
AdaShare: Learning What To Share For Efficient
Deep Multi-Task Learning

Ximeng Sun1 Rameswar Panda2 Rogerio Feris2 Kate Saenko1,2

1Boston University, 2MIT-IBM Watson AI Lab, IBM Research
{sunxm, saenko}@bu.edu, {rpanda@, rsferis@us.}ibm.com

Abstract

Multi-task learning is an open and challenging problem in computer vision. The
typical way of conducting multi-task learning with deep neural networks is either
through handcrafted schemes that share all initial layers and branch out at an
adhoc point, or through separate task-specific networks with an additional feature
sharing/fusion mechanism. Unlike existing methods, we propose an adaptive
sharing approach, called AdaShare, that decides what to share across which tasks to
achieve the best recognition accuracy, while taking resource efficiency into account.
Specifically, our main idea is to learn the sharing pattern through a task-specific
policy that selectively chooses which layers to execute for a given task in the
multi-task network. We efficiently optimize the task-specific policy jointly with
the network weights, using standard back-propagation. Experiments on several
challenging and diverse benchmark datasets with a variable number of tasks well
demonstrate the efficacy of our approach over state-of-the-art methods. Project
page: https://cs-people.bu.edu/sunxm/AdaShare/project.html.

1 Introduction

Multi-task learning (MTL) focuses on simultaneously solving multiple related tasks and has attracted
much attention in recent years. Compared with single-task learning, it can significantly reduce the
training and inference time, while improving generalization performance and prediction accuracy by
learning a shared representation across related tasks [7, 56]. However, a fundamental challenge of
MTL is deciding what parameters to share across which tasks for efficient learning of multiple tasks.
Most of the prior works rely on hand-designed architectures, usually composed of shared initial layers,
after which all tasks branch out simultaneously at an adhoc point in the network (hard-parameter
sharing) [23, 29, 43, 5, 26, 12]. However, there is a large number of possible options for tweaking
such architectures, in fact, too large to tune an optimal configuration manually, especially for deep
neural networks with hundreds or thousands of layers. It is even more difficult when the number of
tasks grows and an improper sharing scheme across unrelated tasks may cause negative transfer, a
severe problem in multi-task learning [52, 27]. Furthermore, it has been empirically observed that
different sharing patterns tend to work best for different task combinations [39].

More recently, we see a shift of paradigm in deep multi-task learning, where a set of task-specific
networks are used in combination with feature sharing/fusion for more flexible multi-task learning
(soft-parameter sharing) [39, 16, 48, 33, 49]. While this line of work has obtained reasonable
accuracy on commonly used benchmark datasets, it is not computationally or memory efficient, as
the size of the model grows proportionally with respect to the number of tasks.

In this paper, we argue that an optimal MTL algorithm should not only achieve high accuracy on all
tasks, but also restrict the number of new network parameters as much as possible as the number of
tasks grows. This is extremely important for many resource-limited applications such as autonomous
vehicles and mobile platforms that would benefit from multi-task learning. Motivated by this, we

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://cs-people.bu.edu/sunxm/AdaShare/project.html

AdaShare
(Ours)

Task1-
Specific

Shared

Task2-
Specific

Skipped

Input OutputsMTL Architectures

Traditional
Hard- parameter

Sharing

Seg

SN

Seg

SN

Soft-parameter
Sharing

Seg

SN

Figure 1: A conceptual overview of our approach. Consider a deep multi-task learning scenario with two
tasks such as Semantic Segmentation (Seg) and Surface Normal Prediction (SN). Traditional hard-parameter
sharing uses the same initial layers and splits the network into task-specific branches at an adhoc point (designed
manually). On the other hand, Soft-parameter sharing shares features via a set of task-specific networks, which
does not scale well as the number of tasks increases. In contrast, we propose AdaShare, a novel efficient sharing
scheme that learns separate execution paths for different tasks through a task-specific policy applied to a single
multi-task network. Here, we show an example task-specific policy learned using AdaShare for the two tasks.

wish to obtain the best utilization of a single network by exploring efficient knowledge sharing across
multiple tasks. Specifically, we ask the following question: Can we determine which layers in the
network should be shared across which tasks and which layers should be task-specific to achieve the
best accuracy/memory footprint trade-off for scalable and efficient multi-task learning?

To this end, we propose AdaShare, a novel and differentiable approach for efficient multi-task
learning that learns the feature sharing pattern to achieve the best recognition accuracy, while
restricting the memory footprint as much as possible. Our main idea is to learn the sharing pattern
through a task-specific policy that selectively chooses which layers to execute for a given task in
the multi-task network. In other words, we aim to obtain a single network for multi-task learning
that supports separate execution paths for different tasks, as illustrated in Figure 1. As decisions
to form these task-specific execution paths are discrete and non-differentiable, we rely on Gumbel
Softmax Sampling [25, 35] to learn them jointly with the network parameters through standard
back-propagation, without using reinforcement learning (RL) [46, 62] or any additional policy
network [1, 17]. We design the loss to achieve both competitive performance and resource efficiency
required for multi-task learning. Additionally, we also present a simple yet effective training strategy
inspired by the idea of curriculum learning [4], to facilitate the joint optimization of task-specific
policies and network weights. Our results show that AdaShare outperforms state-of-the-art approaches,
whilst being more parameter efficient and therefore scaling more elegantly with the number of tasks.

The main contributions of our work are as follows:

• We propose a novel and differentiable approach for adaptively determining the feature sharing
pattern across multiple tasks (what layers to share across which tasks) in deep multi-task learning.

• We learn the feature sharing pattern jointly with the network weights using standard back-
propagation through Gumbel Softmax Sampling, making it highly efficient. We also introduce two
new loss terms for learning a compact multi-task network with effective knowledge sharing across
tasks and a curriculum learning strategy to benefit the optimization.

• We conduct extensive experiments on several MTL benchmarks (NYU v2 [40], CityScapes [11],
Tiny-Taskonomy [68], DomainNet [42], and text classification datasets [8]) with variable number
of tasks to demonstrate the superiority of our proposed approach over state-of-the-art methods.

2 Related Work

Multi-Task Learning. Multi-task learning has been studied from multiple perspectives [7, 56, 47].
Early methods have studied feature sharing among tasks using shallow classification models [30, 24,
66, 69, 41]. In the context of deep neural networks, it is typically performed with either hard or soft

2

parameter sharing of hidden layers [47]. Hard-parameter sharing usually relies on hand-designed
architectures composed of hidden layers that are shared across all tasks and specialized branches that
learn task-specific features [23, 29, 43, 5, 26, 12]. Only a few methods have attempted to learn multi-
branch network architectures, using greedy optimization based on task affinity measures [34, 57]
or convolutional filter grouping [6, 54]. In contrast, our approach allows learning of much more
flexible architectures beyond tree-like structures, which have proven effective in multi-task learning
[38], and relies on a more efficient end-to-end learning method instead of greedy search based on
task affinity measures. In parallel, soft-parameter sharing approaches, such as Cross-stitch [39],
Sluice [48] and NDDR [16], consist of a network column for each task, and define a mechanism
for feature sharing between columns. In contrast, our approach achieves superior accuracy while
requiring a significantly smaller number of parameters. Attention-based methods, e.g. MTAN [33]
and Attentive Single-Tasking [37], introduce a task-specific attention branch per task paired with
the shared backbone. Instead of introducing additional attention mechanism, our method adopts
adaptive computation that not only encourages positive sharing among tasks via shared blocks but
also minimizes negative interference by using task-specific blocks when necessary. More recently,
Deep Elastic Network (DEN) [1] specify each network filter to be used or not for each task via
learning an additional policy network using complex RL policy gradients [1]. Alternately, we propose
a simpler yet effective method which learns to determine the execution of each network layer for
each task via direct gradient descent without any additional network. We include a comprehensive
comparison with Deep Elastic Network [1] later in our experiments.

Neural Architecture Search. Neural Architecture Search (NAS), which aims to automate the design
of the network architecture [15], has been studied using different strategies, including reinforcement
learning [70, 71], evolutionary computation [53, 45, 44], and gradient-based optimization [61, 32, 65].
Inspired by NAS, in this work we directly learn the sharing pattern in a single network for scalable
and efficient multi-task learning. Some recent works [8, 31], in NLP and character recognition, also
try to learn the multi-task sharing via RL or evolutionary computation. RL policy gradients are
often complex, unwieldy to train and require techniques to reduce variance during training as well as
carefully selected reward functions. By contrast, AdaShare utilizes a gradient based optimization,
which is extremely fast and more computationally efficient than [8, 31].

Adaptive Computation. Many adaptive computation methods have been recently proposed to
dynamically route information in neural networks with the goal of improving computational effi-
ciency [2, 3, 62, 51, 58, 60, 17, 46, 58, 1]. BlockDrop [62] effectively reduces the inference time by
learning to dynamically select which layers to execute per sample during inference, exploiting the
fact that ResNets behave like ensembles of relatively shallow networks [59]. Routing networks [46]
has also been proposed for adaptive selection of non-linear functions using a recursive policy network
trained by reinforcement learning (RL). In transfer learning, SpotTune [17] learns to adaptively route
information through finetuned or pre-trained layers. While our approach is inspired by these methods,
in this paper we focus on adaptively deciding what layers to share in multi-task learning using an
efficient approach that jointly optimizes the network weights and policy distribution parameters,
without using RL algorithms [62, 46, 1] or any additional policy network as in [62, 17, 46, 1].

3 Proposed Method

Given a set of K tasks T = {T1, T2, · · · , TK} defined over a dataset, our goal is to seek an adaptive
feature sharing mechanism that decides what network layers should be shared across which tasks
and what layers should be task-specific in order to improve the accuracy, while taking the resource
efficiency into account for scalable multi-task learning.

Approach Overview. Figure 2 illustrates an overview of our proposed approach. Generally, we seek
a binary random variable ul,k (a.k.a policy) for each layer l and task Tk that determines whether the
l-th layer in a deep neural network is selected to execute or skipped when solving Tk to obtain the
optimal sharing pattern, yielding the best overall performance over the task set T .

Shortcut connections are widely used in recent network architectures (ResNet [18], ResNeXt [64],
and DenseNet [21]) and achieve strong performance in many recognition tasks. These connections
make these architectures resilient to removal of layers [59], which benefits our method. In this paper,
we consider using ResNets [18] with L residual blocks. In particular, a residual block is said to be
shared across two tasks if it is being used by both of them, or task-specific if it is being used by

3

Semantic Segmentation

Surface Normal

Task 1 Logits

Task 1 Policy Task 1

Task 2

Expanded View

T1

T2

Backbone Task-Specific
Heads

Compact View

T1

T2

Cross Entropy Loss

Cosine Similarity Loss

Sharing Loss

Sparsity Loss

Sparsity Loss

Gumbel-Softmax
Sampling

Forward

Back-prop

Task1

Task2

Shared

Skipped

Supervision

Task 2 Logits

Task 2 Policy

Task-Specific Policy

Figure 2: Illustration of our proposed approach. AdaShare learns the layer sharing pattern among multiple
tasks through predicting a select-or-skip policy decision sampled from the learned task-specific policy distribution
(logits). These select-or-skip vectors define which blocks should be executed in different tasks. A block is said
to be shared across two tasks if it is being used by both of them or task-specific if it is being used by only one
task for predicting the output. During training, both policy logits and network parameters are jointly learned
using standard back-propagation through Gumbel-Softmax Sampling. We use task-specific losses and policy
regularizations (to encourage sparsity and sharing) in training. Best viewed in color.

only one task for predicting the output. In this way, the select-or-skip policy of all blocks and tasks
(U = {ul,k}l≤L,k≤K) determines the adaptive feature sharing mechanism over the given task set T .

As the number of potential configurations for U is 2L×K which grows exponentially with the
number of blocks and tasks, it becomes intractable to manually find such a U to get the optimal
feature sharing pattern in multi-task learning. Instead of handcrafting this policy, we adopt Gumbel-
Softmax Sampling [25] to optimize U jointly with the network parameters W through standard
back-propagation. Moreover, we introduce two policy regularizations to achieve effective knowledge
sharing in a compact multi-task network, as well as a curriculum learning strategy to stabilize the
optimization in the early stages. After the training finishes, we sample the binary decision ul,k for
each block l from ul,k to decide what blocks to select or skip in the task Tk. Specifically, with the
help of the select-or-skip decisions, we form a novel and non-trivial network architecture for MTL
parameter-sharing, and share knowledge at different levels across all tasks in a flexible and efficient
way. At test time, when a novel input is presented to the multi-task network, the optimal policy is
followed, selectively choosing what blocks to compute for each task. Our proposed approach not only
encourages positive sharing among tasks via shared blocks but also minimizes negative interference
by using task-specific blocks when necessary.

Learning a Task-Specific Policy. In AdaShare, we learn the select-or-skip policy U and network
weights W jointly through standard back-propagation from our designed loss functions. However,
each select-or-skip policy ul,k is discrete and non-differentiable and this makes direct optimization
difficult. Therefore, we adopt Gumbel-Softmax Sampling [25] to resolve this non-differentiability
and enable direct optimization of the discrete policy ul,k using back-propagation.

Gumbel-Softmax Sampling. The Gumbel-Softmax trick [25, 36] is a simple and effective way to
substitutes the original non-differentiable sample from a discrete distribution with a differentiable
sample from a corresponding Gumbel-Softmax distribution. We let πl,k = [1 − αl,k, αl,k] be the
distribution vector of the binary random variable ul,k that we want to optimize, where the logit αl,k
represents the probability that the l-th block is selected to execute in the task Tk.

In Gumbel-Softmax Sampling, instead of directly sampling a select-or-skip decision ul,k for the l-th
block in the task Tk from its distribution πl,k, we generate it as,

ul,k = argmax
j∈{0,1}

(
log πl,k(j) +Gl,k(j)

)
, (1)

where Gl,k = − log(− logUl,k) is a standard Gumbel distribution with Ul,k sampled from a uniform
i.i.d. distribution Unif(0, 1). To remove the non-differentiable argmax operation in Eq. 1, the Gumbel
Softmax trick relaxes one-hot(ul,k) ∈ {0, 1}2 (the one-hot encoding of ul,k) to vl,k ∈ R2 (the soft
select-or-skip decision for the l-th block in Tk) with the reparameterization trick [25]:

vl,k(j) =
exp

(
(log πl,k(j) +Gl,k(j))/τ

)∑
i∈{0,1}

exp
(
(log πl,k(i) +Gl,k(i))/τ

) , (2)

4

where j ∈ {0, 1} and τ is the temperature of the softmax. Clearly, when τ > 0, the Gumbel-Softmax
distribution pτ (vl,k) is smooth so πl,k (or αl,k) can be directly optimized by gradient descent, and
when τ approaches 0, the soft decision vl,k becomes the same as one-hot(ul,k) and the corresponding
Gumbel-Softmax distribution pτ (vl,k) becomes identical to the discrete distribution πl,k.

Following [17, 61], we optimize the discrete policy ul,k,∀ l ≤ L, k ≤ K at once. During the training,
we use the soft task-specific decision vl,k given by Eq. 2 in both forward and backward passes [61].
Also, we set τ = 5 as the initial value and gradually anneal it down to 0 during the training, as
in [17, 61]. After the learning of the policy distribution, we obtain the discrete task-specific decision
U by sampling from the learned policy distribution p(U).

Loss Functions. Task-specific losses only optimizes for accuracy without taking efficiency into
account. However, we prefer to form a compact sub-model for each single task, in which blocks
are omitted as much as possible without deteriorating the prediction accuracy. To this end, we
propose a sparsity regularization Lsparsity to enhance the model’s compactness by minimizing the
log-likelihood of the probability of a block being executed as

Lsparsity =
∑

l≤L,k≤K

logαl,k. (3)

Furthermore, we introduce a lossLsharing that encourages residual block sharing across tasks to avoid
the whole network being split up by tasks with little knowledge shared among them. Encouraging
sharing reduces the redundancy of knowledge separately kept in task-specific blocks of related tasks
and results in an more efficient sharing scheme that better utilizes residual blocks. Specifically, we
minimize the weighted sum of L1 distances between the policy logits of different tasks with an
emphasis on encouraging the sharing of bottom blocks which contain low-level knowledge. More
formally, we define Lsharing as

Lsharing =
∑

k1,k2≤K

∑
l≤L

L− l
L
|αl,k1 − αl,k2 |. (4)

Finally, the overall loss L is defined as

Ltotal =
∑
k

λkLk + λspLsparsity + λshLsharing, (5)

where Lk represent the task-specific losses with task weightings λk. λsp and λsh are the balance
parameters for Lsparsity and Lsharing respectively. The additional losses push the policy learning to
automatically induce resource efficiency while preserving the recognition accuracy of different tasks.

Training Strategy. Following [61, 65], we optimize over the network weights and policy distribution
parameters alternately on separate training splits. To encourage the better convergence, we “warm
up” the network weights by sharing all blocks across tasks (i.e., hard-parameter sharing) for a few
epochs to provide a good starting point for the policy learning. Furthermore, instead of optimizing
over the whole decision space in the early training stage, we develop a simple yet effective strategy to
gradually enlarge the decision space and form a set of learning tasks from easy to hard, inspired by
curriculum learning [4]. Specifically, for the l-th (l < L) epoch, we only learn the policy distribution
of last l blocks. We then gradually learn the distribution parameters of additional blocks as l increases
and learn the joint distribution for all blocks after L epochs. After the policy distribution parameters
get fully trained, we sample a select-or-skip decision, i.e., feature sharing pattern, from the best policy
to form a new network and optimize using the full training set.

Parameter Complexity. Note that unlike [8, 17], we optimize over the logits A = αl,kl≤L,k≤K for
the overall select-or-skip policy U directly instead of learning a policy network from the semantic task
embedding or an image input. As a result, besides the original network, we only occupy L additional
parameters for any new task, which results in a negligible parameter count increase over the total
number of network parameters. Our model has also a significantly lower number of parameters (about
50% lower while learning two tasks) compared to the recent deep multi-task learning methods [16, 33].
Therefore, in terms of memory, our model scales very well with more tasks learned together.

4 Experiments

In this section, we conduct extensive experiments to show that our model outperforms many strong
baselines and dramatically reduces the number of parameters and computation for efficient multi-task

5

Table 1: NYU v2 2-Task Learning. AdaShare achieves the best performance (bold) on 4 out of 7 metrics and
second best (underlined) on 1 metric across Semantic Segmentation and Surface Normal Prediction using less
than 1/2 parameters of most baselines. T1: Semantic Segmentation; T2: Surface Normal Prediction.

Model
T1: Semantic Seg. T2: Surface Normal Prediction

mIoU ↑ Pixel
Acc ↑

Error ↓ ∆θ, within ↑# Params
(%) ↓ ∆T1 ↑ Mean Median 11.25◦ 22.5◦ 30 ◦ ∆T2 ↑

∆T ↑

Single-Task 0.0 27.8 58.5 0.0 17.3 14.4 37.2 73.7 85.1 0.0 0.0
Multi-Task - 50.0 22.6 55.0 - 12.3 16.9 13.7 41.0 73.1 84.3 + 3.1 - 4.6

Cross-Stitch 0.0 25.3 57.4 - 5.4 16.6 13.2 43.7 72.4 83.8 + 5.3 - 0.1
Sluice 0.0 26.6 59.1 - 1.6 16.6 13.0 44.1 73.0 83.9 + 6.0 + 2.2

NDDR-CNN + 6.5 28.2 60.1 + 2.1 16.8 13.5 42.8 72.1 83.7 + 4.1 + 3.1
MTAN + 23.5 29.5 60.8 + 5.0 16.5 13.2 44.1 72.8 83.7 + 5.7 + 5.4
DEN - 39.0 26.3 58.8 - 2.4 17.0 14.3 39.5 72.2 84.7 - 1.2 - 0.6

AdaShare - 50.0 29.6 61.3 + 5.6 16.6 12.9 45.0 72.1 83.2 + 6.2 + 5.9

learning (Tables 1-4). Interestingly, we discover that unlike hard-parameter sharing models, our
learned policy often prefers to have task-specific blocks in ResNet’s conv3_x layers rather than
the last few layers (Figure 3: (a)). Moreover, we also show that reasonable task correlation can be
obtained from our learned task-specific policy logits (Figure 3: (b), Figure 4).

Datasets and Tasks. We evaluate the performance of our approach using several standard datasets,
namely NYU v2 [40] (used for joint Semantic Segmentation and Surface Normal Prediction as
in [39, 16], as well as these two tasks together with Depth Prediction as in [33]), CityScapes [11],
considering joint Semantic Segmentation [9, 55, 20, 19] and Depth Prediction as in [33], and Tiny-
Taskonomy [68], with 5 sampled representative tasks (Semantic Segmentation, Surface Normal
Prediction, Depth Prediction, Keypoint Detection and Edge Detection) as in [52]. We also test
AdaShare via performing the same task in different data domains such as image classification on 6
domains in DomainNet [42] and text classification on 10 publicly available datasets from [8]. More
details on the datasets and tasks are included in the supplementary material.

Baselines. We compare our approach with following baselines. First, we consider a Single-Task
baseline, where we train each task separately using a task-specific backbone and a task-specific head
for each task. Second, we use a popular Multi-Task baseline, in which all tasks share the backbone
network but have separate task-specific heads at the end. Finally, we compare our method with
state-of-the-art multi-task learning approaches, including Cross-Stitch Networks [39] (CVPR’16),
Sluice Networks [48] (AAAI’19), and NDDR-CNN [16] (CVPR’19), which adopt several feature
fusion layers between task-specific backbones, MTAN [33] (CVPR’19), which introduces task-
specific attention modules over the shared backbone, as well as DEN [1] (ICCV’19), which uses an
additional network to learn channel-wise policy for each task with RL. We use the same backbone
and task-specific heads for all methods (including our proposed approach) for a fair comparison.

Evaluation Metrics. In both NYU v2 and CityScapes, Semantic Segmentation is evaluated via mean
Intersection over Union (mIoU) and Pixel Accuracy (Pixel Acc). For Surface Normal Prediction, we
use mean and median angle distances between the prediction and ground truth of all pixels (the lower
the better). We also compute the percentage of pixels whose prediction is within the angles of 11.25◦,
22.5◦ and 30◦ to the ground truth [13] (the higher the better). For Depth Prediction, we compute
absolute and relative errors as the evaluation metrics (the lower the better) and measure the relative
difference between the prediction and ground truth via the percentage of δ = max{ypredygt

,
ygt
ypred

}
within threshold 1.25, 1.252 and 1.253 [14] (the higher the better). In Tiny-Taskonomy, we compute
the task-specific loss on test images as the performance measurement for a given task, as in [68, 52].
For image classification and text recognition, we report classification accuracy for each domain/dataset.
Instead of reporting the absolute task performance with multiple metrics for each task Ti, we
follow [37] and report a single relative performance ∆Ti with respect to the Single-Task baseline to
clearly show the positive/negative transfer in different baselines:

∆Ti =
1

|M |

|M |∑
j=0

(−1)lj (MTi,j −MSTL,j)/MSTL,j ∗ 100%, (6)

where lj = 1 if a lower value represents better for the metric Mj and 0 otherwise. Finally, we average
over all tasks to get overall performance ∆T = 1

|T |
∑K
i=1 ∆Ti .

6

Table 2: CityScapes 2-Task Learning.
T1: Semantic Segmentation, T2: Depth Prediction

Models # Params ↓ ∆T1 ↑ ∆T2 ↑ ∆T ↑
Multi-Task -50.0 -3.7 -0.5 -2.1

Cross-Stitch 0 -0.1 +5.8 +2.8
Sluice 0 -0.8 +4.0 +1.6

NDDR-CNN +3.5 +1.3 +3.3 +2.3
MTAN -20.5 +0.5 +4.8 +2.7
DEN -44.0 -3.1 -1.6 -2.4

AdaShare -50.0 +1.8 +3.8 +2.8

Single-Task. Seg - mIoU: 40.2, PAcc: 74,7; Depth - Abs.:

0.017, Rel.: 0.33, δ < 1.25, 1.252, 1.253: 70.3, 86.3, 93.3.

Table 3: NYU v2 3-Task Learning. T1: Semantic Seg-
mentation, T2: Surface Normal Pred., T3: Depth Pred.

Models # Params ↓ ∆T1 ↑ ∆T2 ↑ ∆T3 ↑ ∆T ↑
Multi-Task -66.7 -7.6 +7.5 +5.2 +1.7

Cross-Stitch 0.0 -4.9 +4.2 + 4.7 + 1.3
Sluice 0.0 -8.4 +2.9 4.1 -0.5

NDDR-CNN +5.0 -15.0 +2.9 -3.5 -5.2
MTAN +3.7 -4.2 +8.7 + 3.8 +2.7
DEN -62.7 -9.9 +1.7 -35.2 -14.5

AdaShare -66.7 +8.8 +7.9 +10.1 +8.9

Single-Task. Seg - mIoU: 27.5, PAcc: 58.9; SN Mean: 17.5, Median:

15.2, ∆θ < 11.25◦, 22.5◦, 30◦: 34.9, 73.3, 85.7; Depth - Abs.: 0.62,

Rel.: 0.25, δ < 1.25, 1.252, 1.253: 57.9, 85.8, 95.

Table 4: Tiny-Taskonomy 5-Task Learning. T1: Semantic Segmentation, T2: Surface Normal Prediction, T3:
Depth Prediction, T4: Keypoint Estimation, T5: Edge Estimation.

Models # Params ↓ ∆T1 ↑ ∆T2 ↑ ∆T3 ↑ ∆T4 ↑ ∆T5 ↑ ∆T ↑
Multi-Task -80.0 - 3.7 - 1.6 - 4.5 0.0 + 4.2 - 1.1

Cross-Stitch 0.0 + 0.9 - 4.0 0.0 - 1.0 - 2.4 - 1.3
Sluice 0.0 -3.7 -1.7 -9.1 + 0.5 + 2.4 - 2.3

NDDR-CNN +8.2 -4.2 -1.0 - 4.5 + 2.0 + 4.2 - 0.7
MTAN -9.8 -8.0 - 2.8 - 4.5 0.0 + 2.8 - 2.5
DEN -77.6 -28.2 - 3.0 -22.7 + 2.5 + 4.2 - 9.4

AdaShare -80.0 + 2.3 - 0.7 - 4.5 + 3.0 + 5.7 + 1.1
Single-Task Learning: Seg: 0.575; SN: 0.707; Depth: 0.022; Keypoint: 0.197; Edge: 0.212

Experimental Settings. We use Deeplab-ResNet [9] with atrous convolution, a popular architecture
for pixel-wise prediction tasks, as our backbone and the ASPP [9] architecture as task-specific heads.
We adopt ResNet-34 (16 blocks) for most scenarios, and use ResNet-18 (8 blocks) for the simple
2-task scenario on the NYU v2 Dataset. For DomainNet, we use the original ResNet-34 as backbone
and adopt VD-CNN [10] for text classification. Following [61], we use Adam [28] to update the
policy distribution parameters and SGD to update the network parameters. At the end of the policy
training, we sample select-or-skip decisions from the policy distribution to be trained from scratch.
Specifically, we sample 8 different network architectures from the learned policy and report the best
re-train performance as our result. We use cross-entropy loss for Semantic Segmentation as well
as classification tasks, and the inverse of cosine similarity between the normalized prediction and
ground truth for Surface Normal Prediction. L1 loss is used for all other tasks. Pre-training depends
on tasks and we observe that it improves the overall performance of AdaShare by 11.3% in NYUv2
3-Task learning. However, to get rid of the unfairness brought by different pretrained model, we start
from scratch for a fair comparison among different methods in all our experiments.

Quantitative Results. Table 1-4 show the task performance in four different learning scenarios,
namely NYU-v2 2-Task Learning, CityScapes 2-Task Learning, NYU-v2 3-Task Learning and Tiny-
Taskonomy 5-Task Learning. We report all metrics and the relative performance of two tasks in
NYU-v2 2-Task Learning (see Table 1) and report all metrics of Single-Task Baseline and the relative
performance of other methods due to the limited space in other cases (see Table 2-4). We recommend
readers to refer to supplementary material for the full comparison of all metrics.

In NYU v2 2-Task Learning, AdaShare outperforms all the baselines on 4 metrics out of 7 and
achieves the second best on 1 metric (see Table 1). Compared to Single-task, Cross-Stitch, Sluice,
and NDDR-CNN, which use separate backbones for each task, our approach obtains superior task
performance with less than half of the number of parameters. Moreover, AdaShare also outperforms
the vanilla Multi-Task baseline and DEN [1], the most competitive approaches in terms of number
of parameters, showing that it is able to pick an optimal combination of shared and task-specific
knowledge with the same number of network parameters without using any additional policy network.

Similarly, for other learning scenarios (Table 2-4), AdaShare significantly outperforms all the baselines
on overall relative performance while saving at least 50%, up to 80%, of parameters compared to
most of the baselines. AdaShare also outperforms the Multi-Task baseline and DEN with similar
parameter usage. Specifically, for Semantic Segmentation in NYU-v2 3-Task Learning, we observe
that the performance of all the baselines are worse than the Single-Task baseline, showing that
knowledge from Surface Normal Prediction and Depth Prediction should be carefully selected in

7

Seg + SN + Depth + Keypoint + Edge

Seg Forwarding: Depth SN

Shared by All
(9/16)

Keypoint Edge

Seg + SN + Depth
+ Edge (1/16)

Seg + SN + Keypoint
+ Edge (2/16)

Seg + Depth + Edge
+ Keypoint (1/16)

Seg + SN + Depth +
Keypoint (2/16)

Seg + Keypoint +
Depth (1/16)

Blocks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Seg
SN

Tasks Depth
Keypoint

Edge

(a) Policy Visualization

Seg SN
Dep

th

Key
poin

t
Edge

Seg

SN

Depth

Keypoint

Edge

(b) Task Correlation

0.65 0.70 0.75 0.80 0.900.85 0.95

Network

Tiny-Taskonomy

Figure 3: Policy Visualization and Task Correlation. (a) We visualize the learned policy logits A in Tiny-
Taskonomy 5-Task learning. The darkness of a block represents the probability of that block selected for the
given task. We also provide the select-and-skip decision U from our AdaShare. In (b), we provide the task
correlation, i.e. the cosine similarity between task-specific dataset. Two 3D tasks (Surface Normal Prediction
and Depth Prediction) are more correlated and so as two 2D tasks (Keypoint Detection and Edge Detection).

order to improve the performance of Semantic Segmentation. In contrast, our approach is still able
to improve the segmentation performance instead of suffering from the negative interference by
the other two tasks. The same reduction in negative transfer is also observed in Surface Normal
Prediction in Tiny-Taskonomy 5-Task Learning. However, our proposed approach AdaShare still
performs the best using less than 1/5 parameters of most of the baselines (Table 4).

Moreover, our proposed AdaShare also achieves better overall performance across the same task
on different domains. For image classification on DomainNet [42], AdaShare improves average
accuracy over Multi-Task baseline on 6 different visual domains by 4.6% (62.2% vs. 57.6%), with the
maximum 16% improvement in quickdraw domain. For text classification task, AdaShare outperforms
the Multi-Task baseline by 7.2% (76.1% vs. 68.9%) in average over 10 different NLP datasets [8]
and maximally improves 27.8% in sogou_news dataset.

Real Paint
ing Clipa

rt
Quickd

raw
Infogr

aph Sketch

DomainNet

Real

Painting

Clipart

Quickdraw

Infograph

Sketch

Figure 4: Task Correlation in
DomainNet. Similar tasks are
more correlated, such as real is
closer to painting than quickdraw.

Policy Visualization and Task Correlation. In Figure 3: (a), we
visualize our learned policy distributions (via logits) and the feature
sharing policy in Tiny-Taskonomy 5-Task Learning (more visual-
izations are included in supplementary material). We also adopt the
cosine similarity between task-specific policy logits as an effective
representation of task correlations (Figure 3: (b), Figure 4). We have
the following key observations. (a) The execution probability of
each block for task k shows that not all blocks contribute to the task
equally and it allows AdaShare to mediate among tasks and decide
task-specific blocks adaptive to the given task set. (b) Our learned
policy prefers to have more blocks shared only among a sub-group of
tasks in ResNet’s conv3_x layers, where middle/high-level features,
which are more task specific, are starting to get captured. By having
blocks shared by a sub-group of tasks, AdaShare encourages the
positive transfer and relieves the effect of negative transfer, resulting
in better overall performance. (c) We clearly observe that Surface
Normal Prediction and Depth Prediction, two different 3D tasks, are
more correlated, and that Keypoint prediction and Edge detection,
two different 2D tasks are more correlated (see Figure 3: (b)). Similarly, Figure 4 shows that the
domain real is closer to painting than quickdraw in DomainNet. Both results follow the intuition
that similar tasks should have similar execution distribution to share knowledge. Note that the cosine
similarity purely measures the correlation between the normalized execution probabilities of different
tasks, which is not influenced by the different optimization uncertainty of different tasks.

Computation Cost (FLOPs). AdaShare requires much less computation (FLOPs) as compared to
existing MTL methods. E.g., in Cityscapes 2-task, Cross-stitch/Sluice, NDDR, MTAN, DEN, and
AdaShare use 37.06G, 38.32G, 44.31G, 39.18G and 33.35G FLOPs and in NYU v2 3-task, they use
55.59G, 57.21G, 58.43G, 57.71G and 50.13G FLOPs, respectively. Overall, AdaShare offers on
average about 7.67%-18.71% computational savings compared to state-of-the-art methods over all
the tasks while achieving better recognition accuracy with about 50%-80% less parameters.

8

Ablation Studies. We present four groups of ablation studies in NYU-v2 3-Task learning to test our
learned policy, the effectiveness of different training losses and optimization method (Table 5).

Comparison with Stochastic Depth. Stochastic Depth [22] randomly drops blocks as a regular-
ization during the training and uses the full model in the inference. We compare AdaShare with
Stochastic Depth in our multi-task setting and observe that AdaShare gains more improvement (overall
5.8% improvement in Table 5), which distinguishes AdaShare from a regularization technique.

Comparison with Random Policy. We perform two different experiments such as ‘Random #1‘
experiment, where we keep the same number of skipped blocks in total for all tasks and randomize
their locations and ‘Random #2, where we further force the same number of skipped blocks per
task as AdaShare. We report the best performance among eight samples in each experiment. In
Table 5, both random experiments improve the performance of Multi-Task baseline by incorporating
shared and task-specific blocks in the model. Also, Random #2 works better than Random #1, which
reveals that the number of blocks assigned to each task actually matters and our method makes a
good prediction of it. Our model still outperforms Random #2, demonstrating that AdaShare correctly
predicts the location of those skipped blocks, which forms the final sharing pattern in our approach.

Table 5: Ablation Study on NYU v2 3-Task Learn-
ing. T1: Semantic Segmentation, T2: Surface Normal
Prediction, T3: Depth Prediction.

Models ∆T1 ↑ ∆T2 ↑ ∆T2 ↑ ∆T ↑
Stochastic Depth -2.4 +7.5 +4.0 +3.1

Random # 1 -2.3 +5.4 -0.8 + 1.3
Random # 2 + 3.3 +8.4 +8.1 + 6.6

w/o curriculum +2.1 +7.4 +7.2 + 5.6
w/o Lsparsity -4.2 + 4.8 +1.6 +0.7
w/o Lsharing -0.9 +9.0 +8.5 +5.6

AdaShare-Instance -3.7 + 5.3 -22.3 -6.9
AdaShare-RL -2.8 0.0 -8.2 -3.7

AdaShare +8.8 +7.9 +10.1 +8.9

Ablation on Training Losses and Strategies.
We perform experiments to show the effective-
ness of curriculum learning, sparsity regulariza-
tion Lsparsity and the sharing loss Lsharing in
our model. With all the components working,
our approach works the best in all three tasks
(see Table 5), indicating that three components
benefit the policy learning.

Comparison with Instance-specific Policy.
We employ the same policy network [1] to com-
pute the select-and-skip decision per test im-
age for each task [58, 62]. AdaShare, with
task-specific policy, outperforms the instance-
specific policy (in Table 5), as the discrepancy
among tasks dominates over the discrepancy among samples in multi-task learning. Instance-specific
methods often introduce extra optimization difficulty and result in worse convergence.

Table 6: Different Network Archi-
tectures on NYU v2 2-Task Learn-
ing. T1: Semantic Segmentation, T2:
Surface Normal Prediction.

Models ∆T1 ↑ ∆T2 ↑ ∆T ↑
WRN

Multi-Task -0.35 9.63 4.64
AdaShare 9.36 11.53 10.44

MobileNet-v2
Multi-Task 0.18 8.02 4.10
AdaShare 4.16 10.61 7.39

Comparison with AdaShare-RL. We replace Gumbel-Softmax
Sampling with REINFORCE to optimize the select-or-skip policy
while other parts are unchanged. Table 5 shows AdaShare is better
than AdaShare-RL in each task and overall performance, in line
with the comparison in [63].

Extension to other Architectures. We implement AdaShare
using Wide ResNets (WRN) [67] and MobileNet-v2 [50] in addi-
tion to ResNets. AdaShare outperforms the Multi-Task baseline
by 5.8% and 3.2% using WRN and MobileNet respectively in
NYU-v2 2-Task (Table 6). We also observe a similar trend on
CityScapes 2-Task learning. This shows effectiveness of our
proposed approach across different network architectures.

5 Conclusion
In this paper, we present a novel approach for adaptively determining the feature sharing strategy
across multiple tasks in deep multi-task learning. We learn the feature sharing policy and network
weights jointly using standard back-propagation without adding any significant number of parameters.
We also introduce two resource-aware regularizations for learning a compact multi-task network
with much fewer parameters while achieving the best overall performance across multiple tasks. We
show the effectiveness of our proposed approach on five standard datasets, outperforming several
competing methods. Moving forward, we would like to explore AdaShare using a much higher
task-to-layer ratio, which may require increase in network capacity to superimpose all the tasks into a
single multi-task network. Moreover, we will extend AdaShare for finding a fine-grained channel
sharing pattern instead of layer-wise policy across tasks, for more efficient deep multi-task learning.

9

Broader Impact

Our research improves the capacity of deep neural networks to solve many tasks at once in a more
efficient manner. It enables the use of smaller networks to support more tasks, while performing
knowledge transfer between related tasks to improve their accuracy. For example, we showed that
our proposed approach can solve five computer vision tasks (semantic segmentation, surface normal
prediction, depth prediction, keypoint detection and edge estimation) with 80% fewer parameters
while achieving the same performance as the standard approach.

Our approach can thus have a positive impact on applications that require multiple tasks such
as computer vision for robotics. Potential applications could be in assistive robots, autonomous
navigation, robotic picking and packaging, rescue and emergency robotics and AR/VR systems.
Our research can reduce the memory and power consumption of such systems and enable them to
be deployed for longer periods of time and become smaller and more agile. The lessened power
consumption could have a high impact on the environment as AI systems become more prevalent.

Negative impacts of our research are difficult to predict, however, it shares many of the pitfalls
associated with deep learning models. These include susceptibility to adversarial attacks and data
poisoning, dataset bias, and lack of interpretablity. Other risks associated with deployment of
computer vision systems include privacy violations when images are captured without consent, or
used to track individuals for profit, or increased automation resulting in job losses. While we believe
that these issues should be mitigated, they are beyond the scope of this paper. Furthermore, we should
be cautious of the result of failure of the system which could impact the performance/user experience
of the high-level AI systems relied on our research.

Acknowledgement

This work is supported by DARPA Contract No. FA8750-19-C-1001, NSF and IBM. It reflects the
opinions and conclusions of its authors, but not necessarily the funding agents.

References
[1] Chanho Ahn, Eunwoo Kim, and Songhwai Oh. Deep elastic networks with model selection for multi-task

learning. In Proceedings of the IEEE International Conference on Computer Vision, 2019.

[2] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in neural
networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, 2009.

[5] Hakan Bilen and Andrea Vedaldi. Integrated perception with recurrent multi-task neural networks. In
Advances in neural information processing systems, 2016.

[6] Felix JS Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C Alexander, and Jorge Cardoso. Stochastic
filter groups for multi-task cnns: Learning specialist and generalist convolution kernels. In Proceedings of
the IEEE International Conference on Computer Vision, 2019.

[7] R. Caruana. Multi-task learning. Machine Learning Journal, 1997.

[8] Junkun Chen, Kaiyu Chen, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Exploring shared structures
and hierarchies for multiple nlp tasks. arXiv preprint arXiv:1808.07658, 2018.

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE transactions on pattern analysis and machine intelligence, 2017.

[10] Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Lecun. Very deep convolutional networks for
text classification. In European Chapter of the Association for Computational Linguistics EACL’17, 2017.

10

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[12] Nikita Dvornik, Konstantin Shmelkov, Julien Mairal, and Cordelia Schmid. Blitznet: A real-time deep
network for scene understanding. In Proceedings of the IEEE international conference on computer vision,
2017.

[13] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE international conference on computer
vision, 2015.

[14] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
multi-scale deep network. In Advances in neural information processing systems, 2014.

[15] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal of
Machine Learning Research, 2019.

[16] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise feature fusing in
multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[17] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris. Spottune:
transfer learning through adaptive fine-tuning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[19] Ping Hu, Fabian Caba, Oliver Wang, Zhe Lin, Stan Sclaroff, and Federico Perazzi. Temporally distributed
networks for fast video semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[20] Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko, and Stan Sclaroff.
Real-time semantic segmentation with fast attention. arXiv preprint arXiv:2007.03815, 2020.

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2017.

[22] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic
depth. In European conference on computer vision, 2016.

[23] Junshi Huang, Rogerio S Feris, Qiang Chen, and Shuicheng Yan. Cross-domain image retrieval with a
dual attribute-aware ranking network. In Proceedings of the IEEE international conference on computer
vision, 2015.

[24] Laurent Jacob, Jean-philippe Vert, and Francis R Bach. Clustered multi-task learning: A convex formulation.
In Advances in neural information processing systems, 2009.

[25] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[26] B. Jou and S. F. Chang. Deep cross residual learning for multi-task visual recognition. In Proceedings of
the 24th ACM international conference on Multimedia, 2016.

[27] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature
learning. In Proceedings of the International Conference on Machine Learning, 2011.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-
level vision using diverse datasets and limited memory. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017.

[30] A. Kumar and H. Daume III. Learning task grouping and overlap in multi-task. In Proceedings of the
International Conference on Machine Learning, 2012.

11

[31] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evolutionary architecture search for deep multitask
networks. In Proceedings of the Genetic and Evolutionary Computation Conference, 2018.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations, 2019.

[33] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2019.

[34] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogério Schmidt Feris. Fully-
adaptive feature sharing in multi-task networks with applications in person attribute classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.

[35] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[36] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in neural information
processing systems, 2014.

[37] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple
tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[38] Elliot Meyerson and Risto Miikkulainen. Beyond shared hierarchies: Deep multitask learning through soft
layer ordering. arXiv preprint arXiv:1711.00108, 2017.

[39] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks for multi-task learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[40] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In European conference on computer vision, 2012.

[41] Alexandre Passos, Piyush Rai, Jacques Wainer, and Hal Daume III. Flexible modeling of latent task
structures in multitask learning. arXiv preprint arXiv:1206.6486, 2012.

[42] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on Computer
Vision, 2019.

[43] R. Ranjan, V. Patel, and R. Chellappa. Hyperface: A deep multi-task learning framework for face detection,
landmark localization, pose estimation, and gender recognition. In arXiv preprint arXiv:1603.01249, 2016.

[44] E Real, A Aggarwal, Y Huang, and QV Le. Aging evolution for image classifier architecture search. In
AAAI Conference on Artificial Intelligence, 2019.

[45] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings of the International
Conference on Machine Learning, 2017.

[46] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

[47] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[48] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Latent multi-task architecture
learning. In AAAI Conference on Artificial Intelligence, 2019.

[49] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Ko-
ray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

[50] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018.

[51] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In International
Conference on Learning Representations, 2017.

12

[52] Trevor Standley, Amir R Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese. Which
tasks should be learned together in multi-task learning? arXiv preprint arXiv:1905.07553, 2019.

[53] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 2002.

[54] Gjorgji Strezoski, Nanne van Noord, and Marcel Worring. Many task learning with task routing. arXiv
preprint arXiv:1903.12117, 2019.

[55] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for semantic segmenta-
tion. arXiv preprint arXiv:2005.10821, 2020.

[56] S. Thrun and L. Pratt. Learning to learn. Kluwer Academic Publishers, 1998.

[57] Simon Vandenhende, Bert De Brabandere, and Luc Van Gool. Branched multi-task networks: Deciding
what layers to share. arXiv preprint arXiv:1904.02920, 2019.

[58] Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In European
conference on computer vision, 2018.

[59] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of relatively
shallow networks. In Advances in neural information processing systems, 2016.

[60] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In European conference on computer vision, 2018.

[61] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2019.

[62] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman, and
Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018.

[63] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S Davis. Liteeval: A coarse-to-fine framework for
resource efficient video recognition. In Advances in Neural Information Processing Systems, 2019.

[64] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transforma-
tions for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017.

[65] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. In
International Conference on Learning Representations, 2019.

[66] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for classification
with dirichlet process priors. Journal of Machine Learning Research, 2007.

[67] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[68] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018.

[69] Jiayu Zhou, Jianhui Chen, and Jieping Ye. Clustered multi-task learning via alternating structure optimiza-
tion. In Advances in neural information processing systems, 2011.

[70] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

[71] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018.

13

	Introduction
	Related Work
	Proposed Method
	Experiments
	Conclusion

