
A Preliminaries

A more comprehensive introduction to RL can be found in Kaelbling et al. [30] and Sutton and Barto
[65].

A.1 Reinforcement Learning

In this paper we deal with continuous space Markov Decision ProcessesM that can be represented as
the tupleM≡ (S,A,P, r, γ,S), where S is a set of continuous states and A is a set of continuous
actions, P : S × A × S → R is the transition probability function, r : S × A → R is the reward
function, γ is the discount factor, and S is the initial state distribution.

An episode for the agent begins with sampling s0 from the initial state distribution S. At every
timestep t, the agent takes an action at = π(st) according to a policy π : S → A. At every timestep
t, the agent gets a reward rt = r(st, at), and the state transitions to st+1, which is sampled according
to probabilities P(st+1|st, at). The goal of the agent is to maximize the expected return ES[R0|S],
where the return is the discounted sum of the future rewards Rt =

∑∞
i=t γ

i−tri. The Q-function is
defined as Qπ(st, at) = E[Rt|st, at].

A.2 Off Policy RL using Soft Actor Critic

Generalized Hindsight requires an off-policy RL algorithm to perform relabeling. One popular
off-policy algorithm for learning deterministic continuous action policies is Deep Deterministic
Policy Gradients (DDPG) [41]. The algorithm maintains two neural networks: the policy (also called
the actor) πθ : S → A (with neural network parameters θ) and a Q-function approximator (also
called the critic) Qπφ : S ×A → R (with neural network parameters φ).

During training, episodes are generated using a noisy version of the policy (called behaviour policy),
e.g. πb(s) = π(s) + N (0, 1), where N is the Normal distribution noise. The transition tuples
(st, at, rt, st+1) encountered during training are stored in a replay buffer [43]. Training examples
sampled from the replay buffer are used to optimize the critic. By minimizing the Bellman error loss
Lc = (Q(st, at)− yt)2, where yt = rt + γQ(st+1, π(st+1)), the critic is optimized to approximate
the Q-function. The actor is optimized by minimizing the loss La = −Es[Q(s, π(s))]. The gradient
of La with respect to the actor parameters is called the deterministic policy gradient [63] and can
be computed by backpropagating through the combined critic and actor networks. To stabilize the
training, the targets for the actor and the critic yt are computed on separate versions of the actor
and critic networks, which change at a slower rate than the main networks. A common practice is
to use a Polyak averaged [56] version of the main network. Soft Actor Critic (SAC) [24] builds on
DDPG by adding an entropy maximization term in the reward. Since this encourages exploration
and empirically performs better than most actor-critic algorithms, we use SAC for our experiments,
although Generalized Hindsight is compatible with any off-policy RL algorithm.

B Environment Descriptions

PointTrajectory:

• Dynamics: This environment requires controlling a pointmass on a 2D plane, where the
state st = (xt, yt) represents the location of the pointmass. It always starts at the origin,
with s0 = (0, 0), and the agent is restricted to the box [−1, 1]2 via clipping. The agent can
take actions (dx, dy) ∈ [−0.1, 0.1]2, which affect the state via st+1 = (xt + dx, yt + dy).

• Rewards: The agent is rewarded for following a sinusoidal trajectory parameterized by a
three-dimensional vector z = (θ, d, a). θ controls the orientation of the sinusoidal trajectory,
d controls its wavelength, and a controls its amplitude. Specifically, the reward function is:

r(s, a|z) =

{
x̃
dφ(

ỹ−a×sin(πx̃/d)
0.05) if x̃ ≥ 0

0 if x̃ < 0

where x̃ is the projection of the current state (x, y) onto the line y = tan(θ)x, ỹ is the
orthogonal component, and φ is the probability density function of the unit Gaussian. The

15

x/d term encourages movement towards the goal, and the φ(·) term sharply penalizes an
agent for deviating from the target trajectory.
The task distribution T is as follows: each element of z is drawn independently from a sepa-
rate distribution, where θ ∼ Unif[−π, π], d ∼ Unif[0.75, 1], and a ∼ Unif[−0.25, 0.25].

PointReacher

• Dynamics: PointReacher shares the same dynamics as PointTrajectory.
• Rewards: This environment requires managing three quantities of interest: distance to a

goal, distance from an obstacle, and energy used. We control these via a 6-dimensional
task vector z = (xg, yg, xobst, yobst, u, v), where the goal is located at (xg, yg), the obstacle
is located at (xobst, yobst), and u and v control the relative weighting of the three terms.
Specifically, u and v represent a location on a unit sphere, and we calculate the weights w1,
w2, and w3 as the Euclidean coordinates of that point. The distance reward rgoal,t, safety
reward robst,t, and energy penalty Et are calculated as following:

rgoal,t = 2 exp

{
−((xt − xg)2 + (yt − yg)2)

0.082

}
robst,t = log10

(
0.01 + (xt − xobst)2 + (yt − yobst)2

)
Et = −||at||2

We found that using these formulations encouraged specificity for the goal (i.e. optimal
behavior is to move to the goal, not just a relatively close location), and a heavy penalty for
coming too close to the obstacle.
Overall, the reward is then:

r(st, at|z) = w1rgoal,t + w2Et + w3robst,t

Note that the obstacle is not physically present in the environment, so the dynamics of the
environment are the same across all possible tasks. The obstacle is solely a part of the reward
function, and the agent is discouraged from coming nearby via the penalty in the reward
function. In general, this represents the idea that we can “practice” for certain safety-critical
applications without needing to actually interact with the dangerous obstacle at hand.
The task distribution T is as follows: u, v are sampled uniformly from the portion of the
sphere in the first octant, and (xg, yg) and (xobst, yobst) are sampled uniformly from the
disk of radius 0.3 centered at the start state s0 = (0, 0).

Fetch

• Dynamics: We use the Fetch Robot from OpenAI Gym [7, 55]. Fetch has 3-dimensional
observations, corresponding to the coordinates of its end-effector. It is operated through
noisy position control, so the action space is also 3-dimensional. We increase the number of
solver iterations from 20 to 100, to make the controller more accurate and reduce control
noise.

• Rewards: We use the same parameterized reward function as we do in PointReacher, adapted
so that the goal and obstacle lie in 3D space.

HalfCheetahMultiObjective

• Dynamics: We use the HalfCheetah-v1 environment from OpenAI Gym [7], corresponding
to a two-legged robot constrained to run in the xz plane. It has a 17-dimensional observation
space, and a 6-dimensional action space of torque inputs for each joint.

• Rewards: Our task variable z ∈ Z ⊆ R4 controls a weighted combination of velocity in the
x-direction (vt), energy use (Et), height of the center of mass (ht), and rotation speed (ωt).

r(st, at|z) = z1vt + z2Et + z3ht + z4ωt

where vt = xt+1 − xt, ωt = θt+1 − θt, and Et = −0.1 × ||at||22. Since only the ratio
between individual elements of z are relevant for eliciting different behavior, we constrain

16

the set of allowed task variables Z = {z ∈ R4 : ||z||2 = 1, z1 ≥ 0, z2 ≥ 0}. We enforce
non-negativity of z1 and z2 because it is rather unimpressive behavior to maximize energy
use without purpose or minimize the height of the robot’s center of mass. To sample from
the task distribution T , we sample uniformly from Z .

AntDirection

• Dynamics: We use the Ant-v2 environment from OpenAI Gym [7], corresponding to a four-
legged robot that can move in the x, y, and z directions. The state space is 111-dimensional,
and the joints are controlled via torque control, for an 8-dimensional action space.

• Rewards: We use a 1-dimensional task variable to control which direction the Ant robot
should move in. Our reward function is:

r(s, a|z) = ||velocity||2 × 1{velocity angle within 15 degrees of z}

This reward function encourages moving quickly in the direction chosen by the task variable
z. An alternative reward function that returns the length of the velocity component in the
direction of z allows a policy to gain high rewards while going even at a 45◦ angle from
the target direction, so we add the indicator function to restrict the space of high-reward
behavior. The task distribution T is uniform over Z = [−π, π].

HumanoidDirection

• Dynamics: We use the Humanoid-v2 environment from OpenAI Gym [7], corresponding
to a bipedal humanoid robot that can move and rotate in all directions. The state space
is 376-dimensional, and the joints are controlled via torque control, for a 17-dimensional
action space.

• The task family here is similar to the one for AntDirection, with small tweaks. In addition to
the standard survival bonus and the torque and contact force penalty, we add a scaled form
of the velocity reward from AntDirection.

rvel(s, a|z) = 10× ||velocity||2 × 1{velocity angle within 15 degrees of z}

Empirically, the 10× factor on the velocity is necessary for learning a proper task-conditional
at all. Without it, the learned policy stands still for every learning algorithm, from no
relabeling to AIR.

C Training Details

C.1 Training Tricks

Since our task space Z is continuous, we cannot use multi-headed networks, which are commonly
used when dealing with a discrete set of tasks [71]. We thus follow the ubiquitous approach of
concatenating (s||z) and feeding that into the policy network π, and concatenating (s||a||z) and
feeding that into the q-network. However, when the observation space is large, such as in Ant
(111-dimensional) or HalfCheetah (17-dimensional), it becomes difficult for the network to identify
the few dimensions of its input that correspond to z and should thus strongly determine the desired
behavior (for π) or the correct Q-value.

We deal with this by (a) repeating the task variable z a few times, and (b) appending the repeated latent
at every hidden layer. (a) increases the salience of z, which should improve the ability of the network
to do credit assignment and identify z as the causal variable responsible for the difference between
tasks. (b) allows the policy and q networks to more easily have differentiated behavior, depending
on the current task z. Empirically, we find that these two tricks are crucial for getting the baselines
(No relabeling, Intentional-Unintentional Agent) to work at all; our Generalized Hindsight methods
benefit to a smaller degree. For HalfCheetahMultiObjective, AntDirection, and HumanoidDirection,
we repeat the task variable 5 times.

C.2 Hyperparameters

We list shared hyperparameters in Table 1, and environment-specific hyperparameters in Table 2.

17

Parameter Value
Algorithm Soft Actor Critic [24]
Optimizer Adam [34]
Batch size 256
Target smoothing coefficient (τ) 0.005
Reward scale Auto-tuned [25]

Table 1: Hyperparameters used for the experiments shown in Figure 3.

Environment Hidden Layers Learning Rate Updates/Epoch Horizon Discount (γ) AIR Cache (N)
PointTrajectory [400, 300] 3× 10−3 100 15 0.9 500
PointReacher [400, 300] 3× 10−3 200 20 0.97 500
Fetch [400, 300] 3× 10−3 200 50 0.98 500
HalfCheetah [256, 256] 3× 10−4 1000 1000 0.99 50
AntDirection [256, 256] 3× 10−4 1000 1000 0.99 50
HumanoidDirection [256, 256] 3× 10−4 1000 1000 0.99 50

Table 2: Environment-specific hyperparameters used for the experiments shown in Figure 3.

D Videos

A video of our environments and results can be found here: sites.google.com/view/generalized-
hindsight.

18

https://sites.google.com/view/generalized-hindsight
https://sites.google.com/view/generalized-hindsight

