A Numerical solution of the fixed-point equations

Theorem [3.7|characterizes the limit Stieltjes transform m(z) of matrices such as K* and KNTK, By
the discussion in Section[2.2] a numerical approximation to the density functions of the corresponding
spectral distributions may be obtained by computing m(z) for z = x + i, across a fine grid of values
z € R and for a fixed small imaginary part 7 > 0. We describe here one possible approach for this
computation.

To compute the limit spectrum for z_; Id —|—z0X0T Xo+ ... + zLXLTX 1, and general values
Z_1,...,2r € R, fix the spectral argument z = x + 7 and denote
zp = (—2+2-1,20,--+,2L), ZL—1 = Zprev(SL(ZL)»ZL)y Zp—2 = Zprev(stl(ZLfl)aszl)y etc.

Here, for s € Ct and z € C~ x R? x C*, the quantity

— b2 b2
U,Z07...7Z€_27Z[_1+;> eC™ xRt xC*

1
Zprev(5,2) = <z_1 +

is as defined in . Denote s; = s¢(z¢) for each £ = 1,..., L. Observe that, if we are given
$1,...,8L, then the value t;(z;, w) may be directly computed from (13), for any ¢ € {0,...,L}
and any vector w € C‘*2. This is because the fixed points needed to compute the arguments
Zprev(S0(20), 20), Zprev(Se—1(2Z0—1),2¢—1), etc. for the successive evaluations of ¢, t,_1, etc. are
provided by this given sequence s1,...,SL.

Thus, we apply an iterative procedure of initializing s( ) ceey s(LO) € C*, and computing the simul-
taneous updates sgtﬂ), ey (LH ) using the previous values sgt), .. (t) . That is, we iterate the

following two steps:

1. Set zg) = zr,, and compute z(L) 1= zprev(sg), z(Lt)) zg) 5 = zprev(s(Lt) 1 z(Lt) 1) ete.

2. Compute an update s(tH) for the value of sy(z¢) and each ¢ = 1,..., L, using the right
side of with zét) and zét)l = zprev(s/ ), z§ )) in place of zy and Zyrey (5¢(2¢), Z¢).

After this iteration converges to fixed points sj,...,s}, we then compute m(z) =
tr(zr,(1,0,...,0)) using (13) and these fixed points. For each successive value z = © +in

along the grid of values x € ]R we initialize s(o) .. L) by linear interpolation from the computed
fixed points at the preceding two values of along th1s grid, for faster computation.

Note that for each value z = x + 7, if the above iteration converges to fixed points s7, ..., s}, € Ct,
then this procedure computes the correct value for m(z): This is because, denoting
* * * * * * * *
271 = Zpev(SL0ZL)s  Zl_9 = Zpeev(ST_1:Z11)s -, 2] = Zprey (83, 23),

it may be checked iteratively from (I2)T3) and the uniqueness guarantee of Proposition [3.6] that
st = s1(z7), then s3 = s2(z3), etc., and finally that s7 = sz (zz). This then means that z] _; =
Zprev(51.(21),21) = 21, then 2] _ 5 = Zprey(S1—1(20—1),21—1) = Z1—2, etc., and 50 s} = 54(2z)
for each ¢. Then this method computes the correct value for m(z) =t (zr,(1,0,...,0)).

We have found in practice that the above iteration occasionally converges to fixed points sy, ..., S,
not belonging to C™ (i.e. this is not a mapping from (C*)% to (C*)%). If this occurs, we randomly
re-initialize Sgo)’ ey 8 (0) € C™, and we have found that the method reaches the correct fixed point
within a small number of random initializations.

To clarify this approach, let us illustrate this computation in a simple example: Consider L = 2. Fix
any grid value x € R and 5 > 0. An approximate density function for the limit spectrum of X, X, at
x is given by L Imt, ((—2,0,0,1),(1,0,0,0)), where z = « + 4. Based on equations (11]J12{13),

ts ((—2,0,0,1),(1,0,0,0)) = ((—z 1= b%' bz> ,(1,0,0))

52
1-— b2 1-— b2 b2
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where 51, 55 € CT satisfy the fixed point equations

1—-b2 1-0b2 b2
s2 =1+ y282 + 1ato ((-Z + <+ —7, U) »(522,0)> (18)
S9 S1 S1
1-02 1-—02 b2
s1= 2ty [ (—24—2+—2 %) (1-82,52)). (19)
b2 52 51 81

We randomly initialize s{”, s{") € C*, and update s{"""), s{*")

81 = sgt) and s = sét) into the right side of 1} and . We iterate this until convergence, and

then substitute into the above expression for ¢2((—z,0,0,1),(1,0,0,0)) to approximate the limit
spectral density of X, X at z.

simultaneously by substituting

B Proof of (¢, B)-orthonormality for independent input training samples

We prove Proposition For convenience, in this section, we denote the input dimension d simply
as d, and we denote the rescaled input by X = v/d X, with columns X, = V/d - X,.

Bound for ||X,||?: Note that E[||X,||?] = d. Applying the convex concentration property and [T}
Theorem 2.5] with A = Id, we have for any ¢ > 0 that

2
1P>{|||5<a||2 —d| > t} < 2exp (—cmin (2:&)) (20)

for a constant ¢ depending only on ¢g. Applying this for ¢t = \/Kdlogn and a union bound, with
probability 1 — 2ne—c¢Klogn

‘HiaHQ - d‘ < /Kdlogn foralla € [n]. @1
Rescaling, this shows |||x,||? — 1| < v/(K logn)/d.

Bound for x X4: Since X, and X4 are independent, conditional on X3, we have E[x X5 | X5] = 0,
and the map %X, — X/ X3 is convex and % s||-Lipschitz. Then the convex concentration property
implies, for any ¢ > 0,

12

it > o] < 2

On the event (21)), applying this for ¢t = \/Kdlog n, this probability is at most 2e~¢¥ 18" Taking a
union bound, with probability 1 — 2n2e=¢Klogn,

5(;'—5(3’ < /Kdlogn foralla # 5 € [n].
Rescaling, this shows |x[ x5| < /(K logn)/d.

Bound for || X ||: Fix any unit vector v = (v1,...,v,) € R" By [31, Lemma C.11], the random
vector X v also satisfies the convex concentration property, with a modified constant ¢{,. Note that
E[|| Xv||2] = d||v||> = d. Then, as in (20), we have

~ 12
]P’[H|Xv||2 —d| > t] < 2exp <cmin (d,t)> .

Applying this with ¢t = (B?/4 — 1)d, and taking a union bound over a 1/2-net A of the unit ball
{v € R": ||v|| = 1} with cardinality 5, we have with probability at least 1 — 5" - 2¢=¢B*d that

|Xv|| < (B/2)Vd forallv e N.
Since ~ _ ~ ~
[ Xl = sup HXVHSsg/pvllXVIl+||X||/2,

viv||=1

we have || X || < Bv/d on this event. Rescaling, this shows || X | < B.
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Bound for " _, (/%> — d)?: Define z = (21,. .., z,) where z, = ||X,||* — d. Fixing any unit
vector v = (v, ...,v,) € R", let us first bound v " z: We have

n
viz= Zva(niallz —d),
a=1

which has mean 0. Note that integrating the tail bound (20) yields the sub-exponential condition
E [exp (A(|[Xa|l* — d))] < exp(CdN?) forall || < ¢
and some constants C, ¢’ > 0. (See e.g. [10, Theorem 2.3], applied with (v, c) = (C'd,C") and a

large enough constant C’ > 0.) Then, as X1, . . ., X,, are independent and ||v||? = 1, also

E[e* %] =E

exp ()\ > va(%all® - d))] < exp(CdA?)  forall [\ < ¢

a=1

For any ¢ > 0, applying this with A = min(¢/(2Cd), ¢’) yields the sub-exponential tail bound
T M@ AV z ([t
Pv'z>t] <e “Ele ] <exp | —cmin E,t .

Now applying this for t = (B/2)d, and again taking a union bound over a 1/2-net A/ of the unit ball,
we have with probability 1 — 5" - e=¢B? that

vz < (B/2)d forallv e N.

On this event, we have as above that ||z| < Bd, so ||z||> < BZ2d?. Rescaling, this shows
Yoo (%al? = 1) < B2

Applying all of the above bounds for sufficiently large constants K, B > 0, we obtain that these
bounds hold with probability at least 1 — n~*, which yields Proposition

C Overview of proofs and preliminary lemmas

The proofs of Theorems and [3.8] are contained in the subsequent Appendices We
provide here an outline of the argument.

We will apply induction across the layers ¢ = 1, ..., L, analyzing the post-activation matrix X, of
each layer conditional on the previous post-activations Xy, ..., X,_1 (i.e. with respect to only the
randomness of ;). For the Conjugate Kernel, this will entail analyzing the Stieltjes transform

1
~Tr(X] Xp — 21d)7!

n

conditional on the previous layers. For the Neural Tangent Kernel, given the approximation in Lemma

[3.3] this will entail analyzing the Stieltjes transform
1
~Tr(A+ X[ Xp, — 21d)~!
n

conditional on the previous layers, where A is a linear combination of X OT Xo,..., X Z_lX —1, and
Id. Note that this matrix A is deterministic conditional on the previous layers.

In Appendix @ we carry out a non-asymptotic analysis of (e, B)-orthonormality. In particular, we
show that if the deterministic input X = X is (¢, B)-orthonormal, then X is (C'e, C'B)-orthonormal
with high probability, for a constant C' > 0 depending only on ). Note that we require the fourth

technical condition
n

> (xall® —1)* < B

a=1
in Definition[3.1]to ensure that the operator norm || X1 || remains of constant order, as otherwise X4
may have a rank-one component whose norm grows slowly with n. Applying this result conditionally
for every layer, Assumption then implies that Xj,..., X are all (&,, B)—orthonormal for
modified parameters (&,,, B) with high probability.
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In Appendix [E} we carry out the analysis of the trace
1
—Tr(A+aX, X, —21d)~!
n

in a single layer, for a deterministic (&,,, B)-orthonormal input Xy, symmetric matrix A € R"*", and

spectral parameters & € C* = C~ \ 0 and z € C*. We allow o € C* (rather than fixing o = 1), as
the subsequent induction argument for the NTK will require this extension. When A = 0 and o = 1,
this reduces to the analysis in [39]], and also mirrors the proof of the Marcenko-Pastur equation (6)).
For A # 0, this trace will depend jointly on A and the second-moment matrix ®; € R™*" for the
rows of X;. We derive a fixed-point equation in terms of A and ®;, which approximates this trace in
the n — oo limit.

In Appendix[F] we prove Theorem [3.4]on the CK, by specializing this analysis to the setting A = 0
and o = 1. The inductive loop is closed via an entrywise approximation of the second-moment
matrix @, in each layer by a linear combination of X J_ 1X¢—1 and Id in the previous layer. The main
argument for this approximation has been carried out in Appendix [D}

In Appendix [G} we prove Theorem [3.7]on the NTK. Our analysis reduces the trace of any linear
combination of X X,..., X/ X1, and Id to the trace of a more general rational function of
XJ Xo,..., X} X7 1 and Id in the previous layer. In order to close the inductive loop, we
analyze the trace of such a rational function across layers, and show that it may be characterized by
the recursive fixed-point equations (T2) and (I3). In Appendix [G] we also establish the approximation
in Lemma [3.5]and the existence and uniqueness of the fixed point to (I2).

Finally, in Appendix [H] we prove Theorem [3.8] which is a minor extension of Theorem[3.7]

Notation. In the proof, v* and M™* denote the conjugate transpose. For a complex matrix M € C**",
we denote by

tr M =n"'Tr M
the normalized matrix trace, by || M|| = supyccn.|v=1 [[M V] the operator norm, and by || M||r =
(Tr M*M)M/? = (Xap 1 Magp |2)1/2 the Frobenius norm. Note that we have

[t M| < [[M]| < [M]lp,  [IMlr<Va|M|,  |trAB] <o Allp||B] e

Let us collect here a few basic results, which we will use in the subsequent sections.
Proposition C.1. Under Assumption[3.2|b), the constants a, and b, in ([7) satisfy
be| <1< Vag < Ao
For a universal constant C' > 0, the activation function o satisfies
lo(x)] < As(Jz| + C) forall z € R. (22)

Proof. tis clear from definition that a, < A2. By the Gaussian Poincaré inequality,
1 =E[o(§)*] = Var[o(€)] < E[0"(€)*] = ao.
By Gaussian integration-by-parts and Cauchy-Schwarz,
1bs| = |E[o"(©)]] = [E[¢ - o ()]] < E[€*]/*Elo(€)*]'/? = 1.

We have

|o(0)] < Ello(0) = a(&)]] + Ello (&) < AE[E]] + Elo(€)*]/? < OA, (23)
(the last inequality applying A\, > 1). Then |o(x)| < |0(0)| + Ao |z| < A (2] + O). O
Proposition C.2. Suppose M = U +iV € C"*", where the real and imaginary parts U,V € R™"*"

are symmetric, and V' is invertible with either V = co Id or V- <X —co Id for a value cq > 0. Then M
is invertible, and | M ~1|| < 1/co.

Proof. For any unit vector v € C”,
|Mv| = |Mv|-||v] > |vMv|=|vUv+i vVv|>|vVyv|,

the last step holding because U, V' are real-symmetric so that v*Uv and v*V'v are both real. By the
given assumption on V', we have [v*Vv| > ¢, so ||Mv|| > ¢, for every unit vector v € C™. Then
M is invertible, and | M ~1|| < 1/co. O
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Proposition C.3. Let M, M € R™™ pe any two symmetric matrices satisfying
1 —
—||M - M||7 =0
1M - M|
a.s. asm — oo. If lim spec M = v for a probability distribution v on R, then also lim spec M=v.

Proof. For fixed z € CT, let m(z) = tr(M — z1d)~! and m(z) = tr(]T/[/ — z1d)~! be the Stieltjes
transforms. Then applying A~ — B~! = A=}(B — A)B~!, we may bound their difference by
1 . 2
Im(z) — m(2)|? = E‘ Te[(M — 21d)~" — (M — zId)’l]’
1 2
- ﬁ‘ Te(M — 21d)"Y(M — M)(M — 21d)~ ’

IN

1 —~
—5I1M = M[Z]|(M — 21d)~ (M - 21d) 7%

1, ~ L1y2q T -
—[IM = M|[E||(M — 2Td)7HP[[(M — 2 1d)~|]?

I A

Applying ||(M — 2z1d)~ Y| < 1/Im z by Proposmonu 2| and similarly for M, the given condition
shows that m(z) — m(z) — 0 a.s., pointwise over z € C*. If lim spec M = v, then m(z) —

my(z) = [(z — z)~'dv(x) as., and hence also ri(z) — m,,(z) a.s. and lim spec M = v. O

D Propagation of approximate pairwise orthogonality

In this section, we work in the following (non-asymptotic) setting of a single layer: Consider any
deterministic matrix X € R, let W € R?*9 have i.i.d. A'(0, 1) entries, and set

~ 1 5

X = —o(WX) € R¥*n, (24)
vid

Note that X has i.i.d. rows with distribution o(w ' X)/Vd, where w ~ A(0,1d). Define the

second-moment matrix of X by

d=E[X'X]=E[o(w'X) o(w'X)] € R"™" (25)
where the expectations are over the standard Gaussian matrix W and standard Gaussian vector w.
Let @, denote the (v, 3) entry of ® for any a, 5 € [n]. We show in this section the following result.

Lemma D.1. Suppose X is (g, B)-orthonormal where e < 1/Xy. Then for universal constants

C, ¢ > 0, with probability at least 1 —2n®e —ede? _ 30— " the matrix X remains (€, B) orthonormal
wzth

F=0Ne, B= C(l + n/d)AE,B

Corollary D.2. Under Assumption there exist parameters~(én, B ) still satisfying g.nt/t =0,
such that a.s. for all large n, every matrix X, ..., Xy, is (€,, B)-orthonormal.

Proof. Note that increasing ¢,, represents a weaker assumption, so we may assume without loss
of generality that &, > n~"%. Then by Lemma|[D.1] there is a constant Cy > 1 depending on
Aoy Y1y -, YL, Such that if X, 1 is (Céilsm C’gilB)-orthonormal, then conditional on this event,
Xy is (C§en, C§B)-orthonormal with probability at least 1 — e=""" for all large n. Thus, setting
&, = Cle, and B = CLB, with probability at least 1 — Le="""" every matrix Xy, ..., X[ is
(Ens B )-orthonormal. The almost sure statement then follows from the Borel-Cantelli Lemma. [

In the remainder of this section, we prove Lemma[D.I] We divide the proof into Lemmas[D.3] [D.4}

andbelow, which check the individual requirements for (£, B )-orthonormality of X. We denote
by C,C’, ¢, > 0 universal constants that may change from instance to instance.

Lemma D.3. If X is (¢, B)-orthonormal where £ < 1/),, then for universal constants C, ¢ > 0:
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(a) Forall o # B € [n],

|Bap — b2x x5 < ON2e? (26)
Eon(0.14) [a(waa)}‘ <O, - 1‘ < Che 27)
e — 1| < ON[|xal? - 1‘ < Choe (28)

(b) With probability at least 1 — 2n2€_CCZ€2, simultaneously for all a« # 3 € [n], the columns of)v(
satisfy
|[IXall* = 1] < CAZe, ‘)vi—r)v(ﬂ < C\le.

Note that (26) establishes an approximation which is second-order in e—this will be important in our
later arguments which approximate ¢ in Frobenius norm.

Proof. For part (a), observe that (C., (3) = (WX, W' ) is bivariate Gaussian, with mean 0 and
covariance . 1
y = (”"Ta” Xa"@) —Id+A
XoXg gl

where A is entrywise bounded by €. Then performing a Gram-Schmidt orthogonalization procedure,
for some independent standard Gaussian variables &, £z ~ N (0, 1), we have

Ca = Uozgom Cﬁ = Uﬁgﬁ + Uﬂfa (29)
where uq,ug > 0 and vg € R satisfy |uq — 1|, |ug — 1|, |ug| < Ce for a universal constant C' > 0.

By a Taylor expansion of ¢ () around ¢ = &, there exists a random variable 7 between ¢ and £ such
that

0(C) = o(€) + ' (€)(C ~ &) + 50" (m)(C — &) (30)

For ao # 3, applying this for both (, and (g, noting that the product of leading terms satisfies
E[o(£a)o(€3)] = 0, and applying also the bounds |0’ ()], |0” (z)| < A, where A, > 1, it is easy to
check that

Pas = Elo(Ca)o(Ca)] = E[0(6a) - 0'(63)(Ga — €6) + 0(68) - ' (€a)(Ca — €a)| + remainder

where this remainder has magnitude at most CA\2&2. For the first term, substituting and applying
independence of £, and £z, we have

E[0(¢a) - 0'(§4)(Ch — &) + 0(€5) - 0" (6a) (Ga — €0
= (ug — DE[0(8a)] - Elo”(§8)€5] + vsE[0(€a)Sal - Elo" ()] + (ua — DE[0(£s)] - Elo” (€a)8al-

Applying E[o(£)] = 0 and the integration-by-parts identity E[o(£)€] = E[o’'(£)] = by, this term
equals vgb2. From , we have u,vp = E[(, (5] = x/ x5. Since |u, — 1] < C’s and |x/ x5| <e,
this implies |vgb2 — b2 XTX[3| < Cbh2e? < CAZe%. Combining these yields (26). Similarly, from a
first-order Taylor expansion analogous to (30),

[Elo(wx0)]| = [Elo(6a)] ~ Elo (€] < OXr - fua — 1,

Pae — 1] = [El0(Ga)?] — Blo(6a)?]] < Cmax (o Jua = 11, 22+ ua = 1P).

The bounds and (28)) follow from the observations u2 = E[(2] = ||x.|* and |uy — 1] <
[ua =1 - Juq + 1] = Jug — 1| <e.

For part (b), let w; be the k™ row of W. Then by definition of X, forany a, 8 € [n] (including

a=p),
d
X %5 éz (W,c xa) (ng5>.

k=1
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We apply Bernstein’s inequality: Denote by || - ||y, and || - ||, the sub-Gaussian and sub-exponential

norms of a random variable. For any deterministic vector x € R?, the function w > o(w ' x) is
Ao ||x||-Lipschitz. Then for w ~ N(0,Id) and a universal constant C' > 0, we have by Gaussian
concentration-of-measure

lo(w " xa) = Elo(w " xa)]lls. < CXollxal-
.

From , [o(w

Ao for a constant C' > 0, and similarly for xg. So

Xa)|| < Cye. Thus (recalling that |||x, || — 1| < €), we have ||o(w " x4)] 4, <

lo(wxa)o(w xg)lly < lo(w'xa) v, lo(wxs)lls, < CAZ. GD

Applying Bernstein’s inequality (see [53, Theorem 2.8.1]), for a universal constant ¢ > 0 and any
t >0, . . e
IP’“xgx/g — E[xgx[g” > t} < 2exp (—cdmln <>\§, )\[2,—)) .
Applying this for t = A\2¢ and taking a union bound over all o, 3 € [n], we get
P[|%0%s - E[R[%]| < Meforalla, B € [n]] 21— 2n%exp (—ed-2?).  (32)

Since E[X/ X5] = ®,4, part (b) now follows from part (a). O
Lemma D4. If X is (¢, B)-orthonormal where £ < 1/),, then for universal constants C, ¢ > 0:

(a) ||®|| < CA2B2
(b) With probability at least 1 — 2e~<", || X|| < C(l + \/n/d) Ao B.
Proof. For part (a), define
> = E[J(WTX)TO'(WTX)} ~Elo(w X)] E[o(wT X)] (33)
where the first term on the right is ®. Then

X = sup v Ev= sup
vivll=1 vivll=1

E [(O’(WTX)V)Q] —E [U(WTX)V} 2‘ = v:ﬁl}\}ﬁzl Var [O’(WTX)V] .

We bound this variance using the Gaussian Poincaré inequality: Let us fix v € R™ with ||v|| = 1 and
define

F(w)=o(w' X)v= Z Va0 (W Xy ).

a=1
Then, letting u € R” be the vector with entries 1, = vo0' (W' X4),

= Zvaa’(waa) ‘X = Xu, IVE(w)|| < | X] - |lul] < A-B. (34)

Then by the Gaussian Poincaré inequality, Var[F(w)] < E[||VF(w)||?] < A2B2, so0 ||| < A\2B2.
In addition, by ([27), the difference between ® and X is a rank-one perturbation controlled by

1® = 3| = |Elo(w " X)]||* = ZE o(w'x,)* <C Zl\xa||2 < CAZB?, (39)

the last inequality using the final condition of (¢, B)-orthonormality in Deﬁnition This establishes
part (a).

For part (b), we apply the concentration result of [54, Eq. (5.26)] for matrices with independent
sub-Gaussian rows. For any fixed unit vector v € R", recall from that F(w) = o(w' X)vis
Ao B-Lipschitz. Then by Gaussian concentration-of-measure,

[1F(w) = E[F(w)][ly, < CAsB.
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We have |E[F(w)]| < ||[E[c(w " X)]|| < C\,B by , so also || F(w)]||y, < CA,B. This holds
for any unit vector v € R", hence ||o(w ' X)||y, < O, B for the vector sub-Gaussian norm. Thus,
VX /(Ao B) has i.i.d. rows whose sub-Gaussian norm is at most a universal constant. Recalling
P = ]E[)V( TX ] and applying [54, Eq. (5.26)] with A = Vdax /(A B), we obtain for some universal
constants C, ¢ > 0 that

P [||)Z'T)Z* — @ > max(s, 52)||<1>||] <2et,  §=C\/n/d+t/Vd

Note that the complementary event || X ' X — ®|| < max(d, §2)||®|| implies

X[ < V(1 + max(6,62))]|@]| < (1+C'5)V/[ 2]
for a constant C’ > 0. Then choosing ¢ = y/n and applying part (a) yields part (b). [

Lemma D.5. If X is (¢, B)-orthonormal where ¢ < 1/, then for universal constants C,c > 0,
with probability at least 1 — e~ ", the columns of X satisfy

n

D (%al? = 1) < C(l + n2/d2))\§32.

a=1

Let us remark that in settings where £ > 1/4/n, applying Lemma mb) to bound each term
(I Xall> — 1)? separately would not yield a constant-order bound for this sum. The proof below
performs a more careful analysis of the combined fluctuations of (||X % — 1)2.

Proof. Letz = (z1,...,%2,) € R"andr = (r1,...,7,) € R™ be defined as

Za = [Kal® —El%al?], 7o =E[lXal*] - 1.

The quantity to be bounded is ||z + r||?. Note that ||z + r||? < 2||z||? + 2||r||>. We have

d
1
[Hxa” g ZU W Xoc (I)aou
i=1
so applying (28) from Lemma[D.3]
Irf? = (Paa — CAZD (IIxal* = 1)* < CAZB. (36)

a=1 a=1

Thus it remains to bound ||z||%.

Let A be a 1/2-net of the unit ball {w € R" : ||w|| = 1}, of cardinality |[N'| < 5™. Then

lall = sup w'a< supvTa+ a2
willw||<1 veN
s0 ||z|| < 2supyecpr v z. For each fixed vector v = (v1,...,v,) € N, we have

viz= Zn: (I Clizd: <G(WiTXa)2 - E[U(Wz’TXa)QD

a=1 i=1

n

= % s (Z (U(W:Xa)2 - E[U(w:xa)zDva). (37)
i1

a=1

We will bound the sub-exponential norm of each summand i = 1,...,d and apply Bernstein’s
inequality.
For w ~ N (0,1d), denote

a=a(w) = (a1, q2) = (W x1 W), Pla) = D (0(00)* ~ Elo(ga)?] ) va.
a=1
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Observe that g(w) = X Tw. Thus we wish to bound the sub-exponential norm of F(q(w)) when
w ~ N(0,1d). By the Gaussian Sobolev inequality (see [2, Eq. (3)]), for any p > 2,

1Ptz < Vo |[IVwE@ )|, G8)
where ||Y||z» = E[|Y|[P]'/? denotes the LP-norm of a random variable (and ||V F (q(w))|| is the
usual /5 vector norm of the gradient of F'(q(w)) in w). By the chain rule,
VwF(a(w)) = X - VoF(aq),

SO
IVwF(a(w)[* < I X[*[VaF(@)l* < B*||VaF ()|

We have (0/0¢q ) F(d) = 20(qa )0’ (¢a)Va, SO

IVqF(q ”2 24‘7 1a)’0" (4o ) S 4)‘320(%1)2”2'

a=1

oy = ||U(W Xa)? Iy, < C)2. Then

n
<O\ Z v2 =
a=1

Recalling , we have ||o(g

o)’
R

‘o P1
[Ivwr@w)P| <coxs

This implies the bound (see [53| Proposition 2.7.1]), for any p > 1,

[IvwF @I = E[IvwFae) ] = | IV Faw)l?|) < @xip2

for a universal constant C’ > 0. Thus, applying this to , we obtain for any p > 2
|F(a(w))|lzr < P CA2By/p=CN.B - p.

Finally, this implies (see again [53| Proposition 2.7.1]) ||[F(q(w))|ly, < C’A2B for a universal
constant C’ > 0, which is our desired bound on the sub-exponential norm of F(q(w)).

Applying this and Bernstein’s inequality to (37)), for any ¢ > 0,
5 2 t
P[VTZ > t] S exp (—cdmin <)\:}__B27 )\[27‘3)> .

t=Co\2B -max(6,6%), d=+/n/d

for a large enough constant Cy > 0, and taking the union bound over all 5" vectors v € N, we get

Setting

Plllz|| > 2t] <P {sup vizg > t] <e
veN

for a constant ¢ > (. Combining with the bound on ||r||? in (36), we obtain the lemma. O

E Resolvent analysis for a single layer

We consider the same setting of a single layer as in the preceding section. Let X and ® be defined by
the deterministic input X € R*" and Gaussian matrix W € R%*? as in (24) and , and define
the (n-dependent) aspect ratio

y=n/d.
Consider a deterministic real-symmetric matrix A € R™*", and two (possibly n-dependent) spectral
arguments o € C* and z € CT, where C* = C— \ {0}. We study the matrix

A—f—a)v(—r)?—zld.

We collect here the set of assumptions that we will use in this section.
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Assumption E.1. There are constants B, Cy, ¢y > 0 such that

(@) a« € C*and z € C*, and v, |a, |z|,Im z € [cg, Co].

(b) X is (e, B)-orthonormal, where &,, < n~°-0L,
() A € R™™" is deterministic and symmetric, satisfying || A < Cj.

(d) W hasiid. N(0,1) entries, and o(z) satisfies Assumption [3.2[b).

Throughout this section, C, C’, ¢, ¢/, ng > 0 denote constants changing from instance to instance that
may depend on A\, and the above values B, Cy, co.

Propositionensures that A + aX T X — zId is invertible. Define the resolvent
R=(A+aX X —zId)~' e C" (39)
and the deterministic (n-dependent) parameter
5=a "'+ Eftr RP]. (40)

The goal of this section is to prove the following result, which approximates this resolvent R by

replacing the random matrix aX T X with a deterministic matrix 5~ 1®, and provides an approximate
fixed-point equation that defines this parameter s.

For A = 0 and a = 1, we will verify in Appendix [F] that this result reduces to the Marcenko-Pastur
equation ().

Lemma E.2. Under Assumption there are constants C, c,c',ng > 0 such that for all n. > ny,
any deterministic matrix M € C"*", and anyt € (n=1,¢'),

(a)]P[

tr RM —tr (A+ 5@ — 21d) " M‘ > HM||t} < Cne—ent’
() P[[s— (a7 +ytr(A+5710 - 210) " @) | > t] < Cnemen”

E.1 Basic bounds

Proposition E.3. Under Assumption|E.1} deterministically for some constants C, c,ng > 0 and all
n 2 no,
IRl<c, lel<c,  §<C  Imsse

Furthermore, with probability at least 1 — 2e~¢'n for a constant ¢’ > 0,

Imtr R® > c.

Proof. We may write A+ aX X — zId = U + iV where U = A+ (Rea)X "X — (Rez)Id
and V = (Ima)X "X T — (Im 2) Id. Both U and V' are symmetric, and V' =< (— Im 2) Id because
Ima < 0andImz > 0. Then ||R|| < 1/Imz < C by Proposition|C.2}

The bound ||®|| < C' comes from Lemma|[D.4(a) and the (&,,, B)-orthonormality assumption for X .
Then from the definition of 5 in and the bounds || R||, | ®|| < C, we have also |5| < C'. For the
lower bound for Im 5 and Im tr R®, let us write

trR@tr(RzR )¢)+tr<R2R ><I>.

The first trace is real because R + R* is Hermitian, so

Imtr R® = Im tr (R;R ) ®.

Denoting Y = A + aX " X — z1d and applying the identity A~! — B=! = A=1(B — A)B~', we
have

R-R =Y ') '=Yy'(Y"-Y)Y*) '=RY*-Y)R".
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Then, writing Y = U + ¢V as above and applying Y* — Y = -2V, we get
Imtr R® = Im(—i - tr RVR*®)
= Re (—(Im @) tr RXTXR*® + (Imz) - tr RR*(I)) .

Since tr RXT XR*® = tr ®/2RX T X R*®1/2, where this matrix is positive semi-definite, this
trace is real and non-negative. Similarly, tr RR*® is real and non-negative. Then the above yields
the lower bound

ImtrR® >Imz-tr RR*® >Im=z - )\min(RR*) tr @,

where Apin (RR*) is the smallest eigenvalue of RR*. By (28) and the condition &, < n~%9%, we
have tr & > ¢ for a constant ¢ > 0 and large enough n. Observe that )\mm(RR*) = 1/||Y||2 ‘and
Y| < [IA]l + |a] - | X]|2 + |2|. By Lemmamb) with probability 1 — 2¢=¢", we have || X|| < C,
so putting this together yields Im tr R® > ¢ with this probability. Finally, for the deterministic bound

Im 5 > ¢, we may apply Im tr R® > c on the event where H)v(|| < (C holds, and Im tr R® > 0 on the
complementary event. Taking an expectation and applying the definition (0) yields Ims > ¢. [

E.2 Resolvent approximation
We recall the result of |39, Lemma 1], which establishes concentration of quadratic forms in the rows
of X. The following is its specialization to standard Gaussian matrices W, and stated in our notation.

Lemma E4 ([39]). Suppose o(x) is As-Lipschitz, and let )VJ be a row of X. Then for any determin-
istic matrix Y € R™*™ with ||Y'|| < 1, for some constants C, ¢ > 0 (depending on \,), and for any

t>0,
1 cn t2
P(|=-%X'Y%; — trY‘b’ > t) < Cexp <—min (,t)) 41)
<‘7 e X2 tg
where tg = |o(0)] + Ao || X||\/1/

Using this result, we establish the following approximation for the resolvent R in (39).
Lemma E.5. Consider any deterministic matrix M € C**", and set

1

Op =tr M —t A+ ——M
g rR< +04—1—&-’yter<I>

@—zId) M.

Under Assumption there exist constants C,c,c’,ng > 0 such that for all n > ng and t €
(n=t ),
P[|6,] > | M]|t] < Cre=m*".

Proof. By rescaling M, we may assume that || M| < 1. We have Id = R(A + aX ' X — z1d) =
RA+aRXTX — zR. Writing X ' X = >, X;X,; (where X, is the i™ row of X), multiplying by
M, and taking the normalized trace tr = n~! Tr,

tr M = tr RAM + atr RX T XM — ztr RM

d
= tr RAM + =Y %] MRX; — = tr RM.
n

i=1

Hence

d
« ~T ~ tr ROM
n 4 X MEx a -l +~vtr RP

Let us define the leave-one-out resolvent, for each 1 < 7 < d,
-1

RO =[A+a) %% -21d

J:gFi
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We may then decompose 6, as §,, = J; + v.Jo where (recalling v = n/ d)

d .
1 - - ytr RODM
J=— TMR%;, — ————— ),
! n; (axz T +vtr RO®

1 i tr RO®M tr ROM
n=\a'+ytrRO® ol 4+ytrRP )
Let us denote these summands as

ytr RODM
a1 +~ytr RO

Jo

tr ROOM tr ROM
al+ytr RO® a4 ytr RO’

Jl(i) = oovciTMR)vci — and JQ(i) =

Bound for .J;. Momentarily fix the index i € {1,...,d}. Applying the Sherman-Morrison identity,
we have
"1+ oX, RO%;
Then, introducing A; = X MR"X; and A, = X RX;,
2
T e a”A1 Ay Ay
. MRX; = Ay — = .
ax; X; = aA 7ok, o114,

Recall that the rows of X are i.i.d. Let X be the matrix 32' with the i™ row X; removed, and let
Ex, [] be the expectation over only X; (i.e. conditional on X (1)). Observe that R(%) is a function of
X Applying Propositionwith X ) in place of X, we see that | R || and || M R® || are both
bounded by a constant. Then applying Lemma conditional on X (9, and recalling the bound
for 0(0), there are constants C, ¢ > 0 for which

Pl Ak — Ex, [Ag]] > 1] < Cemenmin@®0  fork = 1,2,

R=R® (42)

Note that .
Ex, [Ai] = Tr MROEXX] | = ST MRW® = ~tr RV®M.

Similarly, Eg, [A2] = v tr R ®, so
g0 _ A Eg[Ad]
! a4+ Ay ol +Eg [A4g]
Applying/Proposition we have for some constants C, ¢, ¢’ > 0, on an event £ ()v( (i)) of probability
1 —2e7¢", that
[Ex,[A1]] < C,  |a™! +Ex,[As]] > Im(a ™" + Ex, [A2]) > c.

Then, for any ¢ such that t < ¢/2, on the event where |4; — Ex,[4;1]| <, |As — Eg, [A2]] < ¢, and
E(X®) all hold,

. |A2 — Ex, [As]|

=t 4 Az - Ja=! + Ex, [Ao]|
Thus, for t < ¢’ and a sufficiently small constant ¢’ > 0, we have IE”HJI(“\ >t < Ce~<"’ . Applying
a union bound over i € {1,...,d}, this yields P[|.J;| > t] < Cne=n*,
Bound for .J,. Applying the identity A=! — B~! = A=Y(B — A)B~ 1,

RY —R=RYD(R - (RY)Y"HYR = aRVx%%]R.
Then, applying also the bounds || R|, || RV || < C from Proposition
clx|?
—

Applying Lemma b), with probability 1 — 2e~¢", this is at most C'/n for every i € {1,...,d}.
Similarly, | tr(R®) — R)®| < C/n with this probability. Applying again |tr REM| < C, |a~! +
~vtr R®| > ¢, and an argument similar to ll we obtain \JQ(Z)| < C'/n for a constant C’ > 0.

Taking a union bound over i € {1,...,d}, this yields P[|.Jo| > C/n] < C'ne°". Combining these
bounds for .J; and .Jo, choosing ¢ > cn~!, and re-adjusting the constants yields the lemma. O

St |

S |a—1+A2| +|]ESE7L[A1H

< Ct. (43)

g

. 1 .
| tr(RD — R)®M| = ~|aX; REMRV%;| <
n
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E.3 Proof of LemmalE.2]

We now prove Lemma [E.2]using Lemma[E-5] Define the random n-dependent parameter
s=a '+ ~tr R,
so that 5 = E[s]. The following establishes concentration of s around 5.
Lemma E.6. Under Assumption for some constants c,ng > 0, all n > ng, and any t > 0,

Plls—5 >t < 2e~ .

Proof. Define F' (W) = ~vtr R®, where R and X are considered as a function of W . Fix any matrices
W, A € R¥™" where ||A|| = 1, and define W; = W + tA. Then, applying R = —R(3(R™1))R
and R =RT,

d d 1
vec(&)T(VEOW)) = 2| F(Wi) = =yt R <dt‘t—0R ) RO

:—27atrR()v(T-d )v() R®
dt lt=0

2va > ’
- tr R (XT (d(WX)® (AX))) R,

where © is the Hadamard product, and ¢’ is applied entrywise. Applying Proposition

. c
vec(A) (VF(W))‘ <5

v ’ c’ v ’
RXT(o'(WX)o(AX))-R| < IR (7 X)(AX)

For the first term,
. 1 S 1 o
IRXT|2 = HHR(aXTX)R*H <o (||R(A +aXTX — 21d)R*|| + ||R(A — zId)R*H)

1

<
|

IR+ IRI* (Al + 12D) < C.
For the second term,

lo"(WX) © (AX)]| < o' (WX) © (AX)|lF < A AX|[F < A A]lp - IX] < C.
Thus |vec(A)T(VF(W))| < C/+/n. This holds for every A such that ||Al|r = 1, so F(W) is
C/+/n-Lipschitz in W with respect to the Frobenius norm. Then the result follows from Gaussian
concentration of measure. O
To conclude the proof of LemmalE.2] we may again assume || M || < 1 by rescaling M. Set

M= (A+5"'®—21d)"" M.

Note that 57+ € C~, s0 || M| < ||(A+5® — z1d)~| < C by Proposition Applying Lemma

with M,

Pllord —trR (A+s7'® — 21d) M| > t] < Cne~e” (44)
forall t € (n~1,¢’). Furthermore, applying the definition of M,

[t R (A+s7'® = 21d) M — tr RM| = [tr R (A +57'® — 21d) = (A+ 5 — 21d)) M|

= s =5 [trROM| < C|st —57!).

Recall that |5| > Im 5 > c. Then, on the event where |s — 5| < tand t < ¢/2, we have |s7! —571| <
Ct. Then applying Lemma for some constants ¢, ¢’ > 0 and all ¢ € (0, ),

PlltrR(A+ 5@~ 21d) M — tr RM| > t] < 2e7""",
Combining this with (44) yields Lemma[E.2{a). Specializing Lemma[E.2[a) to M = ®, we obtain
P[ls— (o' +7tr(A+5 10— 21d)'®)| > t] < Cne= .
Applying again Lemmal[E.6]to bound |s — 5|, we obtain Lemma[E-2{b).
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F Analysis for the Conjugate Kernel

Theorem [3.4]is a special case of Theorem[3.7] but let us provide here a simpler argument. Define, for
each layer, the n x n matrices

O, = Ey [a(wTXe,l)To—(wTXf,l) 45)
Dy =02X] X, 1+ (1-b2)1d (46)

where E,, denotes the expectation over only the random vector w ~ N'(0,1d). Here, ®, and P,
are deterministic conditional on X,_1, but are random unconditionally for ¢ > 2. For each fixed
{=1,..., L, we will show

lim spec &y = lim spec D,. 47)

Conditional on X,_1, the spectral limit of X ; X, was shown in [39]] to be a Marcenko-Pastur map of
the spectral limit of ®,—we reproduce a short proof below under our assumptions, by specializing
Lemma toaw = 1 and A = 0. Combining with (#7) and iterating from ¢ = 1,..., L yields
Theorem 3.4

Lemma F.1. Under Assumption[3.2} for each { = 1,. .., L, almost surely as n — oo,

1 -
gHCI)g — (I)Z”%‘ — 0.

Proof. By Corollary increasing (e,,, B) as needed, we may assume that each matrix Xo, ..., X,

is (e, B)-orthonormal. Denote by ®,[«, 5] and ®, [a, O] the (v, ) entries of these matrices. Then
Lemma[D.3{a) shows for o # 3 that

|(I)€[avﬁ] - éﬁ[aaﬂﬂ S 06721

=112, we have

For oo = 3, applying ég[a, a) =1-0b2 4+ b2||x5
|Befar, 0] — e, | < |Befa, 0] — 1]+ 2|[|x57* — 1] < Ce.

Then
@ — Pe||% < Cn(n —1)et + Cne?,

and the result follows from the condition &,,n'/4 — 0. O]

Proof of Theorem[3.4) By Corollary D.2] we may assume that each matrix Xo, ..., X[, is (g, B)-
orthonormal. This implies the bounds [[X;|| < C and | KX|| < C for all large n.

For the spectral convergence, suppose by induction that lim spec X Z 1X¢—1 = pg—1, where the base
case lim spec X X¢ = po holds by assumption. Defining

ve=(1-0) + b7 pe-1,
Proposition[C.3|and Lemma [FI] together show that
lim spec ®, = lim spec @g = .

Specializing Lemma b) tothe setting A =0, =1, X = Xy_1, and X = Xy, and choosing
t = t,, such that t,, — 0 and nt2 >> log n, we obtain

‘g — 1= (n/dg) tr(57 10 — 21d) 1@, — 0 (48)

a.s. as n — 0o, where
=1+ dﬁ]EWZ [tr(X, X, — 21d) "' @y).
7

Here, this expectation is taken over only W, (i.e. conditional on X, ..., Xy_1).
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Proposition [E.3] verifies that 5 is bounded as n — oo, so for any subsequence in n, there is a further
sub-subsequence along which 3 — s for a limit s = so(z) € C*. Applying A=t — B! =
A~Y(B — A)B~! and Propositions|C.2]and [E.3|

‘tr(g_l@g —21d) " By — tr(sy Dy — zId)_lég’

= |561 — s tr

(571 ®g — 21d) " Dy(57 Dy — zId)*lcbg’
<lsgt =57 l(sg e — 21d) 7Y -
< Clsgt —s71.

(5710 — 21d) 7! - || @)

Thus, along the sub-subsequence where 5 — sg, we get
tr(57 1@y — 21d) 1Dy — tr(sy '@y — 21d) T B, — 0. (49)
We have also

tr(sg 1 ®p — 21d) " D, — /%dw(x), (50)
Sg x — 2

since the function x +— 2/(sy 'z — 2) is continuous and bounded over R, and lim spec ®; = v;.
Thus, taking the limit of (@8) along this sub-subsequence, the value sy must satisfy

80—1—’7@/%dVg($)=0. (51)

80 T —2

Now applying Lemma[E.2|a) with M = Id, and taking the limit along this sub-subsequence, by a
similar argument we obtain that

tr(X,) X; — 21d) 7! — / %dw(:ﬂ). (52)
S0

Denoting this limit by m(2), and rewriting by applying

/Solmdw(m) _ 30/ (1 + 12’) dvg(x) = so(1 + 2me(2)),

T —z Sy T —2

we get st =1 — 7y — yp2my(z). Applying this back to the definition of () in (52)), this shows
that my(2) satisfies the Marcenko-Pastur equation

1
m(z) = / (1 —ve — yerm(z)) — zdyé(x)’

50 my(z) is the Stieltjes transform of iy = P K vy = pMF &I ((1 — b2) + b2 - pre—1).

We have shown that tr(X, X, — 2Id)~! — my(2) almost surely along this sub-subsequence
in n. Since, for every subsequence in n, there exists such a sub-subsequence, this implies
limy, 00 tr(X, Xy — 21d)™1 = my(2) almost surely. Thus lim spec X, X, = p, which com-
pletes the induction. O

G Analysis for the Neural Tangent Kernel

G.1 Spectral approximation and operator norm bound

We first prove the spectral approximation stated in Lemma[3.3] as well as the operator norm bound
| KNTK|| < C. The following form of KNTX is derived also in [25} Eq. (1.7)]: Denote by x*, the a®

column of X,. Foreach ¢ = 1, ..., L, define the matrix S, € R%*" whose o' column is given by
T T
s — pt Wi D+t Wiio D2 w, pt W ’ 53)
Ve " de Vi “Vir

where we define diagonal matrices indexed by « € [n] and k € [L] as

D¥ = diag (0’(ka§*1)) € R xdi,
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Applying the chain rule, we may verify for each input sample x,, that
Vwlo(xa) = x5 € R™, Vi, fo(xa) = s;, @ x, " € R4t
Then
(Voo (X)) " (Vaufo(X)) = X[ X,
(Vi Fo(X)) (Vi fo(X)) = (S 80) © (X1 X ),
where © is the Hadamard product. Thus, the NTK is given by

L
KNTK — (vg fg(X))T (vg fg(X)) = X[ X+ Y (S/S) 0 (X Xe1). (54
=1

Lemma G.1. Let X € R%*" be (e, B)-orthonormal, let W € R have i.i.d. N'(0,1) entries, and
let x,,xg be two columns of X where o # 3. Then for universal constants C, c > 0 and any t > 0:

(a) With probability at least 1 — 2e—cdt’,

’;Tr (diag (0'(Wx,)) diag (U/(WXB))) — 02| < CNi(e +1).

(b) Let M € R¥? be any deterministic symmetric matrix, and denote

1
T(Xa,Xg) = 3 Tr (diag (0! (Wxo))WMW T diag (o’(WxB))).
With probability at least 1 — (2d + 2)6_0“11“(752‘1’“/5),
|T(%a,x5) — b2 Tr M| < CA2 (s\/&+ +Vd + t\/ﬁ) M|
Furthermore, both (a) and (b) hold with (X., X4 ) in place of (Xn,Xg), upon replacing b2 by a,.

Proof. Write w;| € R? for the k™ row of W. Then

d
1 . . 1
b Tr (dlag (0'(Wx,)) diag (Ul(WXg))> b Z (Wi Xa)0 (W] xp).
k=1
Applying o’ (W] x, )0’ (W) x5) € [-A2, \2] and Hoeffding’s inequality,
d
1 7,2
P pi Z (U’(W;XQ)O’/(W;XB) - E[U’(W;XQ)O’/(W;X/;)]) > A2t| < 2e7,
k=1

To bound the mean, recall that ((,,(s) = (W, Xa, W] X3) is bivariate Gaussian, which we may
write as

Ca = Uala, Cg = upp + vaa
as in (29). Here, &,,&3 ~ N(0,1) are independent, u,,us > 0 and vg € R, and these satisfy
lua — 1], |ug — 1|, |vg| < Ce. Applying the Taylor expansion

o'(¢) =€) + "M =)

for some 7 between ¢ and &, and the conditions E[o’(£)] = b, and |¢”(x)| < A,, itis easy to check
that |E[0” (o )0’ (¢g)] — b2| < CAZe. Then part (a) follows. The statement with (X4, X, ) and a,
follows similarly from this Taylor expansion and the bound |E[0”((4)?] — ao| < CA2e.

For part (b), we write

&.M—‘

d
T (X0, Xp) E o' (W] xo)0' (W) x5) - W) Mwy.
k=1
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By the Hanson-Wright inequality (see [50, Theorem 1.1]),
Pllw] Mwy, — T M| > | M| - tv/d] < 2e-cmin(*div/d)

for a constant ¢ > 0. Then, applying |o’(z)| < A\, and a union bound over k = 1,...,d, with
probability at least 1 — 2de’cmin(t2d’“/§),

d
1 -
T(xa,xp) — TrM - = > o' (w x0)0’ (W] x5)| < | M|l - N2tVd.
k=1

Then part (b) follows from combining with part (a), and applying Tr M < \/d||M || . O

Corollary G.2. Let Sg be as defined in , and let qg, vy be the constants in @ Under Assumption
for a constant C' > 0, almost surely for all large n and for all £ € [L] and o # 8 € [n),
¢ T

¢ —0‘48)

s sg — qg,l‘ < Cmax(e,, n , ’||sﬁé||2 — rg,l‘ < Cmax(g,, n™ %), (55)

Proof. By Corollary we may assume that each matrix Xy, ..., X, is (,, B)-orthonormal.
Since a larger value of ¢,, corresponds to a weaker assumption, we may assume without loss of
generality that g,, > n =048

Fix ¢ € [L] and v, B € [n], and define
M, = D!,Dj

W W W, w,’
My =DF——E_ DIt pipt—Llptet | TE Dk for (+1<k<L.

Vdg-1 NV T Vi
(56)

Recalling the definition (53) and applying the Hanson-Wright inequality conditional on W7y, ..., Wy,

eT e 1
s, Szg— — TrMp
B dr,

1
< Cepv/n- E”ML“F (57)

with probability 1 — e~¢min(enmenvi) > 1 — ¢=n"*" Next, foreachk = L, L —1,...,0+ 1, we
apply Lemma|G.1]b) conditional on Wy, ..., Wj_1, with t = &,, M = Mj,_1/dy—1,d = dj_1, and
d = di. Note that k — 1 > ¢ > 1, so that both d,_; and dj, are proportional to n. Then

1 1
— Tr My — b2 - —— Tr My_
di I My - det I M —1

with probability 1— e ", Finally, for k = ¢, applying Lemmaa) conditional on Wy, ... , Wy_;
and with ¢t = ¢,

1
< Cepvn- iHMk—lnF

1
dy
. Combining these bounds, with probability 1 — C’ e

Tr M, — b2| < Ce,,

nO

with probability 1 — e~

st 'sh - (bi)L‘“l‘ < &n (IMLllF+ ...+ IMel| + Vn) .
vn

We also have ||W},/v/di|| < C foreach k = 2,..., L with probability 1 — C’'e™“", see e.g. [53]

Theorem 4.4.5]. Then, applying ||Dx|| < Ay, we have ||My||r < Cy/n|| M| < C’y/n for every

k =1,..., L. Then the first bound of follows. The second bound of (33)) is the same, applying

Lemma for (xq,Xq) instead of (x4,%g). The almost sure statement follows from the Borel-

Cantelli Lemma. O

Lemma G.3. Under Assumption@ almost surely as n — 00,
2

L—1
1
= || KNTE — (m Id+X, X + Z . Xg) — 0.
" {=0 F
Furthermore, for a constant C > 0, almost surely for all large n, || KNTX|| < C.
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Proof. By Corollary we may assume that each matrix Xy, ..., Xy, is (¢,, B)-orthonormal.
Then

1T = _
XX 1‘§gn, ‘||xg 1\|2_1‘g5n.

Increasing &,, if necessary, we may assume £,, > n~%48 Combining with (55)), we have for the
off-diagonal entries of the Hadamard product that

’((5;512) O (X1 X)) [, B] — qe—1X1zT_1Xz—1[avﬁ]‘ < Cel,
and for the diagonal entries that
(5750 © (X X1l 0) = ge 1 (X X)) = (et — e )|

<|((s/s0) @ (X1 X0 1)[an 0l _w_l‘ +qg_1‘X;_1Xg_1[oz,oz} _ 1] < Ce,,.

Then applying this to (54),
2

< Cn(n — 1) + Cne?.
P

L—-1
‘KNTK - <r+ d+X Xp+ ) X/ Xz>
=0

The first statement of the lemma then follows from the assumption ,,n*/* — 0.

For the second statement on the operator norm, we have

X Xl

(ST Se) © (XL Xe-n)|| < mitc s, st

See [29, Eq. (3.7.9)], applied with X = Y = S,. Then ||KNT¥|| < C follows from (54), the
(€n, B)-orthonormality of each matrix X,_1, and the bound for ||s’, ||? in . O

Combining Lemma|[G.3|and Proposition|[C.3] this proves Lemma 3.3}

As a remark, Lemmas (G.3|and [3.5imply lim spec KNTK = lim spec(r, Id +X X;,) when b, = 0,
since every g, = 0 in this case. Thus, the Stieltjes transform of lim spec K NTK g actually mntk (2) =
m(—ry + z) defined by the Stieltjes transform of p}'* in (@) with v = ~,. Thus in the following

arguments for the limit spectrum of KNTX, we restrict to the case b, # 0.

G.2 Unique solution of the fixed-point equation

Let A, ® € R™*" be symmetric matrices, where & is positive semi-definite. Let z € C*, o € C*,
and v > 0. For s € C*, define

S(s)=(A4+s1®—21d)"",  fu(s) =a ' +ytrS(s)d.
Lemma G.4. (a) Forany s € CT, setting S = S(s),
Im f,(s) > Imz - ytr S®S* > 0.

(b) For any s1,ss € CT, setting S1 = S(s1) and Sz = S(s2),

|fn(31)_fn(82)|
Im fp(s1) —Imz - ytr S; S 1/2 Im f,(s2) —Imz - ytr So®S5 12
< ls1— 82|

Im s Im so

Proof. For part (a), let us write
SO = SPS*(A+ s — zId)" = SPS*A+ (1/s*)SPS*P — 2*SPS™.

Since S®S* is Hermitian and positive semi-definite, the quantities tr S®S* A, tr S®S*P, and
tr S®S* are all real, and the latter two are nonnegative. Then

I
Im f,(s) =Ima™' +yImtr S® = Ima~' + % cytr SOS*P 4+ Imz - ytr SOS*.  (58)
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Each term on the right side of (58) is nonnegative, and dropping the first two of these terms yields (a).
For part (b), applying the identity A= — B~! = A=1(B — A)B~1, we have

Sl — SQ = Sl(sgltﬁ — 8;1@)52 = 517 52 51(13‘52,
5152
SO
fr(s1) = fn(s2) =ytrS1® — ytr So® = %tr&@ggfb.
192

Applying Cauchy-Schwarz to the inner-product (S1, Sa)e = tr S; 955 P,
[ tr S1@S5®|* = |(S1,55)a]* < (S1,S1)a - (S5, 595)e = tr S1 PSP - tr 5055 P.
Then

vir S1S; 0\ 2 [y tr S,0550\ /2
512 '

|n@o—n@nsm—wr(

Dropping Im o~ ! in (58)) and applying this to upper-bound 7 tr S®S*®/|s

|s2[?
2, part (b) follows. [

Corollary G.5. Asn — oo, suppose that f,,(s) — f(s) pointwise for each s € C™, the empirical
spectral distributions of ® and A converge weakly to deterministic limits, and the limit for ® is not
the point distribution at 0. Then the fixed-point equation s = f(s) has at most one solution s € C.

Proof. Let us first show that for each s € CT and a value cy(s) > 0 independent of n,
liminf tr S(s)®S(s)* > ¢o(s) > 0. (59)
n—oo

Denoting S = S(s) and applying the von Neumann trace inequality,
tr SBS* = L Trds*s > 1 Xn:A (@) Aps1_a(S™S)
r = —1r - « n+l—a ’

n n - 1

where A;(-) > ... > A,(-) denote the sorted eigenvalues. Since ® has a non-degenerate limit
spectrum, there is a constant ¢ > 0 for which A.,,(®) > & for all large n. (Throughout the proof, en,
en/2, etc. should be understood as their roundings to the nearest integer.) Then

1 En
tr S5 > e~ 2-:1 Ans1-a(S*S).

Denoting by o,(+) the o™ largest singular value, observe that

Mit1-a(S*S) = 0ni1-a(S)? =0a(A+s1® — 21d) 2.
Applying oo45-1(A + B) < 04(A) + 03(B), we have

Oa(A+ 5710 — 21d) < 04/2(A) + || o0 j211(P) + 2]

Since the spectra of A and ¢ converge to deterministic limits, this implies that there is a constant
C(s) > 0 (also depending on z and ¢) such that 0, (A + s71® — 21d) < C(s) for every a €
[en/2,en] and all large n. Thus

en —en/2

tr S®S* > ¢ - C(s)?

n

for all large n, and this shows the claim (59).
Then, taking the limit n — oo in Lemma[G.4|b), we get

ImﬂanmWMMa»”zCmﬂw%%mvwmwu”é

Im s; Im s9

wawfm>sm—@w(

If s; = f(s1) and so = f(s2), then this yields |s1 — sa| < |s1 — s2| - h(s1, s2) for some quantity
h(s1,s2) € [0,1), where h(s1,s2) < 1 strictly because co(s1),co(s2) > 0. This contradiction
implies s; = s, so the equation s = f(s) has at most one solution s € Cct. O
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G.3 Proof of Proposition 3.6/ and Theorem [3.7]

The operator norm bound in Theorem [3.7| was shown in Lemma|[G.3] For the spectral convergence,
note that by Lemma the limit Stieltjes transform of KNTK at any z € C* is given by

L—1 -1
mntk (2) = lim tr ((—z +r) [d+X] X1, + Z qu;Xg> ,

n—00
£=0

provided that this limit exists and defines the Stieltjes transform of a probability measure. For
z=(2_1,...,2) € CT xR x C*, w = (w_1,...,wg) € C*+2,

recall the functions
Z — Sé(z)a (va) — té(sz)

defined recursively by (I2) and (I3). Proposition [3.6)and Theorem [3.7)are immediate consequences
of the following extended result.

Lemma G.6. Suppose b, # 0. Under Assumption[3.2] foreach ¢ = 1,..., L:
(a) Foreveryz € C~ x Rt x C*, the equation has a unique fixed point s¢(z) € CT.
(b) For every (z,w) € (C™ x RY x C*) x C**2, almost surely

to(z, w)

-1
= lim tr (2_1 1d +Z()X(—)FX0 + ...+ ZgX[Xg) (w_1 Id +w0X0TX0 + ...+ UMXJX@).
n—oo
(60)

In particular, for any z_1, ...,z € R where zy # 0,
lim spec z_ Id 420X Xo + ... + 20X, X, = v

where v is a probability measure on R with Stieltjes transform

m(z) = tg((—z—|—z,1,zo,...,ze),(1,0,...,0)).

Proof. By Corollary we may assume that each matrix X, ..., Xy, is (¢,, B)-orthonormal.
Define ®,, &, by and 46). Forz = (z_1,. .., z¢), let us write as shorthand
z-X"X(0) =21 1d+20X, Xo + ...+ 22X, Xy,

where the parenthetical (¢) signifies the index of the last term in this sum. Let us define similarly
w- X X(0).

Note that part (b) holds for ¢ = 0, by the assumption lim spec XJ Xo = o, the definition of
to((2-1,20), (w_1,wp)) in (T, and the fact that the function = — (w_1 + wox)/(2—1 + zoz) is
continuous and bounded over the non-negative real line when z_; € C™ and zg € C*.

We induct on ¢. Suppose that part (b) holds for £ — 1. To show part (a) for ¢, fix any z =
(2-1,...,20) € C~ x R* x C* (not depending on n) and consider the matrix

-1
R= (z-XTX(E)) . 61)
We apply the analysis of Appendix EI, conditional on Xy, ..., Xy_1, and with the identifications
X=Xo X=Xe, d=di, d=dp,

A:zoXJXOJr...Jrz@_lX;_ng_l, o= zyp, Z=—2_1.
Observe that & € C* and z € C~. The matrix R in is exactly

R=(A+aX'X —2I1d)"".
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Since each Xy, ..., Xy is (¢, B)-orthonormal, we have ||A|| < C for some constant C' > 0
(depending on z_1, ..., z¢, Ay). Thus Assumption@holds, conditional on Xy,..., X, 1. Letus
define the n-dependent parameter

1 n
§5=—+4+ —trEy,|R®
s Ol+d£ r WZ[ e]

where this expectation is over only the weights 1W,. Then, applying Lemma [E2(b) with a value
t = t,, such that t — 0 and nt? >> log n, we obtain

1
)g s (A s, - zId)‘1<I>g‘ -0 (62)
(6% dz

almost surely as n — oo.

Proposition shows that || is bounded, so for any subsequence in n, there is a further sub-
subsequence where 5 — sq for a limit sqg = sq(z) € CT. Let us now replace 5 and ®, above by sg

and @ ¢ First we have
_ - -1
tr(A+5 10— 21d) " @ —tr (A+ 55 d - 21d) @ >0
by the same argument as (49). Then, we have

- -1
tr (A s @ — 21d) @ —tr (A+ 5570 — 21d) @,

_ ~ - —1
5ot (At s 0 — 21d) T (B, — @) (A+ 550, - 21) @,

< S8, — oy H(A Fs7ld — 21d) L D(A + syl D — zId)—1HF
n

C = 1= _ - _
Sﬁllq’e—@ellrH(A+Sol<1>—21d) Hlel- 1A+ sg '@ = 21d) 71| — 0,

where the convergence to 0 follows from Lemma[G.3] Finally, we have
o (A4 557 @p = 21d) 7 @y — tr (A+ 5570, — 210) 1 By

1
-l

Applying these approximations to (62), we have almost surely along this sub-subsequence that

1 _ . ~ _ _ ~
S EH(AﬁLSO 1(I)g 7ZId) 1||F . ||(I)g 7@@”}7 S (A+50 1(1)5 7ZId) 1” . ||(I)g 7(I)g||p — 0.

1 - ~
‘50 C tr(A T syt — zld)*lqn’ 0. (63)
(0%

Now observe from the definitions of A, ) ¢, and z that

1— 12 " %
a) 1d+szX,IXk T (Zg_l + l)X@T_lX@_l,
k=0 50

A—|—851<i>g—zld= (z_1—|— S
0

Oy = (1-02)Id+02X, 1 X1

Then, applying (63) and the induction hypothesis that part (b) holds for ¢ — 1, we obtain that the
value sg must satisfy

1
So = a + ’)/zté—l (zpreV(SOa Z)7 (1 - bga 07 AR O7b§))’

where Zp, is defined in . This shows the existence of a solution (in C™) to the fixed-point
equation . Notice that because b, # 0 and sy € CT, the last entry of Zprey (50, 2) is in C* and
(Zprev (80, 2), (1 — b2,0,...,0,b2)) is in the domain of function t,_1.

To show uniqueness, we apply Corollary For any fixed s € C*, defining

Fuls) = é + (n/de) tr(A + s~ By — 21d) "1y,
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the same arguments as above establish that

. 1
lim f,(s) = f(s) = o + Yeto_1 (zpm\,(s,z)7 (1-— bg, 0,...,0, bg))

n—o0

Part (b) holding for £ — 1 implies that both A and ®, have deterministic spectral limits, where
lim spec ®, = lim spec d,

by . This cannot be the point distribution at 0, because implies that tr ®, > 1/2 for all large
n, and ||®,|| < C so at least n/(2C) eigenvalues of ®, exceed 1/2 for every n. Thus, Corollary|G.5|
implies that the fixed point s = f(s) is unique. So the fixed point s,(z) € C¥ is uniquely defined by
(12), and this shows part (a) for £.

By the uniqueness of this fixed point, we have also shown that so = s¢(z), where s is the limit of §
along the above sub-subsequence. Since for any subsequence in n, there exists a sub-subsequence for
this which holds, this shows that lim,,_,~, § = s¢(z) almost surely.

Now, to show that part (b) holds for ¢, let us also fix any w = (w_1,...,w;) € CcH2, Using that
z¢ # 0, we may write
woXTX(0) = 2z XTX() + Wprey - XTX (0 — 1),
2y
where Wy, is as defined in @ Then
-1 -1
(z : XTX(z)) (w : XTX(K)) - %IdJr(z : XTX(E)) (wpmv XTX(0— 1)). (64)
2
We now apply Lemma a) conditional on X, ..., X,;_1, with the same identifications as above
and with
M = Wpey - X X(0— 1).

Note that M is indeed deterministic conditional on Xy, ..., Xy_1, and ||M| < C for a constant
C > 0 (depending on z and w) since Xy, ..., Xy_; are (g, B)-orthonormal. Then, applying

Lemmal[E2(a),
o KZ_XTX(E))* (Wprev.xrx(g_l)ﬂ —tr [(A+g*1¢>¢—zld)*1 (wprewXTX(z—l))} - 0.

By the same arguments as above, we may replace 3 by so = s¢(z) and ®, by ®,. Then, applying this

to (64),
ir {(Z.XTX(@)_l(w-XTX(z))} W gy [(A—l—sz(z)_l(i)g—zId)_l (wpmV.XTX(f—l))] 0.

zL

Finally, applying that part (b) holds for £ — 1, this yields

lim tr [(z . XTX(E))i1 (W . XTX(E))] - + to—1(Zprev(5¢(2), 2), Wprev ),

n— 0o Zy

which is the definition of ¢,(z, w). This establishes (60).

For any fixed z_1,. ..,z € R where 2y # 0, and any fixed z € C™, this implies that the Stieltjes
transform of z - X T X(¢) has the almost sure limit

m(z) = tg((—z Y21, 20,0, 20), (1,0, .. ,o)).
So m(z) defines the Stieltjes transform of a sub-probability distribution v, and the empirical eigen-
value distribution of z- X " X (¢) converges vaguely a.s. to v. Since ||z- X " X(¢)]| is bounded because

Xo, ..., X, are (g, B)-orthonormal, this limit ¥ must in fact be a probability distribution, and the
eigenvalue distribution converges weakly to v. This concludes the induction and the proof. O

H Multi-dimensional outputs and rescaled parametrizations

In this section, we provide some motivation for the form of the NTK in (17) for networks with a
k-dimensional output, and we prove Theorem [3.8]regarding its spectrum.
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H.1 Derivation of (I7) from gradient flow training

Consider gradient flow training of the network (16), with training samples (X,,yo)"_; Where
Xo € R% and y, € R¥, under the general training loss

F(G) = Z L(fQ(Xa)v Y(x)'
a=1
Here, £ : R¥ x RF — R is the loss function. We denote by VL(fs(Xa),Ya) € R” the gradient of
L with respect to its first argument, and by Vyy, fp(xo) € RU(We)XE the Jacobian of fy(x,) with
respect to the weights W,.

Consider a possibly reweighted gradient-flow training of 6, where the evolution of weights W, is
given by

d n

@Wf(t) = -7 - Vw,F(0(t)) = -7 Z Vw, fot)(Xa) - VL(fot)(Xa), Ya)-
a=1

The learning rate for each weight matrix W, is scaled by a constant 7,—this may arise, for example,

from reparametrizing the network using W, = 7'[1 - Wy and considering gradient flow training

for Wg. Denoting the vectorization of all training predictions and its Jacobian by
Fo(X) = (f3(X),.... fE(X)) €R™, Vi, fo(X) € REMOVOXTE,
and the corresponding vectorization of (VL(fs(Xa),¥a)) =1 by VL(fo(X),y) € R"¥, this may
be written succinctly as
%Wz(t) = =70 Vw, fow)(X) - VL(fo)(X),y)-
Then the time evolution of in-sample predictions is given by

%f&(t) (X) = (Vefe(t) (X))T : %9@)

L+1

- (sz foe) (X)) ! (ng fe(t)(X)) -VL(for)(X),y)
(=1

= K" (t) - VL(for) (X), ¥),
where KNTK is the matrix defined in . For 11 = ... = 7741 = 1, this matrix is simply

KNTK = (Vefe(X))T<V0f9(X)) € Rk,

which is a flattening of the neural tangent kernel K € R™"*"*FxF (identified as a map K : R"*" —
RF¥*¥) that is defined in [27]).

H.2 Proof of Theorem[3.8]

The matrix KNTK in (17) admits a k x k block decomposition
RS RS .
RNE— | KN =Y n(Vu i) (Yw X)) e R
K
Writing
wi
Weaa=1| - |,
Wi
a computation using the chain rule similar to verifies that

L
. iT i
EN™ =1{i = j}roa X[ Xp + Y 7(S; S7) © (X, Xe)

=1
where S} € R *" is the matrix with the same column-wise definition as in l) replacing w by w;.
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Lemma H.1. Under the assumptions of Theorem for any indices i # j € |k|, almost surely as
n — 0o,

1
IS 0.

Furthermore, for a constant C > 0, almost surely for all large n, || K}J¥| < C.

Proof. By Corollary we may assume that each Xy, ..., Xy, is (&, B)-orthonormal.

Let us fix i, j,  and denote the columns of S} and SZ by s’ and S%j for a, B € [n]. We apply the

Hanson-Wright inequality conditional on W7, ..., Wy, which is similar to (57). However, since w;
and w; are independent, there is no trace term, and we obtain instead

T . 1
68| < Convi M v

for both & = 3 and v # 3 with probability 1 — e """, where M 1, is the same matrix as defined in
. Applying the bound || M ||r < Cy/n as in the proof of Corollary this yields

T g
’si” sﬂ’J‘ < Ce,

almost surely for all «, 8 € [n] and all large n. Combining with the (&,,, B)-orthonormality of X1,
we get for o # [ that

(55D © (XL Xelo | <05 |(85 ) © (XL Xeofo o] < G

Then
187 87) © (X[ Xe)lI% < COn(n — 1)l + Cne?,

and the first statement follows from the assumption £,n'/4 — 0. The second statement on the
operator norm follows from the bound

T,
SZZ ngz

T " /2, T, N 1/2
(53" 87) © (XL Xe) | < (mie s s57]) (i [s67 s8] ) - 104 Xl

See 29, Eq. (3.7.9)] applied with X = S} and Y = SJ. The bound | K55 < C then follows from
the (&,,, B)-orthonormality of X,_; and Corollary applied to S} and Sz . O

Applying this lemma together with Proposition[C.3] we obtain

NTK
K 11
KNTK

lim spec = lim spec

R
where the off-diagonal blocks K. ZNjTK may be replaced by 0. Then the limit spectral distribution of
KNTK is an equally weighted mixture of those of KK, ... KNIK. For each diagonal block KN',
the argument of Lemma[G.3|shows that

L—1
lim spec KSTK = lim spec (T -ry Id —l—TLHXZXL + Z T£+1QZXZ—X£> .
£=0

Then by Theorem each diagonal block K}'® has the same limit spectral distribution, whose
Stieltjes transform is given by the function myrx (z) in Theorem 3.8] Furthermore, since || KNT¥|| <
C by Lemmaand |KN™|| < C fori # j by Lemma |H.1| this shows || KNT¥|| < C. This

J
establishes Theorem

Again, when b, = 0, the limit spectrum of each KX reduces to lim spec(7 - 4 Id +77,11 X} X1),
which can be computed via the Stieltjes transform of pl;’[LP .
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I Reduction to result of Pennington and Worah [46] for one hidden layer

Consider the one-hidden-layer conjugate kernel

1
KX =X/X, = d—a(WlX)TU(WlX) e R™*",
1

Define an associated covariance matrix
1
M= =—oc(W X)o(W, X)" € Rhxd1 (65)
n

and observe that the eigenvalues of KK are those of M multiplied by n/d; and padded by n — d;
additional zeros (or with d; — n zeros removed, if n — d; < 0). [46, Theorem 1] characterizes the
limit spectral distribution of M in terms of a quartic equation in its Stieltjes transform, under the
additional assumptions that X has i.i.d. A(0,1/dy) entries and n/dy — ~yo € (0, oo)E] By Theorem
[3.4] this should be equivalent to the description

lim spec K = p}* ((1 —b2) + bguo) (66)
for the limit spectrum of KK, if we specialize to pig = p%P being the Marcenko-Pastur limit of the
input gram matrix X ' X. We derive this equivalence in this section.

Let mx (z) and mps(2) be the limit Stieltjes transforms for KX and M. For any z € C*, by the
relation between the eigenvalues of KX and M,

1T K n Id -1 n—d; n _1+1T nM n Id -1
—Tr - —z = ——2z —Tr(—M — —=z
n dq n dq n dy dy

2
:_(1_d1>dl.1+(dl> .diTr(M—zId)—l.
1

n =z n

Taking the limit on both sides, we obtain the relation between m g (z) and mp(z), which is

1y 1 1 1 1—
mg(y12) = — 1)+mMz(mMz+ > ©67)
() < /) mz o ) 7 ) z
Following the notation of [46], let us set
6=1/7% v=m/w n=1=E(E)] (=b. (68)
[46, Theorem 1] characterizes G(z) = —m(z) as the root of a quartic equation. Defining three
z-dependent quantities P, Py, Py, by
G =YpP+17Y po1y(poi Py=1+(P-1 69
(Z)_; +77 ¢ — +( - )¢7 P = +( - )wa (69)

this quartic equation is expressed as

(tPy Py 1
P=1 1 - ()tP,P, —_— h t=— 70

+ (1= Pt ap,p, Ve o (70)
see [46), Equations (10-12)].

To verify that (66) is equivalent to this equation (70), note that (66) means the Stieltjes transform
m (z) is defined by the Marcenko-Pastur equation (6)) as

0= 1
mel\z) =
[(1=02) + b3a][l = 1 — mzmi(2)] — 2

Applying the identity 1 — v — v 2mp (712) = —zma(z) from rearranging , and applying also
¢ = b2 in (68),

dpo(x). (71)

1
my(mnz) = / [<1 _ C) + Cx][—zmM(Z)] — Nz

*In [46]], the 1/+/dp scaling is in T/ rather than X, but these are clearly the same. We consider o, = 0, = 1
and 7 = 1 in the results of [46].

dyo (). (72)

37



When X has i.i.d. N'(0,1/dp) entries, the limit spectral distribution of X " X is the Marcenko-Pastur

law 19 = pBI. The Stieltjes transform m (z) of this law p9 = p}lf is characterized by the quadratic

equation
1= m(z)[L =0 — y0zm(2) — 2]
(which is the specialization of (6) when . is the point distribution at 1). Defining

sad) = [ o) = o (1)),

we obtain then that g(a, b) satisfies the quadratic equation
1 =g(a,b)[a — yoa — yobm(b/a) — b]
= g(a,b)[(a = b) = yoa — yoab- g(a, b)].

Applying this with a = —Czms(2) and b = (1 — {)zmps(2) + 712, the quantity is exactly
g(a, b). Thus this equation holds for g(a,b) = m g (v12) and these settings of (a, b), i..

1=mg(nz) ( —zmpr(2) =z +7Czmar(2) +v0Czmar (2)[(1 =) zmas(2) +'ylz]mK('ylz)) .

(73)
From the relation @), we see that this is a quartic equation in m s (z). Note that the definitions of
Py, and Py in (69) may be equivalently written as

Py =9¢P+1—1v¢ =2G(2) = —zmu(z),
1

Py=1+ g(zG(z) -1)= %(—zmM(z) —14v)=—y12zmr(y2)
where we have used G(z) = —m(z), ¥/¢ = 1 from (68), and the relation (67). Applying now
1z = (V/¢)z = 1/(¢t) and 7o = 1/¢, the equation (73) becomes

1= —¢tP, <P L Spifpca-or +1} d)tP)
[ P ot b » ¢ P » ot ¢
= —tPyPy + Py + (1 — Py)(tPyPy + ((1 — ()d(tPsPy)>.
This may be rearranged as
(1= Py — ¢)(1 = (tPsPy) = —p(1 — (tPsPy) — $tPyPy + (1 = O)p(tPyPy)*,

and dividing both sides by —¢(1 — (tP4Py) yields

1 tPyPy — ¢(1 — ¢)(tPy Py)? (tPy Py
—(Ppy—1)4+1=1+ =14 (1—-Q0OtPyPy + ————.
¢( s — 1) TN (1= QtPsPy = CtP, P,
Identifying the left side as P by (69), we obtain (70) as desired.
J Additional simulation results
J.1 Pairwise orthogonality of training samples
a) CIFAR-10 b) CIFAR-10 w/ 10 PCs removed  ©) IID Gaussian inputs
400000 800000 500000
300000 600000 400000
300000
200000 400000
200000
100000 200000 100000
0- 0+ 0-
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 —0.06 —0.04 —0.02 0.00 0.02 0.04 0.06
Pairwise inner-products Pairwise inner-products Pairwise inner-products

All pairwise inner-products {x ! x5 : 1 < a < 8 < n}, for (a) 5000 CIFAR-10 training samples, (b)
5000 CIFAR-10 training samples with the first 10 PCs removed, and (c) i.i.d. Gaussian training data
of the same dimensions. Results for (b) were reported in Section@, and results for (a) are reported
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below in Appendlxp[ CIFAR-10 training samples were mean-centered and normalized to satisfy
x)1=0and ||x,]|° = 1in (a) and (b).

The pairwise inner-products in (a) span a typical range of [—0.5,0.5]. Those in (b) span a range
of about [—0.2, 0.2], and those in (c) about [—0.02, 0.02]. Thus, with 10 PCs removed, these inner-
products for CIFAR-10 are larger than for i.i.d. Gaussian inputs by a factor of 10. We found in
Section [d.2]that the inner-products of (b) are sufficiently small for the observed spectra to match the
theoretical limits of Theorems 3.4 and 3.7

J.2 CK and NTK spectra for CIFAR-10 without removal of leading PCs

b) CK spectrum, layer 5 C) NTK spectrum

a) Input data spectrum 500

100

100

80 80 400

60 60 300

40 40 200

20 20 100

0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Same plots as Figure [2] for CIFAR-10 training samples, without the removal of the 10 leading PCs.
We observe a close agreement of the observed CK spectrum with the limit spectrum of Theorem
However, there is a greater discrepancy of the NTK spectrum with the limit spectrum of Theorem

in this setting.

J.3 Example images of CIFAR-10 with/without leading PCs
” "?»‘”i Eii fdlh g)ﬂ
| I

Example CIFAR-10 training samples for each class. For each training sample, we compare the
original image (above) and the corresponding normalized image upon removing the top 10 PCs
(below). Most of the image details are preserved upon removing these 10 PCs.

0)

0) 1)7 2)

4
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J.4 Observed and limit CK spectra for all layers

Input data spectrum CK spectrum, layer 1 CK spectrum, layer 2

200 200 200
175 175 175
150 150 150
125 125 125
100 100 100
75 75 75
50 50 50
25 - I 25 25
0 0 2 4 6 0 _JO 2 4 6 8 10 0 0 2 4 6 8 0 12

CK spectrum, layer 3 CK spectrum, layer 4 CK spectrum, layer 5

200
175
150
125

200 200
175 175
150 150
125 125

100 100 100

75 75 75
50

25

50 50
25 25

B
g

0.0 2.5 50 75 100 125 00 25 50 75 100 125 15.0 00 25 50 75 100 125 15.0

Simulated spectra of the initial CK matrices X 2’ Xy at all intermediate layers £ = 1,...,5, corre-
sponding to the i.i.d. Gaussian training data example of Figure[I] Numerical computations of the
limit spectra from Theorem [3.4] are overlaid in red. We observe a merging of the two bulk spectral
components and an extension of the spectral support with increase in layer number.

Input data spectrum CK spectrum, layer 1 CK spectrum, layer 2

100

80 80
60 60
40 40
20 20
0 10 20 30 0

CK spectrum, layer 4 CK spectrum, layer 5

100 100
80 80
60 60
40 40
20 20

0 10 20 30 °

The same as above, corresponding to the CIFAR-10 training samples in Appendix [J.2] (Results with
10 PCs removed look the same.) A close agreement with the limit spectrum described by Theorem
[34]is observed at each layer.
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Spectra of the CK matrices at all three layers, corresponding to the trained 3-layer network of Section
A3] The limit spectra at random initialization of weights are depicted in red, and the two largest
eigenvalues of each matrix are depicted by blue arrows.

J.5 CK spectrum after training on a CIFAR-10 example

We train a binary classifier on n = 10000 training samples from CIFAR-10, corresponding to classes
0 (airplane) and 1 (automobile). The classifier is a fully-connected network with L = 4 hidden layers
of dimensions d; = ... = d4 = 1000, with bias terms and a normalized sigmoid activation at each
hidden layer and also at the output layer. This network is given by

1
x)=o(w'xI'+b), x{ = —o(Wix*"'+b for ¢=1,...,L
fo(x) =o( +b) NG (We + by)

where b € R and b, € R% for each / = 1,...,L are the bias parameters. The acti-
vation function o(z) o« (1 — e *)/(1 + e~?) is scaled such that E[o(£)?] = 1. Weights
0 = (vec(W1),...,vec(Wy), w) are initialized to independent A/(0, 1) for each entry, and biases
(b1, ...,by,b) are initialized to 0. Hence, KX at random initialization has the same definition as in
the main text.

We train the weights and biases using the Adam optimizer in Keras, with learning rate 0.01, batch
size 128, and 60 training epochs. To ensure that the leading PCs of the untrained kernel matrix KX
are not too predictive of the training labels, and to better separate the original PCs from those that
emerge after training, we remove the leading 5 PCs of the input data before training. The resulting
0-1 classification accuracy on the CIFAR-10 test set is 85.3%. (Training without removing these 5
PCs yields a slightly higher test accuracy of 90.7%, using the same network architecture.)

a) b)

Initial CK spectrum, layer 4
20.0

20.0 Trained CK spectrum, layer 4

—— Limit spectrum

17.5 17.5

15.0 15.0

125 12.5
10.0 10.0
7.5 7.5
5.0 5.0

25 2.5

0.0 1 1
0 200 400 600 0 2000 4000 6000

0.0

Panel (a) above shows the eigenvalue distribution of KX at random initialization, with the largest
eigenvalue being approximately 500. We observe a close agreement with the limit spectrum of
Theorem Panel (b) shows the eigenvalues of KX after training. We observe an elongation of
the bulk spectral support and the emergence of large outlier eigenvalues, analogous to the synthetic
example of Section[d.3]

a - b )
) Top 2 Pcs of initial CK, layer 4 ) Top 2 Pcs of trained CK, layer 4
1.0 . - 1.0 ——
0.8 0.8
> >
% 0.6 B % 0.6
é e Sigmoid é - Sigmoid
g 0.4 g 0.4 |
£ &
0.2 0.2
0.0 0.0 =

-1.0 -0.5 0.0 0.5 1.0 =20 -10 0 10 20 30
Best linear prediction with top 2 Pcs Best linear prediction with top 2 Pcs

The above figure depicts the information about the training labels that is contained in the top 2 PCs
of KK, (a) before training and (b) after training. Denoting by X, the rank-2 approximation of
X, with columns %X, ... %% (both before and after training), we re-fit a linear binary classifier
Yo = 0(W ' XL 4 b) of the training labels to these columns. The in-sample 0-1 training accuracy of
this classifier is 51.4% pre-training and 96.8% post-training, and the figure shows the linear predictions
w ' %L + b against the training labels y,,. We observe that the leading principal components of K
are not predictive of the training labels before training, but become highly predictive after training.
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