saddle points.

Lemma 2. Under Assumptions 1 and 2, fCH, WIS is adversarially monotonic.

2

Proof. First, we show that (1) in Definition 1 holds with gy = 1 and wy = 0.

fCH, WIS(D,wy, gy, k) =
1

kwy + β

(
kwygy +

n∑
i=1

wigi

)
− b

√
ln(1/δ)

2(n+ k)

fCH, WIS(D, 0, 1, k) =
1

β

n∑
i=1

wigi − b

√
ln(1/δ)

2(n+ k)

>
1

β

n∑
i=1

wigi − b
√

ln(1/δ)

2n
(1)

=fCH, WIS(D,wy, gy, 0),

where (1) follows from b
√

ln(1/δ)
2n > b

√
ln(1/δ)
2(n+k) . Second, we show that (2) in Definition 1 holds.

∂

∂wy
fCH, WIS(V,wy, gy, k) =−

k
∑n
i=1 wigi

(kwy + β
)2 − k2wygy

(kwy + β)2
+

kgy
(kwy + β)

=−
k
∑n
i=1 wigi

(kwy + β
)2 − k2wygy

(kwy + β)2
+
kgy(kwy + β)

(kwy + β)2

=−
k
∑n
i=1 wigi

(kwy + β
)2 +

kgyβ

(kwy + β)2

=−
k
∑n
i=1 wigi

(kwy + β
)2 +

k
∑n
i=1 wigy

(kwy + β)2

=
k

(β + kwy)2

n∑
i=1

wi(gy − gi)

∂

∂wy
fCH, WIS(V,wy, 1, k) =

k

(β + kwy)2

n∑
i=1

wi(1− gi). (2)

Notice that (2) is non-negative: 1) When gy = 1, (2) is positive as long as there exists at least one
gi < 1 for i ∈ {1, . . . , n}; 2) If all gi = 1 in D, then (2) is zero. The following is the derivative of
fCH, WIS(D,wy, gy, k) w.r.t. gy:

∂

∂gy
fCH, WIS(D,wy, gy, k) =

kwy
(β + kwy)

(3)

∂

∂gy
fCH, WIS(D, i∗, gy, k) =

ki∗

(β + ki∗)
,

which is also non-negative. To find any critical points, the following equations are solved simulta-
neously: ∂/∂gyfCH, WIS(D,wy, gy, k) = 0 and ∂/∂wyfCH, WIS(D,wy, gy, k) = 0. Notice that (3) is
zero when wy = 0. Plugging wy = 0 into ∂/∂wyfCH, WIS(D,wy, gy, k) = 0, and then solving for
gy , yields the x coordinate of a critical point.

k

(β + k(0))2

n∑
i=1

wi(gy − gi) = 0

k

β2

n∑
i=1

wi(gy − gi) = 0

gy

n∑
i=1

wi −
n∑
i=1

wigi = 0

gy =

∑n
i=1 wigi
β

.

3

The following partial derivatives are computed to classify whether (0,
∑n
i=1 wigi/β) is a minimum,

maximum or saddle point:

∂

∂(wy)2
(D,wy, gy, k) =

−2k2

(β + kwy)3

n∑
i=1

wi(gy − gi).

∂

∂(gy)2
(D,wy, gy, k) =0.

∂

∂gywy
(D,wy, gy, k) =

∂

∂wy

kwy
(β + kwy)

=
kβ

(β + kwy)2
.

Using the second partial derivative test, the critical point is substituted into the following equation:

∂

∂(wy)2
· ∂

∂(gy)2
−
(

∂

∂gywy

)2

=0−
(

kβ

(β + k(0))2

)2

=−
(
kβ

β2

)2

,

which is less that zero. Therefore, (wy = 0, gy =
∑n
i=1 wigi/β) is a saddle point.

Next, we describe the trajectory that must be added to D to execute the optimal attack.
Definition 2 (Optimal Attack). An optimal attack strategy for k > 0 is to select

arg max
H∈Hπe

f∗,?
(
D,wy = w(H,πe, πb), gy = g(H), k

)
.

Definition 3 (Optimal Trajectory). Given that a maximum exists, let (a′, s′) ∈ arg max
a∈A,s∈S

πe(a,s)
πb(a,s)

.

If πe(a,s)
πb(a,s)

> 1, let H∗ = {S0 = s′, A0 = a′, R0 = 1, . . . , Sτ−1 = s′, Aτ−1 = a′, Rτ−1 = 1}.
Otherwise, let H∗ = {S0 = s′, A0 = a′, R0 = 1}.
Theorem 1. For any adversarially monotonic off-policy estimator, the optimal attack strategy is to
add k repetitions of H∗ to D.

Proof. An optimal attack strategy is equivalent to

arg max
H∈Hπe

f∗,?
(
D,w(H,πe, πb), g(H), k

)
= arg max
i∗∈I,g∗∈[0,1]

f∗,?
(
D, i∗, g∗, k

)
.

For any off-policy estimator that is adversarially monotonic, by (1) of Definition 1, there exists a pq
such that

f∗,?(D, p, q, k) ≥ f∗,?(D, p, q, 0).

A return that maximizes f∗,?(D,wy, gy, k) implies that

max
g∗∈[0,1]

f∗,?(D, p, g∗, k) ≥f∗,?(D, p, q, k).

fCH, IS and fCH, WIS are non-decreasing w.r.t. the return. Therefore,

arg max
g∗∈[0,1]

f∗,?(D, p, g∗, k) = max
g∗∈[0,1]

g∗.

Setting g∗ = 1, an importance weight that maximizes f∗,?(D,wy, 1, k) implies that

max
i∗∈I

f∗,?(D, i∗, 1, k) ≥f∗,?(D, p, 1, k).

fCH, IS and fCH, WIS are also non-decreasing w.r.t. the importance weight. So,

arg max
i∗∈I

f∗,?(D, i∗, 1, k) = max
i∗∈I

i∗.

4

Since the IS weight is a product of ratios over the length of a trajectory, the ratio at a single time step
is maximized.

max
i∗∈I

i∗ = max
a∈A,s∈S

τ−1∏
t=0

πe(At = a, St = s)

πb(At = a, St = s)

=


(

max
a∈A,s∈S

πe(a,s)
πb(a,s)

)τ
if max
a∈A,s∈S

πe(a,s)
πb(a,s)

> 1,

max
a∈A,s∈S

πe(a,s)
πb(a,s)

otherwise.

To create H∗, if the ratio at a single time step is greater than 1, a′ and s′ is repeated for the maximum
length of the trajectory, τ ; otherwise, a′ and s′ is repeated only for a single time step. Thus, H∗
represents the trajectory with the largest return and importance weight.

Next, we show how Equations (2) and (1), that define quasi-α-security and α-security, respectively,
apply to L∗,?. Specifically, we show that a safety test using L∗,? as a metric is a valid safety test that
first predicts the performance of πe using D, and then bounds the predicted performance with high
probability. If L∗,?(πe, D) > J(πb), the safety test returns True; otherwise it returns False.

Lemma 3. A safety test using L∗,? is quasi-α-secure if ∀m ∈M,Pr
(
L?,∗

(
πe,m(D, k)

)
> J(πb)+

α
)
≤ Pr

(
L?,∗

(
πe, D

)
> J(πb)

)
.

Proof. For x ∈ N+, let P : Π×Dπb
n → Rx denote any function to predict the performance of some

πe ∈ Π, using data D collected from πb. Also, let B : Rx × [0, 1] → R denote any function that
bounds performance with high probability, 1 − δ, where δ ∈ [0, 1]. Starting with the definition of
quasi-α-security, we have that ∀m ∈M,

Pr
(
ϕ
(
πe,m(D, k), J(πb) + α

)
= True

)
≤ Pr

(
ϕ
(
πe, D, J(πb)

)
= True

)
⇐⇒ Pr

(
B
(
P(πe,m(D, k)), δ

)
> J(πb) + α

)
≤ Pr

(
B
(
P(πe, D), δ

)
> J(πb)

)
⇐⇒ Pr

(
L?,∗

(
πe,m(D, k)

)
> J(πb) + α

)
≤ Pr

(
L?,∗

(
πe, D

)
> J(πb)

)
.

Lemma 4. A safety test usingL∗,? is α-secure if ∀m ∈M,Pr
(
L?,∗

(
πe,m(D, k)

)
> J(πb)+α

)
<

δ.

Proof. For x ∈ N+, let P : Π×Dπb
n → Rx denote any function to predict the performance of some

πe ∈ Π, using data D collected from πb. Also, let B : Rx × [0, 1] → R denote any function that
bounds performance with high probability, 1 − δ, where δ ∈ [0, 1]. Starting with the definition of
α-security, we have that ∀m ∈M,

Pr
(
ϕ
(
πe,m(D, k),J(πb) + α

)
= True

)
< δ

⇐⇒ Pr
(
B
(
P(πe,m(D, k)), δ

)
> J(πb) + α

)
< δ

⇐⇒ Pr
(
L?,∗

(
πe,m(D, k)

)
> J(πb) + α

)
< δ.

In Lemma 5, we describe a condition that must hold in order to compute a valid α. The condition
states that a valid α must be equal to or greater than the largest increase in the 1− δ confidence lower
bound on J(πe) across all datasets D ∈ Dπbn and all attack strategies (i.e., the optimal attack).

Lemma 5. A safety test using L∗,? is quasi-α-secure or α-secure if ∀D ∈ Dπbn and ∀m ∈ M,
L∗,?

(
πe,m(D, k)

)
≤ L∗,?(πe, D) + α.

5

Proof. If L∗,?
(
πe,m(D, k)

)
≤ L∗,?(πe, D) + α, then

L∗,?(πe, D) ≥ L∗,?
(
πe,m(D, k)

)
− α. (4)

A safety test checks whether L∗,?(πe, D) > J(πb). When (4) holds ∀D ∈ Dπbn and ∀m ∈M,

Pr(L∗,?(πe, D) > J(πb)) ≥ Pr(L∗,?
(
πe,m(D, k)

)
− α > J(πb)), (5)

and hence via algebra that
Pr(L∗,?

(
πe,m(D, k)

)
> J(πb) + α) ≤ Pr(L∗,?(πe, D) > J(πb)),

which, by Lemma (3), implies that a safety test using L∗,? is quasi-α-secure. In the case of α-security,
by Assumption 3, we require a “safe” safety test. That is,

Pr(L∗,?(πe, D) > J(πb)) < δ. (6)
From the transitive property of ≥, we can conclude from (5) and (6) that

Pr(L∗,?
(
πe,m(D, k)

)
− α > J(πb)) < δ,

and hence via algebra that
Pr(L∗,?

(
πe,m(D, k)

)
> J(πb) + α) < δ,

which, by Lemma (4), implies that a safety test using L∗,? is α-secure.

B Proof of Theorem 1

The result of (5) for the estimator that uses CH and IS is the following:

α′ = max
D∈DHn

fCH, IS(D, i∗, 1, k)− LCH, IS(πe, D)

= max
D∈DHn

1

n+ k

n∑
i=1

wigi +
k

n+ k
(i∗)(1)− b

√
ln(1/δ)

2(n+ k)
−
(

1

n

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

(
i∗ −

∑n
i=1 wigi
n

)
.

Recall that b represents the upper bound of all IS weighted returns. Let b = i∗, and gi = 0 for all
i ∈ {1, . . . , n}.

α′ =i∗
√

ln(1/δ)

2n
− i∗

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)
(i∗ − 0)

=i∗

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)
.

The result of (5) for the estimator that uses CH and WIS is the following:

α′ = max
D∈DHn

fCH, WIS(D, i∗, 1, k)− LCH, WIS(πe, D)

= max
D∈DHn

1

ki∗ +
∑n
i=1 wi

(n∑
i=1

wigi + k(i∗)(1)

)
− b

√
ln(1/δ)

2(n+ k)
−
(

1∑n
i=1 wi

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

ki∗

(ki∗ + β)

(
1−

∑n
i=1 wigi
β

)
.

Let gi = 0 for all i ∈ {1, . . . , n}. Also, notice that b = 1 because importance weighted returns are in
range [0, 1] for WIS.

α′ = max
D∈DHn

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

ki∗

(ki∗ + β)
.

Recall that β 6= 0. So, let wi = 0 for all i ∈ {1, . . . , n− 1} and wn = imin.

α′ =

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

ki∗

(imin + ki∗)
.

6

C Panacea: An Algorithm for Safe and Secure Policy Improvement

Table 1: α–security of Panacea.

Estimator α

CH, IS c
(√

ln(1/δ)
2n −

√
ln(1/δ)
2(n+k) + k

(n+k)

)
CH, WIS

√
ln(1/δ)
2n −

√
ln(1/δ)
2(n+k) + kc

(imin+kc)

Algorithm 1 Panacea(D,πe, α, k)

1: Compute c, using α and k, given estimator
2: for H ∈ D do
3: if IS weight computed using H is greater than c then
4: Set IS weight to c
5: return clipped D

C.1 Proof of Corollary 1

Let α′ and k′ denote the user-specified inputs to Panacea. Based on Table 1, cCH, IS =
α′/
(√

ln(1/δ)
2n −

√
ln(1/δ)
2(n+k)

+ k
(n+k)

)
if k′ = k. Recall that b is the upper bound on all IS weighted

returns. Due to clipping, b = cCH, IS, and let gi = 0 for all i ∈ {1, . . . , n}. The result of (6) for the
estimator that uses CH and IS is the following:

max
D∈DHn

fCH, IS(Panacea(D, cCH, IS), cCH, IS, 1, k)− LCH, IS(πe, Panacea(D, cCH, IS)
)

= max
D∈DHn

1

n+ k

n∑
i=1

wigi +
k

n+ k
(cCH, IS)(1)− b

√
ln(1/δ)

2(n+ k)
−
(

1

n

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

(
cCH, IS −

∑n
i=1 wigi
n

)
=cCH, IS

√
ln(1/δ)

2n
− cCH, IS

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)
(cCH, IS − 0)

=cCH, IS

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)

=
α′√

ln(1/δ)
2n −

√
ln(1/δ)
2(n+k) + k

(n+k)

·

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)

=α′.

For WIS, recall that no matter how the clipping weight is set, b ≤ 1 because importance weighted
returns are in range [0, 1], and β 6= 0. So, let wi = 0 for all i ∈ {1, . . . , n − 1} and wn = imin.

Also, let gi = 0 for all i ∈ {1, . . . , n}. Based on Table 1, cCH, WIS = imin
(
α′ −

√
ln(1/δ)
2n +√

ln(1/δ)
2(n+k)

)
/k
(

1−α′+
√

ln(1/δ)
2n −

√
ln(1/δ)
2(n+k)

)
if k′ = k. The result of (6) for the estimator that uses

7

CH and WIS is the following:
max
D∈DHn

fCH, WIS(Panacea(D, cCH, WIS), cCH, WIS, 1, k)− LCH, WIS(πe, Panacea(D, cCH, WIS)
)

= max
D∈DHn

1

kcCH, WIS +
∑n
i=1 wi

(n∑
i=1

wigi + k(cCH, WIS)(1)

)
− b

√
ln(1/δ)

2(n+ k)
−
(

1∑n
i=1 wi

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

kcCH, WIS

(kcCH, WIS + β)

(
1−

∑n
i=1 wigi
β

)

≤
√

ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

kcCH, WIS

(kcCH, WIS + imin)

=

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)

)
+

(
α′ −

√
ln(1/δ)
2n +

√
ln(1/δ)
2(n+k)

)
(
α′ −

√
ln(1/δ)
2n +

√
ln(1/δ)
2(n+k)

)
+
(

1− α′ +
√

ln(1/δ)
2n −

√
ln(1/δ)
2(n+k)

)
=

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+ α′ −

√
ln(1/δ)

2n
+

√
ln(1/δ)

2(n+ k)

=α′.

C.2 Proof of Corollary 2

Let α and k′ denote the user-specified inputs to Panacea. If k′ = k, i.e., the user inputs the correct
number of trajectories added by the attacker, the result of (6) for the estimator that uses CH and IS is
the following:

α = max
D∈DHn

fCH, IS(Panacea(D, c), c, 1, k)− LCH, IS(πe, Panacea(D, c)
)

α =c

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)
c =

α(√
ln(1/δ)
2n −

√
ln(1/δ)
2(n+k) + k

(n+k)

) .
If k′ = k, the result of (6) for the estimator that uses CH and WIS is the following:

max
D∈DHn

fCH, WIS(Panacea(D, c), c, 1, k)− LCH, WIS(πe, Panacea(D, c)
)
≤

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

kc

(kc+ imin)
.

(7)
Setting the right-hand side of (7) to α, and solving for c equals:

α =

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

kc

(imin + kc)

kc

(imin + kc)
=α−

√
ln(1/δ)

2n
+

√
ln(1/δ)

2(n+ k)

kc− kcα+ kc

√
ln(1/δ)

2n
− kc

√
ln(1/δ)

2(n+ k)
=iminα− imin

√
ln(1/δ)

2n
+ imin

√
ln(1/δ)

2(n+ k)

kc

(
1− α+

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)

)
=iminα− imin

√
ln(1/δ)

2n
+ imin

√
ln(1/δ)

2(n+ k)

c =
imin

(
α−

√
ln(1/δ)
2n +

√
ln(1/δ)
2(n+k)

)
k
(

1− α+
√

ln(1/δ)
2n −

√
ln(1/δ)
2(n+k)

) .

8

	Analysis of Existing Algorithms
	Proof of Theorem 1
	Panacea: An Algorithm for Safe and Secure Policy Improvement
	Proof of Corollary 1
	Proof of Corollary 2

