
A Numerical solution of the fixed-point equations

Theorem 3.7 characterizes the limit Stieltjes transform m(z) of matrices such as KCK and KNTK. By
the discussion in Section 2.2, a numerical approximation to the density functions of the corresponding
spectral distributions may be obtained by computing m(z) for z = x+ iη, across a fine grid of values
x ∈ R and for a fixed small imaginary part η > 0. We describe here one possible approach for this
computation.

To compute the limit spectrum for z−1 Id +z0X
>
0 X0 + . . . + zLX

>
LXL and general values

z−1, . . . , zL ∈ R, fix the spectral argument z = x+ iη and denote
zL = (−z + z−1, z0, . . . , zL), zL−1 = zprev(sL(zL), zL), zL−2 = zprev(sL−1(zL−1), zL−1), etc.

Here, for s ∈ C+ and z ∈ C− × R` × C∗, the quantity

zprev(s, z) =

(
z−1 +

1− b2σ
s

, z0, . . . , z`−2, z`−1 +
b2σ
s

)
∈ C− × R`−1 × C∗

is as defined in (14). Denote s` ≡ s`(z`) for each ` = 1, . . . , L. Observe that, if we are given
s1, . . . , sL, then the value t`(z`,w) may be directly computed from (13), for any ` ∈ {0, . . . , L}
and any vector w ∈ C`+2. This is because the fixed points needed to compute the arguments
zprev(s`(z`), z`), zprev(s`−1(z`−1), z`−1), etc. for the successive evaluations of t`, t`−1, etc. are
provided by this given sequence s1, . . . , sL.

Thus, we apply an iterative procedure of initializing s(0)
1 , . . . , s

(0)
L ∈ C+, and computing the simul-

taneous updates s(t+1)
1 , . . . , s

(t+1)
L using the previous values s(t)

1 , . . . , s
(t)
L . That is, we iterate the

following two steps:

1. Set z(t)
L = zL, and compute z

(t)
L−1 = zprev(s

(t)
L , z

(t)
L ), z(t)

L−2 = zprev(s
(t)
L−1, z

(t)
L−1), etc.

2. Compute an update s(t+1)
` for the value of s`(z`) and each ` = 1, . . . , L, using the right

side of (12) with z
(t)
` and z

(t)
`−1 ≡ zprev(s

(t)
` , z

(t)
` ) in place of z` and zprev(s`(z`), z`).

After this iteration converges to fixed points s∗1, . . . , s
∗
L, we then compute m(z) =

tL(zL, (1, 0, . . . , 0)) using (13) and these fixed points. For each successive value z = x + iη

along the grid of values x ∈ R, we initialize s(0)
1 , . . . , s

(0)
L by linear interpolation from the computed

fixed points at the preceding two values of x along this grid, for faster computation.

Note that for each value z = x+ iη, if the above iteration converges to fixed points s∗1, . . . , s
∗
L ∈ C+,

then this procedure computes the correct value for m(z): This is because, denoting
z∗L−1 = zprev(s∗L, zL), z∗L−2 = zprev(s∗L−1, z

∗
L−1), . . . , z∗1 = zprev(s∗2, z

∗
2),

it may be checked iteratively from (12,13) and the uniqueness guarantee of Proposition 3.6 that
s∗1 = s1(z∗1), then s∗2 = s2(z∗2), etc., and finally that s∗L = sL(zL). This then means that z∗L−1 =
zprev(sL(zL), zL) = zL−1, then z∗L−2 = zprev(sL−1(zL−1), zL−1) = zL−2, etc., and so s∗` = s`(z`)
for each `. Then this method computes the correct value for m(z) = tL(zL, (1, 0, . . . , 0)).

We have found in practice that the above iteration occasionally converges to fixed points s1, . . . , sL
not belonging to C+ (i.e. this is not a mapping from (C+)L to (C+)L). If this occurs, we randomly
re-initialize s(0)

1 , . . . , s
(0)
L ∈ C+, and we have found that the method reaches the correct fixed point

within a small number of random initializations.

To clarify this approach, let us illustrate this computation in a simple example: Consider L = 2. Fix
any grid value x ∈ R and η > 0. An approximate density function for the limit spectrum of X>2 X2 at
x is given by 1

π Im t2 ((−z, 0, 0, 1), (1, 0, 0, 0)), where z = x+ iη. Based on equations (11,12,13),

t2 ((−z, 0, 0, 1), (1, 0, 0, 0)) = t1

((
−z +

1− b2σ
s2

, 0,
b2σ
s2

)
, (1, 0, 0)

)
= t0

((
−z +

1− b2σ
s2

+
1− b2σ
s1

,
b2σ
s1

)
, (1, 0)

)
=

∫ (
−z +

1− b2σ
s2

+
1− b2σ
s1

+
b2σ
s1
x

)−1

dµ0(x),
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where s1, s2 ∈ C+ satisfy the fixed point equations

s2 = 1 + γ2s2 + γ2t0

((
−z +

1− b2σ
s2

+
1− b2σ
s1

,
b2σ
s1

)
, (s2z, 0)

)
(18)

s1 =
s2

b2σ
+ γ1t0

((
−z +

1− b2σ
s2

+
1− b2σ
s1

,
b2σ
s1

)
, (1− b2σ, b2σ)

)
. (19)

We randomly initialize s(0)
1 , s

(0)
2 ∈ C+, and update s(t+1)

1 , s
(t+1)
2 simultaneously by substituting

s1 = s
(t)
1 and s2 = s

(t)
2 into the right side of (18) and (19). We iterate this until convergence, and

then substitute into the above expression for t2((−z, 0, 0, 1), (1, 0, 0, 0)) to approximate the limit
spectral density of X>2 X2 at x.

B Proof of (ε, B)-orthonormality for independent input training samples

We prove Proposition 3.3. For convenience, in this section, we denote the input dimension d0 simply
as d, and we denote the rescaled input by X̃ =

√
dX , with columns x̃α =

√
d · xα.

Bound for ‖x̃α‖2: Note that E[‖x̃α‖2] = d. Applying the convex concentration property and [1,
Theorem 2.5] with A = Id, we have for any t > 0 that

P
[∣∣‖x̃α‖2 − d∣∣ > t

]
≤ 2 exp

(
−cmin

(
t2

d
, t

))
(20)

for a constant c depending only on c0. Applying this for t =
√
Kd log n and a union bound, with

probability 1− 2ne−cK logn,∣∣∣‖x̃α‖2 − d∣∣∣ ≤√Kd log n for all α ∈ [n]. (21)

Rescaling, this shows |‖xα‖2 − 1| ≤
√

(K log n)/d.

Bound for x̃>α x̃β: Since x̃α and x̃β are independent, conditional on x̃β , we have E[x̃>α x̃β | x̃β ] = 0,
and the map x̃α 7→ x̃>α x̃β is convex and ‖x̃β‖-Lipschitz. Then the convex concentration property
implies, for any t > 0,

P
[
|x̃>α x̃β | > t

∣∣∣x̃β] ≤ 2e−c0t
2/‖x̃β‖2 .

On the event (21), applying this for t =
√
Kd log n, this probability is at most 2e−cK logn. Taking a

union bound, with probability 1− 2n2e−cK logn,∣∣∣x̃>α x̃β∣∣∣ ≤√Kd log n for all α 6= β ∈ [n].

Rescaling, this shows |x>αxβ | ≤
√

(K log n)/d.

Bound for ‖X̃‖: Fix any unit vector v = (v1, . . . , vn) ∈ Rn. By [31, Lemma C.11], the random
vector X̃v also satisfies the convex concentration property, with a modified constant c′0. Note that
E[‖X̃v‖2] = d‖v‖2 = d. Then, as in (20), we have

P
[
|‖X̃v‖2 − d| > t

]
≤ 2 exp

(
−cmin

(
t2

d
, t

))
.

Applying this with t = (B2/4 − 1)d, and taking a union bound over a 1/2-net N of the unit ball
{v ∈ Rn : ‖v‖ = 1} with cardinality 5n, we have with probability at least 1− 5n · 2e−cB2d that

‖X̃v‖ ≤ (B/2)
√
d for all v ∈ N .

Since
‖X̃‖ = sup

v:‖v‖=1

‖X̃v‖ ≤ sup
v∈N
‖X̃v‖+ ‖X̃‖/2,

we have ‖X̃‖ ≤ B
√
d on this event. Rescaling, this shows ‖X‖ ≤ B.
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Bound for
∑n
α=1(‖x̃α‖2 − d)2: Define z = (z1, . . . , zn) where zα = ‖x̃α‖2 − d. Fixing any unit

vector v = (v1, . . . , vn) ∈ Rn, let us first bound v>z: We have

v>z =

n∑
α=1

vα(‖x̃α‖2 − d),

which has mean 0. Note that integrating the tail bound (20) yields the sub-exponential condition

E
[
exp

(
λ(‖x̃α‖2 − d)

)]
≤ exp(Cdλ2) for all |λ| ≤ c′

and some constants C, c′ > 0. (See e.g. [10, Theorem 2.3], applied with (v, c) = (C ′d,C ′) and a
large enough constant C ′ > 0.) Then, as x̃1, . . . , x̃n are independent and ‖v‖2 = 1, also

E[eλv
>z] = E

[
exp

(
λ

n∑
α=1

vα(‖x̃α‖2 − d)

)]
≤ exp(Cdλ2) for all |λ| ≤ c′.

For any t > 0, applying this with λ = min(t/(2Cd), c′) yields the sub-exponential tail bound

P[v>z ≥ t] ≤ e−λtE[eλv
>z] ≤ exp

(
−cmin

(
t2

d
, t

))
.

Now applying this for t = (B/2)d, and again taking a union bound over a 1/2-net N of the unit ball,
we have with probability 1− 5n · e−cBd that

v>z ≤ (B/2)d for all v ∈ N .

On this event, we have as above that ‖z‖ ≤ Bd, so ‖z‖2 ≤ B2d2. Rescaling, this shows∑n
α=1(‖x̃α‖2 − 1)2 ≤ B2.

Applying all of the above bounds for sufficiently large constants K,B > 0, we obtain that these
bounds hold with probability at least 1− n−k, which yields Proposition 3.3.

C Overview of proofs and preliminary lemmas

The proofs of Theorems 3.4, 3.7, and 3.8 are contained in the subsequent Appendices D–H. We
provide here an outline of the argument.

We will apply induction across the layers ` = 1, . . . , L, analyzing the post-activation matrix X` of
each layer conditional on the previous post-activations X0, . . . , X`−1 (i.e. with respect to only the
randomness of W`). For the Conjugate Kernel, this will entail analyzing the Stieltjes transform

1

n
Tr(X>LXL − z Id)−1

conditional on the previous layers. For the Neural Tangent Kernel, given the approximation in Lemma
3.5, this will entail analyzing the Stieltjes transform

1

n
Tr(A+X>LXL − z Id)−1

conditional on the previous layers, where A is a linear combination of X>0 X0, . . . , X
>
L−1XL−1, and

Id. Note that this matrix A is deterministic conditional on the previous layers.

In Appendix D, we carry out a non-asymptotic analysis of (ε,B)-orthonormality. In particular, we
show that if the deterministic inputX ≡ X0 is (ε,B)-orthonormal, thenX1 is (Cε,CB)-orthonormal
with high probability, for a constant C > 0 depending only on λσ. Note that we require the fourth
technical condition

n∑
α=1

(‖xα‖2 − 1)2 ≤ B2

in Definition 3.1 to ensure that the operator norm ‖X1‖ remains of constant order, as otherwise X1

may have a rank-one component whose norm grows slowly with n. Applying this result conditionally
for every layer, Assumption 3.2 then implies that X0, . . . , XL are all (ε̃n, B̃)-orthonormal for
modified parameters (ε̃n, B̃) with high probability.
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In Appendix E, we carry out the analysis of the trace
1

n
Tr(A+ αX>1 X1 − z Id)−1

in a single layer, for a deterministic (εn, B)-orthonormal inputX0, symmetric matrixA ∈ Rn×n, and
spectral parameters α ∈ C∗ ≡ C− \ 0 and z ∈ C+. We allow α ∈ C∗ (rather than fixing α = 1), as
the subsequent induction argument for the NTK will require this extension. When A = 0 and α = 1,
this reduces to the analysis in [39], and also mirrors the proof of the Marcenko-Pastur equation (6).
For A 6= 0, this trace will depend jointly on A and the second-moment matrix Φ1 ∈ Rn×n for the
rows of X1. We derive a fixed-point equation in terms of A and Φ1, which approximates this trace in
the n→∞ limit.

In Appendix F, we prove Theorem 3.4 on the CK, by specializing this analysis to the setting A = 0
and α = 1. The inductive loop is closed via an entrywise approximation of the second-moment
matrix Φ` in each layer by a linear combination of X>`−1X`−1 and Id in the previous layer. The main
argument for this approximation has been carried out in Appendix D.

In Appendix G, we prove Theorem 3.7 on the NTK. Our analysis reduces the trace of any linear
combination of X>0 X0, . . . , X

>
LXL and Id to the trace of a more general rational function of

X>0 X0, . . . , X
>
L−1XL−1 and Id in the previous layer. In order to close the inductive loop, we

analyze the trace of such a rational function across layers, and show that it may be characterized by
the recursive fixed-point equations (12) and (13). In Appendix G, we also establish the approximation
in Lemma 3.5 and the existence and uniqueness of the fixed point to (12).

Finally, in Appendix H, we prove Theorem 3.8, which is a minor extension of Theorem 3.7.

Notation. In the proof, v∗ andM∗ denote the conjugate transpose. For a complex matrixM ∈ Cn×n,
we denote by

trM = n−1 TrM

the normalized matrix trace, by ‖M‖ = supv∈Cn:‖v‖=1 ‖Mv‖ the operator norm, and by ‖M‖F =

(TrM∗M)1/2 = (
∑
α,β |Mαβ |2)1/2 the Frobenius norm. Note that we have

| trM | ≤ ‖M‖ ≤ ‖M‖F , ‖M‖F ≤
√
n‖M‖, | trAB| ≤ n−1‖A‖F ‖B‖F .

Let us collect here a few basic results, which we will use in the subsequent sections.
Proposition C.1. Under Assumption 3.2(b), the constants aσ and bσ in (7) satisfy

|bσ| ≤ 1 ≤
√
aσ ≤ λσ.

For a universal constant C > 0, the activation function σ satisfies

|σ(x)| ≤ λσ(|x|+ C) for all x ∈ R. (22)

Proof. It is clear from definition that aσ ≤ λ2
σ . By the Gaussian Poincaré inequality,

1 = E[σ(ξ)2] = Var[σ(ξ)] ≤ E[σ′(ξ)2] = aσ.

By Gaussian integration-by-parts and Cauchy-Schwarz,

|bσ| = |E[σ′(ξ)]| = |E[ξ · σ(ξ)]| ≤ E[ξ2]1/2E[σ(ξ)2]1/2 = 1.

We have
|σ(0)| ≤ E[|σ(0)− σ(ξ)|] + E[|σ(ξ)|] ≤ λσE[|ξ|] + E[σ(ξ)2]1/2 ≤ Cλσ (23)

(the last inequality applying λσ ≥ 1). Then |σ(x)| ≤ |σ(0)|+ λσ|x| ≤ λσ(|x|+ C).

Proposition C.2. SupposeM = U+ iV ∈ Cn×n, where the real and imaginary parts U, V ∈ Rn×n
are symmetric, and V is invertible with either V � c0 Id or V � −c0 Id for a value c0 > 0. Then M
is invertible, and ‖M−1‖ ≤ 1/c0.

Proof. For any unit vector v ∈ Cn,
‖Mv‖ = ‖Mv‖ · ‖v‖ ≥ |v∗Mv| = |v∗Uv + i · v∗V v| ≥ |v∗V v|,

the last step holding because U, V are real-symmetric so that v∗Uv and v∗V v are both real. By the
given assumption on V , we have |v∗V v| ≥ c0, so ‖Mv‖ ≥ c0 for every unit vector v ∈ Cn. Then
M is invertible, and ‖M−1‖ ≤ 1/c0.
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Proposition C.3. Let M, M̃ ∈ Rn×n be any two symmetric matrices satisfying

1

n
‖M − M̃‖2F → 0

a.s. as n→∞. If lim specM = ν for a probability distribution ν on R, then also lim spec M̃ = ν.

Proof. For fixed z ∈ C+, let m(z) = tr(M − z Id)−1 and m̃(z) = tr(M̃ − z Id)−1 be the Stieltjes
transforms. Then applying A−1 −B−1 = A−1(B −A)B−1, we may bound their difference by

|m(z)− m̃(z)|2 =
1

n2

∣∣∣Tr[(M − z Id)−1 − (M̃ − z Id)−1]
∣∣∣2

=
1

n2

∣∣∣Tr(M − z Id)−1(M̃ −M)(M̃ − z Id)−1
∣∣∣2

≤ 1

n2
‖M̃ −M‖2F ‖(M − z Id)−1(M̃ − z Id)−1‖2F

≤ 1

n
‖M̃ −M‖2F ‖(M − z Id)−1‖2‖(M̃ − z Id)−1‖2

Applying ‖(M − z Id)−1‖ ≤ 1/ Im z by Proposition C.2, and similarly for M̃ , the given condition
shows that m(z) − m̃(z) → 0 a.s., pointwise over z ∈ C+. If lim specM = ν, then m(z) →
mν(z) ≡

∫
(x− z)−1dν(x) a.s., and hence also m̃(z)→ mν(z) a.s. and lim spec M̃ = ν.

D Propagation of approximate pairwise orthogonality

In this section, we work in the following (non-asymptotic) setting of a single layer: Consider any
deterministic matrix X ∈ Rd×n, let W ∈ Rď×d have i.i.d. N (0, 1) entries, and set

qX =
1√
ď
σ(WX) ∈ Rď×n. (24)

Note that qX has i.i.d. rows with distribution σ(w>X)/
√
ď, where w ∼ N (0, Id). Define the

second-moment matrix of qX by

Φ = E[ qX> qX] = E[σ(w>X)>σ(w>X)] ∈ Rn×n (25)

where the expectations are over the standard Gaussian matrix W and standard Gaussian vector w.
Let Φαβ denote the (α, β) entry of Φ for any α, β ∈ [n]. We show in this section the following result.
Lemma D.1. Suppose X is (ε,B)-orthonormal where ε < 1/λσ. Then for universal constants
C, c > 0, with probability at least 1−2n2e−cďε

2 −3e−cn, the matrix qX remains (qε, qB)-orthonormal
with

qε = Cλ2
σε,

qB = C
(

1 + n/ď
)
λ2
σB.

Corollary D.2. Under Assumption 3.2, there exist parameters (ε̃n, B̃) still satisfying ε̃nn1/4 → 0,
such that a.s. for all large n, every matrix X0, . . . , XL is (ε̃n, B̃)-orthonormal.

Proof. Note that increasing εn represents a weaker assumption, so we may assume without loss
of generality that εn ≥ n−0.49. Then by Lemma D.1, there is a constant C0 ≥ 1 depending on
λσ, γ1, . . . , γL, such that if X`−1 is (C`−1

0 εn, C
`−1
0 B)-orthonormal, then conditional on this event,

X` is (C`0εn, C
`
0B)-orthonormal with probability at least 1− e−n0.01

for all large n. Thus, setting
ε̃n = CL0 εn and B̃ = CL0 B, with probability at least 1 − Le−n0.01

, every matrix X0, . . . , XL is
(ε̃n, B̃)-orthonormal. The almost sure statement then follows from the Borel-Cantelli Lemma.

In the remainder of this section, we prove Lemma D.1. We divide the proof into Lemmas D.3, D.4,
and D.5 below, which check the individual requirements for (qε, qB)-orthonormality of qX . We denote
by C,C ′, c, c′ > 0 universal constants that may change from instance to instance.
Lemma D.3. If X is (ε,B)-orthonormal where ε < 1/λσ , then for universal constants C, c > 0:
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(a) For all α 6= β ∈ [n],

|Φαβ − b2σx>αxβ | ≤ Cλ2
σε

2 (26)∣∣∣Ew∼N (0,Id)[σ(w>xα)]
∣∣∣ ≤ Cλσ∣∣∣‖xα‖2 − 1

∣∣∣ ≤ Cλσε (27)

|Φαα − 1| ≤ Cλσ
∣∣∣‖xα‖2 − 1

∣∣∣ ≤ Cλσε (28)

(b) With probability at least 1− 2n2e−cďε
2

, simultaneously for all α 6= β ∈ [n], the columns of qX
satisfy ∣∣‖qxα‖2 − 1

∣∣ ≤ Cλ2
σε,

∣∣
qx>α qxβ

∣∣ ≤ Cλ2
σε.

Note that (26) establishes an approximation which is second-order in ε—this will be important in our
later arguments which approximate Φ in Frobenius norm.

Proof. For part (a), observe that (ζα, ζβ) ≡ (w>xα,w
>xβ) is bivariate Gaussian, with mean 0 and

covariance

Σ =

(
‖xα‖2 x>αxβ
x>αxβ ‖xβ‖2

)
= Id +∆

where ∆ is entrywise bounded by ε. Then performing a Gram-Schmidt orthogonalization procedure,
for some independent standard Gaussian variables ξα, ξβ ∼ N (0, 1), we have

ζα = uαξα, ζβ = uβξβ + vβξα (29)

where uα, uβ > 0 and vβ ∈ R satisfy |uα − 1|, |uβ − 1|, |vβ | ≤ Cε for a universal constant C > 0.

By a Taylor expansion of σ(ζ) around ζ = ξ, there exists a random variable η between ζ and ξ such
that

σ(ζ) = σ(ξ) + σ′(ξ)(ζ − ξ) +
1

2
σ′′(η)(ζ − ξ)2. (30)

For α 6= β, applying this for both ζα and ζβ , noting that the product of leading terms satisfies
E[σ(ξα)σ(ξβ)] = 0, and applying also the bounds |σ′(x)|, |σ′′(x)| ≤ λσ where λσ ≥ 1, it is easy to
check that

Φαβ = E[σ(ζα)σ(ζβ)] = E
[
σ(ξα) · σ′(ξβ)(ζβ − ξβ) + σ(ξβ) · σ′(ξα)(ζα − ξα)

]
+ remainder

where this remainder has magnitude at most Cλ2
σε

2. For the first term, substituting (29) and applying
independence of ξα and ξβ , we have

E
[
σ(ξα) · σ′(ξβ)(ζβ − ξβ) + σ(ξβ) · σ′(ξα)(ζα − ξα)

]
= (uβ − 1)E[σ(ξα)] · E[σ′(ξβ)ξβ ] + vβE[σ(ξα)ξα] · E[σ′(ξβ)] + (uα − 1)E[σ(ξβ)] · E[σ′(ξα)ξα].

Applying E[σ(ξ)] = 0 and the integration-by-parts identity E[σ(ξ)ξ] = E[σ′(ξ)] = bσ, this term
equals vβb2σ . From (29), we have uαvβ = E[ζαζβ ] = x>αxβ . Since |uα − 1| ≤ Cε and |x>αxβ | ≤ ε,
this implies |vβb2σ − b2σx>αxβ | ≤ Cb2σε2 ≤ Cλ2

σε
2. Combining these yields (26). Similarly, from a

first-order Taylor expansion analogous to (30),∣∣∣E[σ(w>xα)]
∣∣∣ =

∣∣∣E[σ(ζα)]− E[σ(ξα)]
∣∣∣ ≤ Cλσ · |uα − 1|,

|Φαα − 1| =
∣∣∣E[σ(ζα)2]− E[σ(ξα)2]

∣∣∣ ≤ C max
(
λσ · |uα − 1|, λ2

σ · |uα − 1|2
)
.

The bounds (27) and (28) follow from the observations u2
α = E[ζ2

α] = ‖xα‖2 and |uα − 1| ≤
|uα − 1| · |uα + 1| = |u2

α − 1| ≤ ε.

For part (b), let w>k be the kth row of W . Then by definition of qX , for any α, β ∈ [n] (including
α = β),

qx>α qxβ =
1

ď

ď∑
k=1

σ
(
w>k xα

)
σ
(
w>k xβ

)
.
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We apply Bernstein’s inequality: Denote by ‖ · ‖ψ2 and ‖ · ‖ψ1 the sub-Gaussian and sub-exponential
norms of a random variable. For any deterministic vector x ∈ Rd, the function w 7→ σ(w>x) is
λσ‖x‖-Lipschitz. Then for w ∼ N (0, Id) and a universal constant C > 0, we have by Gaussian
concentration-of-measure

‖σ(w>xα)− E[σ(w>xα)]‖ψ2
≤ Cλσ‖xα‖.

From (27), |E[σ(w>xα)]| ≤ Cλσε. Thus (recalling that |‖xα‖−1| ≤ ε), we have ‖σ(w>xα)‖ψ2
≤

Cλσ for a constant C > 0, and similarly for xβ . So

‖σ(w>xα)σ(w>xβ)‖ψ1
≤ ‖σ(w>xα)‖ψ2

‖σ(w>xβ)‖ψ2
≤ Cλ2

σ. (31)

Applying Bernstein’s inequality (see [53, Theorem 2.8.1]), for a universal constant c > 0 and any
t > 0,

P
[∣∣

qx>α qxβ − E
[
qx>α qxβ

]∣∣ > t
]
≤ 2 exp

(
−cďmin

(
t2

λ4
σ

,
t

λ2
σ

))
.

Applying this for t = λ2
σε and taking a union bound over all α, β ∈ [n], we get

P
[∣∣

qx>α qxβ − E
[
qx>α qxβ

]∣∣ ≤ λ2
σε for all α, β ∈ [n]

]
≥ 1− 2n2 exp

(
−cď · ε2

)
. (32)

Since E[qx>α qxβ ] = Φαβ , part (b) now follows from part (a).

Lemma D.4. If X is (ε,B)-orthonormal where ε < 1/λσ , then for universal constants C, c > 0:

(a) ‖Φ‖ ≤ Cλ2
σB

2.

(b) With probability at least 1− 2e−cn, ‖ qX‖ ≤ C
(

1 +
√
n/ď

)
λσB.

Proof. For part (a), define

Σ = E
[
σ(w>X)>σ(w>X)

]
− E[σ(w>X)]>E[σ(w>X)] (33)

where the first term on the right is Φ. Then

‖Σ‖ = sup
v:‖v‖=1

v>Σv = sup
v:‖v‖=1

∣∣∣∣E[(σ(w>X)v
)2]− E

[
σ(w>X)v

]2∣∣∣∣ = sup
v:‖v‖=1

Var
[
σ(w>X)v

]
.

We bound this variance using the Gaussian Poincaré inequality: Let us fix v ∈ Rn with ‖v‖ = 1 and
define

F (w) = σ(w>X)v =

n∑
α=1

vασ(w>xα).

Then, letting u ∈ Rn be the vector with entries uα = vασ
′(w>xα),

∇F (w) =

n∑
α=1

vασ
′(w>xα) · xα = Xu, ‖∇F (w)‖ ≤ ‖X‖ · ‖u‖ ≤ λσB. (34)

Then by the Gaussian Poincaré inequality, Var[F (w)] ≤ E[‖∇F (w)‖2] ≤ λ2
σB

2, so ‖Σ‖ ≤ λ2
σB

2.
In addition, by (27), the difference between Φ and Σ is a rank-one perturbation controlled by

‖Φ− Σ‖ = ‖E[σ(w>X)]‖2 =

n∑
α=1

E[σ(w>xα)]2 ≤ Cλ2
σ

n∑
α=1

(‖xα‖2 − 1)2 ≤ Cλ2
σB

2, (35)

the last inequality using the final condition of (ε,B)-orthonormality in Definition 3.1. This establishes
part (a).

For part (b), we apply the concentration result of [54, Eq. (5.26)] for matrices with independent
sub-Gaussian rows. For any fixed unit vector v ∈ Rn, recall from (34) that F (w) = σ(w>X)v is
λσB-Lipschitz. Then by Gaussian concentration-of-measure,

‖F (w)− E[F (w)]‖ψ2
≤ CλσB.
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We have |E[F (w)]| ≤ ‖E[σ(w>X)]‖ ≤ CλσB by (35), so also ‖F (w)‖ψ2 ≤ CλσB. This holds
for any unit vector v ∈ Rn, hence ‖σ(w>X)‖ψ2 ≤ CλσB for the vector sub-Gaussian norm. Thus,√
d qX/(λσB) has i.i.d. rows whose sub-Gaussian norm is at most a universal constant. Recalling

Φ = E[ qX> qX] and applying [54, Eq. (5.26)] with A =
√
d qX/(λσB), we obtain for some universal

constants C, c > 0 that

P
[
‖ qX> qX − Φ‖ > max(δ, δ2)‖Φ‖

]
≤ 2e−ct

2

, δ = C

√
n/ď+ t/

√
ď.

Note that the complementary event ‖ qX> qX − Φ‖ ≤ max(δ, δ2)‖Φ‖ implies

‖ qX‖ ≤
√

(1 + max(δ, δ2))‖Φ‖ ≤ (1 + C ′δ)
√
‖Φ‖

for a constant C ′ > 0. Then choosing t =
√
n and applying part (a) yields part (b).

Lemma D.5. If X is (ε,B)-orthonormal where ε < 1/λσ, then for universal constants C, c > 0,
with probability at least 1− e−cn, the columns of qX satisfy

n∑
α=1

(‖qxα‖2 − 1)2 ≤ C
(

1 + n2/ď2
)
λ4
σB

2.

Let us remark that in settings where ε � 1/
√
n, applying Lemma D.3(b) to bound each term

(‖qxα‖2 − 1)2 separately would not yield a constant-order bound for this sum. The proof below
performs a more careful analysis of the combined fluctuations of (‖qxα‖2 − 1)2.

Proof. Let z = (z1, . . . , zn) ∈ Rn and r = (r1, . . . , rn) ∈ Rn be defined as

zα = ‖qxα‖2 − E[‖qxα‖2], rα = E[‖qxα‖2]− 1.

The quantity to be bounded is ‖z + r‖2. Note that ‖z + r‖2 ≤ 2‖z‖2 + 2‖r‖2. We have

E[‖qxα‖2] = E

1

ď

ď∑
i=1

σ(w>i xα)2

 = Φαα,

so applying (28) from Lemma D.3,

‖r‖2 =

n∑
α=1

(Φαα − 1)2 ≤ Cλ2
σ

n∑
α=1

(‖xα‖2 − 1)2 ≤ Cλ2
σB

2. (36)

Thus it remains to bound ‖z‖2.

Let N be a 1/2-net of the unit ball {w ∈ Rn : ‖w‖ = 1}, of cardinality |N | ≤ 5n. Then

‖z‖ = sup
w:‖w‖≤1

w>z ≤ sup
v∈N

v>z + ‖z‖/2,

so ‖z‖ ≤ 2 supv∈N v>z. For each fixed vector v = (v1, . . . , vn) ∈ N , we have

v>z =

n∑
α=1

vα ·
1

ď

ď∑
i=1

(
σ(w>i xα)2 − E[σ(w>i xα)2]

)

=
1

ď

ď∑
i=1

( n∑
α=1

(
σ(w>i xα)2 − E[σ(w>i xα)2]

)
vα

)
. (37)

We will bound the sub-exponential norm of each summand i = 1, . . . , ď and apply Bernstein’s
inequality.

For w ∼ N (0, Id), denote

q ≡ q(w) = (q1, . . . , qn) = (w>x1, . . . ,w
>xn), F (q) =

n∑
α=1

(
σ(qα)2 − E[σ(qα)2]

)
vα.
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Observe that q(w) = X>w. Thus we wish to bound the sub-exponential norm of F (q(w)) when
w ∼ N (0, Id). By the Gaussian Sobolev inequality (see [2, Eq. (3)]), for any p ≥ 2,

‖F (q(w))‖Lp ≤
√
p ·
∥∥∥‖∇wF (q(w))‖

∥∥∥
Lp

(38)

where ‖Y ‖Lp = E[|Y |p]1/p denotes the Lp-norm of a random variable (and ‖∇wF (q(w))‖ is the
usual `2 vector norm of the gradient of F (q(w)) in w). By the chain rule,

∇wF (q(w)) = X · ∇qF (q),

so
‖∇wF (q(w))‖2 ≤ ‖X‖2‖∇qF (q)‖2 ≤ B2‖∇qF (q)‖2.

We have (∂/∂qα)F (q) = 2σ(qα)σ′(qα)vα, so

‖∇qF (q)‖2 =

n∑
α=1

4σ(qα)2σ′(qα)2v2
α ≤ 4λ2

σ

n∑
α=1

σ(qα)2v2
α.

Recalling (31), we have ‖σ(qα)2‖ψ1
= ‖σ(w>xα)2‖ψ1

≤ Cλ2
σ . Then∥∥∥∥∥

n∑
α=1

σ(qα)2v2
α

∥∥∥∥∥
ψ1

≤ Cλ2
σ

n∑
α=1

v2
α = Cλ2

σ,

so ∥∥∥‖∇wF (q(w))‖2
∥∥∥
ψ1

≤ Cλ4
σB

2.

This implies the bound (see [53, Proposition 2.7.1]), for any p ≥ 1,∥∥∥‖∇wF (q(w))‖
∥∥∥2p

L2p
= E

[
‖∇wF (q(w))‖2p

]
=
∥∥∥‖∇wF (q(w))‖2

∥∥∥p
Lp
≤ (C ′λ4

σB
2 · p)p

for a universal constant C ′ > 0. Thus, applying this to (38), we obtain for any p ≥ 2

‖F (q(w))‖Lp ≤
√
p · Cλ2

σB
√
p = Cλ2

σB · p.

Finally, this implies (see again [53, Proposition 2.7.1]) ‖F (q(w))‖ψ1
≤ C ′λ2

σB for a universal
constant C ′ > 0, which is our desired bound on the sub-exponential norm of F (q(w)).

Applying this and Bernstein’s inequality to (37), for any t > 0,

P[v>z > t] ≤ exp

(
−cďmin

(
t2

λ4
σB

2
,

t

λ2
σB

))
.

Setting

t = C0λ
2
σB ·max(δ, δ2), δ =

√
n/ď

for a large enough constant C0 > 0, and taking the union bound over all 5n vectors v ∈ N , we get

P[‖z‖ > 2t] ≤ P
[

sup
v∈N

v>z > t

]
≤ e−cn

for a constant c > 0. Combining with the bound on ‖r‖2 in (36), we obtain the lemma.

E Resolvent analysis for a single layer

We consider the same setting of a single layer as in the preceding section. Let qX and Φ be defined by
the deterministic input X ∈ Rd×n and Gaussian matrix W ∈ Rď×d as in (24) and (25), and define
the (n-dependent) aspect ratio

γ = n/ď.

Consider a deterministic real-symmetric matrix A ∈ Rn×n, and two (possibly n-dependent) spectral
arguments α ∈ C∗ and z ∈ C+, where C∗ = C− \ {0}. We study the matrix

A+ α qX> qX − z Id .

We collect here the set of assumptions that we will use in this section.
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Assumption E.1. There are constants B,C0, c0 > 0 such that

(a) α ∈ C∗ and z ∈ C+, and γ, |α|, |z|, Im z ∈ [c0, C0].

(b) X is (εn, B)-orthonormal, where εn < n−0.01.

(c) A ∈ Rn×n is deterministic and symmetric, satisfying ‖A‖ ≤ C0.

(d) W has i.i.d. N (0, 1) entries, and σ(x) satisfies Assumption 3.2(b).

Throughout this section, C,C ′, c, c′, n0 > 0 denote constants changing from instance to instance that
may depend on λσ and the above values B,C0, c0.

Proposition C.2 ensures that A+ α qX> qX − z Id is invertible. Define the resolvent

R = (A+ α qX> qX − z Id)−1 ∈ Cn×n (39)

and the deterministic (n-dependent) parameter

s̄ = α−1 + γ · E[trRΦ]. (40)

The goal of this section is to prove the following result, which approximates this resolvent R by
replacing the random matrix α qX> qX with a deterministic matrix s̄−1Φ, and provides an approximate
fixed-point equation that defines this parameter s̄.

For A = 0 and α = 1, we will verify in Appendix F that this result reduces to the Marcenko-Pastur
equation (6).
Lemma E.2. Under Assumption E.1, there are constants C, c, c′, n0 > 0 such that for all n ≥ n0,
any deterministic matrix M ∈ Cn×n, and any t ∈ (n−1, c′),

(a) P
[∣∣∣trRM − tr

(
A+ s̄−1Φ− z Id

)−1
M
∣∣∣ > ‖M‖t] ≤ Cne−cnt2

(b) P
[∣∣∣s̄− (α−1 + γ tr

(
A+ s̄−1Φ− z Id

)−1
Φ
)∣∣∣ > t

]
≤ Cne−cnt

2

E.1 Basic bounds

Proposition E.3. Under Assumption E.1, deterministically for some constants C, c, n0 > 0 and all
n ≥ n0,

‖R‖ ≤ C, ‖Φ‖ ≤ C, |s̄| ≤ C, Im s̄ ≥ c.
Furthermore, with probability at least 1− 2e−c

′n for a constant c′ > 0,

Im trRΦ ≥ c.

Proof. We may write A + α qX> qX − z Id = U + iV where U = A + (Reα) qX> qX − (Re z) Id

and V = (Imα) qX> qX> − (Im z) Id. Both U and V are symmetric, and V � (− Im z) Id because
Imα ≤ 0 and Im z > 0. Then ‖R‖ ≤ 1/ Im z ≤ C by Proposition C.2.

The bound ‖Φ‖ ≤ C comes from Lemma D.4(a) and the (εn, B)-orthonormality assumption for X .
Then from the definition of s̄ in (40) and the bounds ‖R‖, ‖Φ‖ ≤ C, we have also |s̄| ≤ C. For the
lower bound for Im s̄ and Im trRΦ, let us write

trRΦ = tr

(
R+R∗

2

)
Φ + tr

(
R−R∗

2

)
Φ.

The first trace is real because R+R∗ is Hermitian, so

Im trRΦ = Im tr

(
R−R∗

2

)
Φ.

Denoting Y = A+ α qX> qX − z Id and applying the identity A−1 −B−1 = A−1(B −A)B−1, we
have

R−R∗ = Y −1 − (Y ∗)−1 = Y −1(Y ∗ − Y )(Y ∗)−1 = R(Y ∗ − Y )R∗.
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Then, writing Y = U + iV as above and applying Y ∗ − Y = −2iV , we get

Im trRΦ = Im(−i · trRV R∗Φ)

= Re
(
−(Imα) · trR qX> qXR∗Φ + (Im z) · trRR∗Φ

)
.

Since trR qX> qXR∗Φ = tr Φ1/2R qX> qXR∗Φ1/2, where this matrix is positive semi-definite, this
trace is real and non-negative. Similarly, trRR∗Φ is real and non-negative. Then the above yields
the lower bound

Im trRΦ ≥ Im z · trRR∗Φ ≥ Im z · λmin(RR∗) · tr Φ,

where λmin(RR∗) is the smallest eigenvalue of RR∗. By (28) and the condition εn < n−0.01, we
have tr Φ ≥ c for a constant c > 0 and large enough n0. Observe that λmin(RR∗) = 1/‖Y ‖2, and
‖Y ‖ ≤ ‖A‖+ |α| · ‖ qX‖2 + |z|. By Lemma D.4(b), with probability 1− 2e−c

′n, we have ‖ qX‖ ≤ C,
so putting this together yields Im trRΦ ≥ c with this probability. Finally, for the deterministic bound
Im s̄ ≥ c, we may apply Im trRΦ ≥ c on the event where ‖ qX‖ ≤ C holds, and Im trRΦ ≥ 0 on the
complementary event. Taking an expectation and applying the definition (40) yields Im s̄ ≥ c.

E.2 Resolvent approximation

We recall the result of [39, Lemma 1], which establishes concentration of quadratic forms in the rows
of qX . The following is its specialization to standard Gaussian matrices W , and stated in our notation.

Lemma E.4 ([39]). Suppose σ(x) is λσ-Lipschitz, and let qx>i be a row of qX . Then for any determin-
istic matrix Y ∈ Rn×n with ‖Y ‖ ≤ 1, for some constants C, c > 0 (depending on λσ), and for any
t > 0,

P
(∣∣∣∣ 1γ qx>i Y qxi − trY Φ

∣∣∣∣ > t

)
≤ C exp

(
− cn

‖X‖2
min

(
t2

t20
, t

))
(41)

where t0 = |σ(0)|+ λσ‖X‖
√

1/γ.

Using this result, we establish the following approximation for the resolvent R in (39).
Lemma E.5. Consider any deterministic matrix M ∈ Cn×n, and set

δn = trM − trR

(
A+

1

α−1 + γ trRΦ
Φ− z Id

)
M.

Under Assumption E.1, there exist constants C, c, c′, n0 > 0 such that for all n ≥ n0 and t ∈
(n−1, c′),

P[|δn| > ‖M‖t] ≤ Cne−cnt
2

.

Proof. By rescaling M , we may assume that ‖M‖ ≤ 1. We have Id = R(A + α qX> qX − z Id) =

RA+ αR qX> qX − zR. Writing qX> qX =
∑
i qxiqx

>
i (where qx>i is the ith row of qX), multiplying by

M , and taking the normalized trace tr = n−1 Tr,

trM = trRAM + α trR qX> qXM − z trRM

= trRAM +
α

n

ď∑
i=1

qx>i MRqxi − z trRM.

Hence

δn =
α

n

ď∑
i=1

qx>i MRqxi −
trRΦM

α−1 + γ trRΦ
.

Let us define the leave-one-out resolvent, for each 1 ≤ i ≤ ď,

R(i) =

A+ α
∑
j:j 6=i

qxjqx>j − z Id

−1

.
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We may then decompose δn as δn = J1 + γJ2 where (recalling γ = n/ď)

J1 =
1

n

ď∑
i=1

(
αqx>i MRqxi −

γ trR(i)ΦM

α−1 + γ trR(i)Φ

)
,

J2 =
1

n

ď∑
i=1

(
trR(i)ΦM

α−1 + γ trR(i)Φ
− trRΦM

α−1 + γ trRΦ

)
.

Let us denote these summands as

J
(i)
1 = αqx>i MRqxi −

γ trR(i)ΦM

α−1 + γ trR(i)Φ
and J

(i)
2 =

trR(i)ΦM

α−1 + γ trR(i)Φ
− trRΦM

α−1 + γ trRΦ
.

Bound for J1. Momentarily fix the index i ∈ {1, . . . , ď}. Applying the Sherman-Morrison identity,
we have

R = R(i) − αR(i)
qxiqx
>
i R

(i)

1 + αqx>i R
(i)

qxi
. (42)

Then, introducing A1 = qx>i MR(i)
qxi and A2 = qx>i R

(i)
qxi,

αqx>i MRqxi = αA1 −
α2A1A2

1 + αA2
=

A1

α−1 +A2
.

Recall that the rows of qX are i.i.d. Let qX(i) be the matrix qX with the ith row qxi removed, and let
E

qxi [·] be the expectation over only qxi (i.e. conditional on qX(i)). Observe that R(i) is a function of
qX(i). Applying Proposition E.3 with qX(i) in place of qX , we see that ‖R(i)‖ and ‖MR(i)‖ are both

bounded by a constant. Then applying Lemma E.4 conditional on qX(i), and recalling the bound (22)
for σ(0), there are constants C, c > 0 for which

P[|Ak − E
qxi [Ak]| > t] ≤ Ce−cnmin(t2,t) for k = 1, 2.

Note that
E

qxi [A1] = TrMR(i)E[qxiqx
>
i ] =

1

ď
TrMR(i)Φ = γ trR(i)ΦM.

Similarly, E
qxi [A2] = γ trR(i)Φ, so

J
(i)
1 =

A1

α−1 +A2
− E

qxi [A1]

α−1 + E
qxi [A2]

.

Applying Proposition E.3, we have for some constantsC, c, c′ > 0, on an event E( qX(i)) of probability
1− 2e−c

′n, that
|E

qxi [A1]| ≤ C, |α−1 + E
qxi [A2]| ≥ Im(α−1 + E

qxi [A2]) ≥ c.
Then, for any t such that t < c/2, on the event where |A1 − E

qxi [A1]| ≤ t, |A2 − E
qxi [A2]| ≤ t, and

E( qX(i)) all hold,∣∣∣J (i)
1

∣∣∣ ≤ |A1 − E
qxi [A1]|

|α−1 +A2|
+ |E

qxi [A1]| · |A2 − E
qxi [A2]|

|α−1 +A2| · |α−1 + E
qxi [A2]|

≤ Ct. (43)

Thus, for t < c′ and a sufficiently small constant c′ > 0, we have P[|J (i)
1 | ≥ t] ≤ Ce−cnt

2

. Applying
a union bound over i ∈ {1, . . . , ď}, this yields P[|J1| ≥ t] ≤ Cne−cnt

2

.

Bound for J2. Applying the identity A−1 −B−1 = A−1(B −A)B−1,

R(i) −R = R(i)(R−1 − (R(i))−1)R = αR(i)
qxiqx
>
i R.

Then, applying also the bounds ‖R‖, ‖R(i)‖ ≤ C from Proposition E.3,

| tr(R(i) −R)ΦM | = 1

n
|αqx>i RΦMR(i)

qxi| ≤
C‖ qX‖2

n
.

Applying Lemma D.4(b), with probability 1− 2e−cn, this is at most C/n for every i ∈ {1, . . . , ď}.
Similarly, | tr(R(i) − R)Φ| ≤ C/n with this probability. Applying again | trRΦM | ≤ C, |α−1 +

γ trRΦ| ≥ c, and an argument similar to (43), we obtain |J (i)
2 | ≤ C ′/n for a constant C ′ > 0.

Taking a union bound over i ∈ {1, . . . , ď}, this yields P[|J2| > C/n] ≤ C ′ne−cn. Combining these
bounds for J1 and J2, choosing t > cn−1, and re-adjusting the constants yields the lemma.
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E.3 Proof of Lemma E.2

We now prove Lemma E.2 using Lemma E.5. Define the random n-dependent parameter

s = α−1 + γ trRΦ,

so that s̄ = E[s]. The following establishes concentration of s around s̄.
Lemma E.6. Under Assumption E.1, for some constants c, n0 > 0, all n ≥ n0, and any t > 0,

P [|s− s̄| > t] ≤ 2e−cnt
2

.

Proof. Define F (W ) = γ trRΦ, whereR and qX are considered as a function ofW . Fix any matrices
W,∆ ∈ Rď×n where ‖∆‖F = 1, and define Wt = W + t∆. Then, applying ∂R = −R(∂(R−1))R
and R = R>,

vec(∆)>(∇F (W )) =
d

dt

∣∣∣
t=0

F (Wt) = −γ trR

(
d

dt

∣∣∣
t=0

R−1

)
RΦ

= −2γα trR

(
qX> · d

dt

∣∣∣
t=0

qX

)
RΦ

= −2γα√
ď

trR
(

qX> · (σ′(WX)� (∆X))
)
RΦ,

where � is the Hadamard product, and σ′ is applied entrywise. Applying Proposition E.3,∣∣∣ vec(∆)>(∇F (W ))
∣∣∣ ≤ C√

ď
·
∥∥∥R qX>·(σ′(WX)�(∆X))·R

∥∥∥ ≤ C ′√
ď
·‖R qX>‖·‖σ′(WX)�(∆X)‖.

For the first term,

‖R qX>‖2 =
1

|α|
‖R(α qX> qX)R∗‖ ≤ 1

|α|

(
‖R(A+ α qX> qX − z Id)R∗‖+ ‖R(A− z Id)R∗‖

)
≤ 1

|α|
(‖R‖+ ‖R‖2(‖A‖+ |z|)) ≤ C.

For the second term,

‖σ′(WX)� (∆X)‖ ≤ ‖σ′(WX)� (∆X)‖F ≤ λσ‖∆X‖F ≤ λσ‖∆‖F · ‖X‖ ≤ C.
Thus | vec(∆)>(∇F (W ))| ≤ C/

√
n. This holds for every ∆ such that ‖∆‖F = 1, so F (W ) is

C/
√
n-Lipschitz in W with respect to the Frobenius norm. Then the result follows from Gaussian

concentration of measure.

To conclude the proof of Lemma E.2, we may again assume ‖M‖ ≤ 1 by rescaling M . Set

M̃ =
(
A+ s̄−1Φ− z Id

)−1
M.

Note that s̄−1 ∈ C−, so ‖M̃‖ ≤ ‖(A+ s̄−1Φ− z Id)−1‖ ≤ C by Proposition C.2. Applying Lemma
E.5 with M̃ ,

P
[∣∣∣ tr M̃ − trR

(
A+ s−1Φ− z Id

)
M̃
∣∣∣ > t

]
≤ Cne−cnt

2

(44)

for all t ∈ (n−1, c′). Furthermore, applying the definition of M̃ ,

| trR
(
A+ s−1Φ− z Id

)
M̃ − trRM | =

∣∣∣trR ((A+ s−1Φ− z Id
)
−
(
A+ s̄−1Φ− z Id

))
M̃
∣∣∣

= |s−1 − s̄−1| · | trRΦM̃ | ≤ C|s−1 − s̄−1|.
Recall that |s̄| ≥ Im s̄ ≥ c. Then, on the event where |s− s̄| ≤ t and t < c/2, we have |s−1− s̄−1| ≤
Ct. Then applying Lemma E.6, for some constants c, c′ > 0 and all t ∈ (0, c′),

P
[
| trR

(
A+ s−1Φ− z Id

)
M̃ − trRM | > t

]
≤ 2e−cnt

2

.

Combining this with (44) yields Lemma E.2(a). Specializing Lemma E.2(a) to M = Φ, we obtain

P
[∣∣s− (α−1 + γ tr(A+ s̄−1Φ− z Id)−1Φ

)∣∣ > t
]
≤ Cne−cnt

2

.

Applying again Lemma E.6 to bound |s− s̄|, we obtain Lemma E.2(b).
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F Analysis for the Conjugate Kernel

Theorem 3.4 is a special case of Theorem 3.7, but let us provide here a simpler argument. Define, for
each layer, the n× n matrices

Φ` = Ew

[
σ(w>X`−1)>σ(w>X`−1)

]
(45)

Φ̃` = b2σX
>
`−1X`−1 + (1− b2σ) Id (46)

where Ew denotes the expectation over only the random vector w ∼ N (0, Id). Here, Φ` and Φ̃`
are deterministic conditional on X`−1, but are random unconditionally for ` ≥ 2. For each fixed
` = 1, . . . , L, we will show

lim spec Φ` = lim spec Φ̃`. (47)

Conditional on X`−1, the spectral limit of X>` X` was shown in [39] to be a Marcenko-Pastur map of
the spectral limit of Φ`—we reproduce a short proof below under our assumptions, by specializing
Lemma E.2 to α = 1 and A = 0. Combining with (47) and iterating from ` = 1, . . . , L yields
Theorem 3.4.

Lemma F.1. Under Assumption 3.2, for each ` = 1, . . . , L, almost surely as n→∞,

1

n
‖Φ` − Φ̃`‖2F → 0.

Proof. By Corollary D.2, increasing (εn, B) as needed, we may assume that each matrixX0, . . . , XL

is (εn, B)-orthonormal. Denote by Φ`[α, β] and Φ̃`[α, β] the (α, β) entries of these matrices. Then
Lemma D.3(a) shows for α 6= β that

|Φ`[α, β]− Φ̃`[α, β]| ≤ Cε2
n.

For α = β, applying Φ̃`[α, α] = 1− b2σ + b2σ‖x`−1
α ‖2, we have

|Φ`[α, α]− Φ̃`[α, α]| ≤ |Φ`[α, α]− 1|+ b2σ|‖x`−1
α ‖2 − 1| ≤ Cεn.

Then
‖Φ` − Φ̃`‖2F ≤ Cn(n− 1)ε4

n + Cnε2
n,

and the result follows from the condition εnn1/4 → 0.

Proof of Theorem 3.4. By Corollary D.2, we may assume that each matrix X0, . . . , XL is (εn, B)-
orthonormal. This implies the bounds ‖X`‖ ≤ C and ‖KCK‖ ≤ C for all large n.

For the spectral convergence, suppose by induction that lim specX>`−1X`−1 = µ`−1, where the base
case lim specX>0 X0 = µ0 holds by assumption. Defining

ν` = (1− b2σ) + b2σ · µ`−1,

Proposition C.3 and Lemma F.1 together show that

lim spec Φ` = lim spec Φ̃` = ν`.

Specializing Lemma E.2(b) to the setting A = 0, α = 1, X = X`−1, and qX = X`, and choosing
t ≡ tn such that tn → 0 and nt2n � log n, we obtain∣∣∣s̄− 1− (n/d`) tr(s̄−1Φ` − z Id)−1Φ`

∣∣∣→ 0 (48)

a.s. as n→∞, where

s̄ = 1 +
n

d`
EW`

[tr(X>` X` − z Id)−1Φ`].

Here, this expectation is taken over only W` (i.e. conditional on X0, . . . , X`−1).
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Proposition E.3 verifies that s̄ is bounded as n→∞, so for any subsequence in n, there is a further
sub-subsequence along which s̄ → s0 for a limit s0 ≡ s0(z) ∈ C+. Applying A−1 − B−1 =
A−1(B −A)B−1 and Propositions C.2 and E.3,∣∣∣ tr(s̄−1Φ` − z Id)−1Φ` − tr(s−1

0 Φ` − z Id)−1Φ`

∣∣∣
= |s−1

0 − s−1| · tr
∣∣∣(s−1

0 Φ` − z Id)−1Φ`(s̄
−1Φ` − z Id)−1Φ`

∣∣∣
≤ |s−1

0 − s−1| · ‖(s−1
0 Φ` − z Id)−1‖ · ‖(s̄−1Φ` − z Id)−1‖ · ‖Φ`‖2

≤ C|s−1
0 − s−1|.

Thus, along the sub-subsequence where s̄→ s0, we get

tr(s̄−1Φ` − z Id)−1Φ` − tr(s−1
0 Φ` − z Id)−1Φ` → 0. (49)

We have also
tr(s−1

0 Φ` − z Id)−1Φ` →
∫

x

s−1
0 x− z

dν`(x), (50)

since the function x 7→ x/(s−1
0 x − z) is continuous and bounded over R, and lim spec Φ` = ν`.

Thus, taking the limit of (48) along this sub-subsequence, the value s0 must satisfy

s0 − 1− γ`
∫

x

s−1
0 x− z

dν`(x) = 0. (51)

Now applying Lemma E.2(a) with M = Id, and taking the limit along this sub-subsequence, by a
similar argument we obtain that

tr(X>` X` − z Id)−1 →
∫

1

s−1
0 x− z

dν`(x). (52)

Denoting this limit by m`(z), and rewriting (51) by applying∫
x

s−1
0 x− z

dν`(x) = s0

∫ (
1 +

z

s−1
0 x− z

)
dν`(x) = s0(1 + zm`(z)),

we get s−1
0 = 1− γ` − γ`zm`(z). Applying this back to the definition of m`(z) in (52), this shows

that m`(z) satisfies the Marcenko-Pastur equation

m(z) =

∫
1

x(1− γ` − γ`zm(z))− z
dν`(x),

so m`(z) is the Stieltjes transform of µ` = ρMP
γ`
� ν` = ρMP

γ`
� ((1− b2σ) + b2σ · µ`−1).

We have shown that tr(X>` X` − z Id)−1 → m`(z) almost surely along this sub-subsequence
in n. Since, for every subsequence in n, there exists such a sub-subsequence, this implies
limn→∞ tr(X>` X` − z Id)−1 = m`(z) almost surely. Thus lim specX>` X` = µ`, which com-
pletes the induction.

G Analysis for the Neural Tangent Kernel

G.1 Spectral approximation and operator norm bound

We first prove the spectral approximation stated in Lemma 3.5, as well as the operator norm bound
‖KNTK‖ ≤ C. The following form of KNTK is derived also in [25, Eq. (1.7)]: Denote by x`α the αth

column of X`. For each ` = 1, . . . , L, define the matrix S` ∈ Rd`×n whose αth column is given by

s`α = D`
α

W>`+1√
d`

D`+1
α

W>`+2√
d`+1

D`+2
α . . .

W>L√
dL−1

DL
α

w√
dL
, (53)

where we define diagonal matrices indexed by α ∈ [n] and k ∈ [L] as

Dk
α ≡ diag

(
σ′(Wkx

k−1
α )

)
∈ Rdk×dk .
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Applying the chain rule, we may verify for each input sample xα that

∇wfθ(xα) = xLα ∈ RdL , ∇W`
fθ(xα) = s`α ⊗ x`−1

α ∈ Rd`d`−1 .

Then (
∇wfθ(X)

)>(∇wfθ(X)
)

= X>LXL,(
∇W`

fθ(X)
)>(∇W`

fθ(X)
)

= (S>` S`)� (X>`−1X`−1),

where � is the Hadamard product. Thus, the NTK is given by

KNTK =
(
∇θfθ(X)

)>(
∇θfθ(X)

)
= X>LXL +

L∑
`=1

(S>` S`)� (X>`−1X`−1). (54)

Lemma G.1. Let X ∈ Rd×n be (ε,B)-orthonormal, let W ∈ Rď×d have i.i.d. N (0, 1) entries, and
let xα,xβ be two columns of X where α 6= β. Then for universal constants C, c > 0 and any t > 0:

(a) With probability at least 1− 2e−cďt
2

,∣∣∣∣1ď Tr
(

diag
(
σ′(Wxα)

)
diag

(
σ′(Wxβ)

))
− b2σ

∣∣∣∣ ≤ Cλ2
σ(ε+ t).

(b) Let M ∈ Rd×d be any deterministic symmetric matrix, and denote

T (xα,xβ) =
1

ď
Tr
(

diag
(
σ′(Wxα)

)
WMW> diag

(
σ′(Wxβ)

))
.

With probability at least 1− (2ď+ 2)e−cmin(t2ď,t
√
ď),∣∣T (xα,xβ)− b2σ TrM

∣∣ ≤ Cλ2
σ

(
ε
√
d+ t

√
d+ t

√
ď
)
‖M‖F .

Furthermore, both (a) and (b) hold with (xα,xα) in place of (xα,xβ), upon replacing b2σ by aσ .

Proof. Write w>k ∈ Rd for the kth row of W . Then

1

ď
Tr
(

diag
(
σ′(Wxα)

)
diag

(
σ′(Wxβ)

))
=

1

ď

ď∑
k=1

σ′(w>k xα)σ′(w>k xβ).

Applying σ′(w>k xα)σ′(w>k xβ) ∈ [−λ2
σ, λ

2
σ] and Hoeffding’s inequality,

P

∣∣∣∣∣∣1ď
ď∑
k=1

(
σ′(w>k xα)σ′(w>k xβ)− E[σ′(w>k xα)σ′(w>k xβ)]

)∣∣∣∣∣∣ > λ2
σt

 ≤ 2e−cďt
2

.

To bound the mean, recall that (ζα, ζβ) ≡ (w>k xα,w
>
k xβ) is bivariate Gaussian, which we may

write as
ζα = uαξα, ζβ = uβξβ + vβξα

as in (29). Here, ξα, ξβ ∼ N (0, 1) are independent, uα, uβ > 0 and vβ ∈ R, and these satisfy
|uα − 1|, |uβ − 1|, |vβ | ≤ Cε. Applying the Taylor expansion

σ′(ζ) = σ′(ξ) + σ′′(η)(ζ − ξ)

for some η between ζ and ξ, and the conditions E[σ′(ξ)] = bσ and |σ′′(x)| ≤ λσ , it is easy to check
that |E[σ′(ζα)σ′(ζβ)] − b2σ| ≤ Cλ2

σε. Then part (a) follows. The statement with (xα,xα) and aσ
follows similarly from this Taylor expansion and the bound |E[σ′(ζα)2]− aσ| ≤ Cλ2

σε.

For part (b), we write

T (xα,xβ) =
1

ď

ď∑
k=1

σ′(w>k xα)σ′(w>k xβ) ·w>kMwk.
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By the Hanson-Wright inequality (see [50, Theorem 1.1]),

P
[
|w>kMwk − TrM | > ‖M‖F · t

√
ď
]
≤ 2e−cmin(t2ď,t

√
ď)

for a constant c > 0. Then, applying |σ′(x)| ≤ λσ and a union bound over k = 1, . . . , ď, with

probability at least 1− 2ďe−cmin(t2ď,t
√
ď),∣∣∣∣∣∣T (xα,xβ)− TrM · 1

ď

ď∑
k=1

σ′(w>k xα)σ′(w>k xβ)

∣∣∣∣∣∣ ≤ ‖M‖F · λ2
σt
√
ď.

Then part (b) follows from combining with part (a), and applying TrM ≤
√
d‖M‖F .

Corollary G.2. Let s`α be as defined in (53), and let q`, r` be the constants in (7). Under Assumption
3.2, for a constant C > 0, almost surely for all large n and for all ` ∈ [L] and α 6= β ∈ [n],∣∣∣s`α>s`β − q`−1

∣∣∣ ≤ C max(εn, n
−0.48),

∣∣∣‖s`α‖2 − r`−1

∣∣∣ ≤ C max(εn, n
−0.48). (55)

Proof. By Corollary D.2, we may assume that each matrix X0, . . . , XL is (εn, B)-orthonormal.
Since a larger value of εn corresponds to a weaker assumption, we may assume without loss of
generality that εn ≥ n−0.48.

Fix ` ∈ [L] and α, β ∈ [n], and define

M` = D`
αD

`
β

Mk = Dk
α

Wk√
dk−1

. . . D`+1
α

W`+1√
d`

D`
αD

`
β

W>`+1√
d`

D`+1
β . . .

W>k√
dk−1

Dk
β for `+ 1 ≤ k ≤ L.

(56)

Recalling the definition (53) and applying the Hanson-Wright inequality conditional on W1, . . . ,WL,∣∣∣∣s`α>s`β − 1

dL
TrML

∣∣∣∣ ≤ Cεn√n · 1

dL
‖ML‖F (57)

with probability 1− e−cmin(ε2nn,εn
√
n) ≥ 1− e−n0.01

. Next, for each k = L,L− 1, . . . , `+ 1, we
apply Lemma G.1(b) conditional on W1, . . . ,Wk−1, with t = εn, M = Mk−1/dk−1, d = dk−1, and
ď = dk. Note that k − 1 ≥ ` ≥ 1, so that both dk−1 and dk are proportional to n. Then∣∣∣∣ 1

dk
TrMk − b2σ ·

1

dk−1
TrMk−1

∣∣∣∣ ≤ Cεn√n · 1

dk−1
‖Mk−1‖F

with probability 1−e−n0.01

. Finally, for k = `, applying Lemma G.1(a) conditional onW1, . . . ,W`−1

and with t = εn, ∣∣∣∣ 1

d`
TrM` − b2σ

∣∣∣∣ ≤ Cεn
with probability 1− e−n0.01

. Combining these bounds, with probability 1− C ′e−n0.01

,∣∣∣s`α>s`β − (b2σ)L−`+1
∣∣∣ ≤ Cεn√

n

(
‖ML‖F + . . .+ ‖M`‖F +

√
n
)
.

We also have ‖Wk/
√
dk‖ ≤ C for each k = 2, . . . , L with probability 1 − C ′e−cn, see e.g. [53,

Theorem 4.4.5]. Then, applying ‖Dk‖ ≤ λσ, we have ‖Mk‖F ≤ C
√
n‖Mk‖ ≤ C ′

√
n for every

k = 1, . . . , L. Then the first bound of (55) follows. The second bound of (55) is the same, applying
Lemma G.1 for (xα,xα) instead of (xα,xβ). The almost sure statement follows from the Borel-
Cantelli Lemma.

Lemma G.3. Under Assumption 3.2, almost surely as n→∞,

1

n

∥∥∥∥∥KNTK −

(
r+ Id +X>LXL +

L−1∑
`=0

q`X
>
` X`

)∥∥∥∥∥
2

F

→ 0.

Furthermore, for a constant C > 0, almost surely for all large n, ‖KNTK‖ ≤ C.
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Proof. By Corollary D.2, we may assume that each matrix X0, . . . , XL is (εn, B)-orthonormal.
Then ∣∣∣x`−1

α

>
x`−1
β

∣∣∣ ≤ εn, ∣∣∣‖x`−1
α ‖2 − 1

∣∣∣ ≤ εn.
Increasing εn if necessary, we may assume εn ≥ n−0.48. Combining with (55), we have for the
off-diagonal entries of the Hadamard product that∣∣∣((S>` S`)� (X>`−1X`−1)

)
[α, β]− q`−1X

>
`−1X`−1[α, β]

∣∣∣ ≤ Cε2
n,

and for the diagonal entries that∣∣∣((S>` S`)� (X>`−1X`−1)[α, α]− q`−1(X>`−1X`−1)[α, α]− (r`−1 − q`−1)
∣∣∣

≤
∣∣∣((S>` S`)� (X>`−1X`−1)[α, α]− r`−1

∣∣∣+ q`−1

∣∣∣X>`−1X`−1[α, α]− 1
∣∣∣ ≤ Cεn.

Then applying this to (54),∥∥∥∥∥KNTK −

(
r+ Id +X>LXL +

L−1∑
`=0

q`X
>
` X`

)∥∥∥∥∥
2

F

≤ Cn(n− 1)ε4
n + Cnε2

n.

The first statement of the lemma then follows from the assumption εnn1/4 → 0.

For the second statement on the operator norm, we have

‖(S>` S`)� (X>`−1X`−1)‖ ≤ n
max
α=1

∣∣∣s`α>s`α∣∣∣ · ‖X>`−1X`−1‖.

See [29, Eq. (3.7.9)], applied with X = Y = S`. Then ‖KNTK‖ ≤ C follows from (54), the
(εn, B)-orthonormality of each matrix X`−1, and the bound for ‖s`α‖2 in (55).

Combining Lemma G.3 and Proposition C.3, this proves Lemma 3.5.

As a remark, Lemmas G.3 and 3.5 imply lim specKNTK = lim spec(r+ Id +X>LXL) when bσ = 0,
since every q` = 0 in this case. Thus, the Stieltjes transform of lim specKNTK is actuallymNTK(z) =
m(−r+ + z) defined by the Stieltjes transform of ρMP

γ in (6) with γ = γL. Thus in the following
arguments for the limit spectrum of KNTK, we restrict to the case bσ 6= 0.

G.2 Unique solution of the fixed-point equation

Let A,Φ ∈ Rn×n be symmetric matrices, where Φ is positive semi-definite. Let z ∈ C+, α ∈ C∗,
and γ > 0. For s ∈ C+, define

S(s) = (A+ s−1Φ− z Id)−1, fn(s) = α−1 + γ trS(s)Φ.

Lemma G.4. (a) For any s ∈ C+, setting S ≡ S(s),

Im fn(s) ≥ Im z · γ trSΦS∗ ≥ 0.

(b) For any s1, s2 ∈ C+, setting S1 ≡ S(s1) and S2 ≡ S(s2),

|fn(s1)− fn(s2)|

≤ |s1 − s2| ·
(

Im fn(s1)− Im z · γ trS1ΦS∗1
Im s1

)1/2(
Im fn(s2)− Im z · γ trS2ΦS∗2

Im s2

)1/2

Proof. For part (a), let us write

SΦ = SΦS∗(A+ s−1Φ− z Id)∗ = SΦS∗A+ (1/s∗)SΦS∗Φ− z∗SΦS∗.

Since SΦS∗ is Hermitian and positive semi-definite, the quantities trSΦS∗A, trSΦS∗Φ, and
trSΦS∗ are all real, and the latter two are nonnegative. Then

Im fn(s) = Imα−1 + γ Im trSΦ = Imα−1 +
Im s

|s|2
· γ trSΦS∗Φ + Im z · γ trSΦS∗. (58)
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Each term on the right side of (58) is nonnegative, and dropping the first two of these terms yields (a).

For part (b), applying the identity A−1 −B−1 = A−1(B −A)B−1, we have

S1 − S2 = S1(s−1
2 Φ− s−1

1 Φ)S2 =
s1 − s2

s1s2
S1ΦS2,

so

fn(s1)− fn(s2) = γ trS1Φ− γ trS2Φ =
γ(s1 − s2)

s1s2
trS1ΦS2Φ.

Applying Cauchy-Schwarz to the inner-product 〈S1, S2〉Φ = trS1ΦS∗2Φ,

| trS1ΦS2Φ|2 = |〈S1, S
∗
2 〉Φ|2 ≤ 〈S1, S1〉Φ · 〈S∗2 , S∗2 〉Φ = trS1ΦS∗1Φ · trS2ΦS∗2Φ.

Then

|fn(s1)− fn(s2)| ≤ |s1 − s2| ·
(
γ trS1ΦS∗1Φ

|s1|2

)1/2(
γ trS2ΦS∗2Φ

|s2|2

)1/2

.

Dropping Imα−1 in (58) and applying this to upper-bound γ trSΦS∗Φ/|s|2, part (b) follows.

Corollary G.5. As n→∞, suppose that fn(s)→ f(s) pointwise for each s ∈ C+, the empirical
spectral distributions of Φ and A converge weakly to deterministic limits, and the limit for Φ is not
the point distribution at 0. Then the fixed-point equation s = f(s) has at most one solution s ∈ C+.

Proof. Let us first show that for each s ∈ C+ and a value c0(s) > 0 independent of n,

lim inf
n→∞

trS(s)ΦS(s)∗ ≥ c0(s) > 0. (59)

Denoting S ≡ S(s) and applying the von Neumann trace inequality,

trSΦS∗ =
1

n
Tr ΦS∗S ≥ 1

n

n∑
α=1

λα(Φ)λn+1−α(S∗S),

where λ1(·) ≥ . . . ≥ λn(·) denote the sorted eigenvalues. Since Φ has a non-degenerate limit
spectrum, there is a constant ε > 0 for which λεn(Φ) > ε for all large n. (Throughout the proof, εn,
εn/2, etc. should be understood as their roundings to the nearest integer.) Then

trSΦS∗ ≥ ε · 1

n

εn∑
α=1

λn+1−α(S∗S).

Denoting by σα(·) the αth largest singular value, observe that

λn+1−α(S∗S) = σn+1−α(S)2 = σα(A+ s−1Φ− z Id)−2.

Applying σα+β−1(A+B) ≤ σα(A) + σβ(B), we have

σα(A+ s−1Φ− z Id) ≤ σα/2(A) + |s|−1σα/2+1(Φ) + |z|.

Since the spectra of A and Φ converge to deterministic limits, this implies that there is a constant
C(s) > 0 (also depending on z and ε) such that σα(A + s−1Φ − z Id) ≤ C(s) for every α ∈
[εn/2, εn] and all large n. Thus

trSΦS∗ ≥ ε · εn− εn/2
n

· C(s)−2

for all large n, and this shows the claim (59).

Then, taking the limit n→∞ in Lemma G.4(b), we get

|f(s1)− f(s2)| ≤ |s1 − s2| ·
(

Im f(s1)− Im z · γc0(s1)

Im s1

)1/2(
Im f(s2)− Im z · γc0(s2)

Im s2

)1/2

.

If s1 = f(s1) and s2 = f(s2), then this yields |s1 − s2| ≤ |s1 − s2| · h(s1, s2) for some quantity
h(s1, s2) ∈ [0, 1), where h(s1, s2) < 1 strictly because c0(s1), c0(s2) > 0. This contradiction
implies s1 = s2, so the equation s = f(s) has at most one solution s ∈ C+.
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G.3 Proof of Proposition 3.6 and Theorem 3.7

The operator norm bound in Theorem 3.7 was shown in Lemma G.3. For the spectral convergence,
note that by Lemma 3.5, the limit Stieltjes transform of KNTK at any z ∈ C+ is given by

mNTK(z) = lim
n→∞

tr

(
(−z + r+) Id +X>LXL +

L−1∑
`=0

q`X
>
` X`

)−1

,

provided that this limit exists and defines the Stieltjes transform of a probability measure. For

z = (z−1, . . . , z`) ∈ C− × R` × C∗, w = (w−1, . . . , w`) ∈ C`+2,

recall the functions
z 7→ s`(z), (z,w) 7→ t`(z,w)

defined recursively by (12) and (13). Proposition 3.6 and Theorem 3.7 are immediate consequences
of the following extended result.

Lemma G.6. Suppose bσ 6= 0. Under Assumption 3.2, for each ` = 1, . . . , L:

(a) For every z ∈ C− × R` × C∗, the equation (12) has a unique fixed point s`(z) ∈ C+.

(b) For every (z,w) ∈ (C− × R` × C∗)× C`+2, almost surely

t`(z,w)

= lim
n→∞

tr
(
z−1 Id +z0X

>
0 X0 + . . .+ z`X

>
` X`

)−1(
w−1 Id +w0X

>
0 X0 + . . .+ w`X

>
` X`

)
.

(60)

In particular, for any z−1, . . . , z` ∈ R where z` 6= 0,

lim spec z−1 Id +z0X
>
0 X0 + . . .+ z`X

>
` X` = ν

where ν is a probability measure on R with Stieltjes transform

m(z) = t`

(
(−z + z−1, z0, . . . , z`), (1, 0, . . . , 0)

)
.

Proof. By Corollary D.2, we may assume that each matrix X0, . . . , XL is (εn, B)-orthonormal.

Define Φ`, Φ̃` by (45) and (46). For z = (z−1, . . . , z`), let us write as shorthand

z ·X>X(`) = z−1 Id +z0X
>
0 X0 + . . .+ z`X

>
` X`,

where the parenthetical (`) signifies the index of the last term in this sum. Let us define similarly
w ·X>X(`).

Note that part (b) holds for ` = 0, by the assumption lim specX>0 X0 = µ0, the definition of
t0((z−1, z0), (w−1, w0)) in (11), and the fact that the function x 7→ (w−1 + w0x)/(z−1 + z0x) is
continuous and bounded over the non-negative real line when z−1 ∈ C− and z0 ∈ C∗.
We induct on `. Suppose that part (b) holds for ` − 1. To show part (a) for `, fix any z =
(z−1, . . . , z`) ∈ C− × R` × C∗ (not depending on n) and consider the matrix

R =
(
z ·X>X(`)

)−1

. (61)

We apply the analysis of Appendix E, conditional on X0, . . . , X`−1, and with the identifications

qX = X`, X = X`−1, ď = d`, d = d`−1,

A = z0X
>
0 X0 + . . .+ z`−1X

>
`−1X`−1, α = z`, z = −z−1.

Observe that α ∈ C∗ and z ∈ C−. The matrix R in (61) is exactly

R = (A+ α qX> qX − z Id)−1.
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Since each X0, . . . , X`−1 is (εn, B)-orthonormal, we have ‖A‖ ≤ C for some constant C > 0
(depending on z−1, . . . , z`, λσ). Thus Assumption E.1 holds, conditional on X0, . . . , X`−1. Let us
define the n-dependent parameter

s̄ =
1

α
+
n

d`
trEW`

[RΦ`]

where this expectation is over only the weights W`. Then, applying Lemma E.2(b) with a value
t ≡ tn such that t→ 0 and nt2 � log n, we obtain∣∣∣s̄− 1

α
− n

d`
tr(A+ s̄−1Φ` − z Id)−1Φ`

∣∣∣→ 0 (62)

almost surely as n→∞.

Proposition E.3 shows that |s̄| is bounded, so for any subsequence in n, there is a further sub-
subsequence where s̄→ s0 for a limit s0 ≡ s0(z) ∈ C+. Let us now replace s̄ and Φ` above by s0

and Φ̃`: First we have

tr
(
A+ s̄−1Φ` − z Id

)−1
Φ` − tr

(
A+ s−1

0 Φ̃` − z Id
)−1

Φ` → 0

by the same argument as (49). Then, we have∣∣∣∣tr (A+ s−1
0 Φ` − z Id

)−1
Φ` − tr

(
A+ s−1

0 Φ̃` − z Id
)−1

Φ`

∣∣∣∣
=

∣∣∣∣s−1
0 tr

(
A+ s−1

0 Φ` − z Id
)−1

(Φ̃` − Φ`)
(
A+ s−1

0 Φ̃` − z Id
)−1

Φ`

∣∣∣∣
≤ C

n
‖Φ̃` − Φ`‖F ·

∥∥∥(A+ s−1
0 Φ̃− z Id)−1Φ(A+ s−1

0 Φ− z Id)−1
∥∥∥
F

≤ C√
n
‖Φ̃` − Φ`‖F · ‖(A+ s−1

0 Φ̃− z Id)−1‖ · ‖Φ‖ · ‖(A+ s−1
0 Φ− z Id)−1‖ → 0,

where the convergence to 0 follows from Lemma G.3. Finally, we have∣∣∣tr (A+ s−1
0 Φ` − z Id

)−1
Φ` − tr

(
A+ s−1

0 Φ` − z Id
)−1

Φ̃`

∣∣∣
≤ 1

n
‖(A+ s−1

0 Φ` − z Id)−1‖F · ‖Φ` − Φ̃`‖F ≤
1√
n
‖(A+ s−1

0 Φ` − z Id)−1‖ · ‖Φ` − Φ̃`‖F → 0.

Applying these approximations to (62), we have almost surely along this sub-subsequence that∣∣∣s0 −
1

α
− γ` tr(A+ s−1

0 Φ̃` − z Id)−1Φ̃`

∣∣∣→ 0. (63)

Now observe from the definitions of A, Φ̃`, and z that

A+ s−1
0 Φ̃` − z Id =

(
z−1 +

1− b2σ
s0

)
Id +

`−2∑
k=0

zkX
>
k Xk +

(
z`−1 +

b2σ
s0

)
X>`−1X`−1,

Φ̃` = (1− b2σ) Id +b2σX
>
`−1X`−1.

Then, applying (63) and the induction hypothesis that part (b) holds for ` − 1, we obtain that the
value s0 must satisfy

s0 =
1

α
+ γ`t`−1

(
zprev(s0, z), (1− b2σ, 0, . . . , 0, b2σ)

)
,

where zprev is defined in (14). This shows the existence of a solution (in C+) to the fixed-point
equation (12). Notice that because bσ 6= 0 and s0 ∈ C+, the last entry of zprev(s0, z) is in C∗ and
(zprev(s0, z), (1− b2σ, 0, . . . , 0, b2σ)) is in the domain of function t`−1.

To show uniqueness, we apply Corollary G.5: For any fixed s ∈ C+, defining

fn(s) =
1

α
+ (n/d`) tr(A+ s−1Φ` − z Id)−1Φ`,

33



the same arguments as above establish that

lim
n→∞

fn(s) = f(s) ≡ 1

α
+ γ`t`−1

(
zprev(s, z), (1− b2σ, 0, . . . , 0, b2σ)

)
.

Part (b) holding for `− 1 implies that both A and Φ` have deterministic spectral limits, where

lim spec Φ` = lim spec Φ̃`

by (47). This cannot be the point distribution at 0, because (28) implies that tr Φ` ≥ 1/2 for all large
n, and ‖Φ`‖ ≤ C so at least n/(2C) eigenvalues of Φ` exceed 1/2 for every n. Thus, Corollary G.5
implies that the fixed point s = f(s) is unique. So the fixed point s`(z) ∈ C+ is uniquely defined by
(12), and this shows part (a) for `.

By the uniqueness of this fixed point, we have also shown that s0 = s`(z), where s0 is the limit of s̄
along the above sub-subsequence. Since for any subsequence in n, there exists a sub-subsequence for
this which holds, this shows that limn→∞ s̄ = s`(z) almost surely.

Now, to show that part (b) holds for `, let us also fix any w = (w−1, . . . , w`) ∈ C`+2. Using that
z` 6= 0, we may write

w ·X>X(`) =
w`
z`
· z ·X>X(`) + wprev ·X>X(`− 1),

where wprev is as defined in (15). Then(
z ·X>X(`)

)−1(
w ·X>X(`)

)
=
w`
z`

Id +
(
z ·X>X(`)

)−1(
wprev ·X>X(`− 1)

)
. (64)

We now apply Lemma E.2(a) conditional on X0, . . . , X`−1, with the same identifications as above
and with

M = wprev ·X>X(`− 1).

Note that M is indeed deterministic conditional on X0, . . . , X`−1, and ‖M‖ ≤ C for a constant
C > 0 (depending on z and w) since X0, . . . , X`−1 are (εn, B)-orthonormal. Then, applying
Lemma E.2(a),

tr
[(

z·X>X(`)
)−1(

wprev ·X>X(`−1)
)]
−tr

[
(A+s̄−1Φ`−z Id)−1

(
wprev ·X>X(`−1)

)]
→ 0.

By the same arguments as above, we may replace s̄ by s0 = s`(z) and Φ` by Φ̃`. Then, applying this
to (64),

tr
[(

z·X>X(`)
)−1(

w·X>X(`)
)]
−w`
z`
−tr

[
(A+s`(z)−1Φ̃`−z Id)−1

(
wprev·X>X(`−1)

)]
→ 0.

Finally, applying that part (b) holds for `− 1, this yields

lim
n→∞

tr
[(

z ·X>X(`)
)−1(

w ·X>X(`)
)]

=
w`
z`

+ t`−1(zprev(s`(z), z),wprev),

which is the definition of t`(z,w). This establishes (60).

For any fixed z−1, . . . , z` ∈ R where z` 6= 0, and any fixed z ∈ C+, this implies that the Stieltjes
transform of z ·X>X(`) has the almost sure limit

m(z) = t`

(
(−z + z−1, z0, . . . , z`), (1, 0, . . . , 0)

)
.

So m(z) defines the Stieltjes transform of a sub-probability distribution ν, and the empirical eigen-
value distribution of z ·X>X(`) converges vaguely a.s. to ν. Since ‖z ·X>X(`)‖ is bounded because
X0, . . . , XL are (εn, B)-orthonormal, this limit ν must in fact be a probability distribution, and the
eigenvalue distribution converges weakly to ν. This concludes the induction and the proof.

H Multi-dimensional outputs and rescaled parametrizations

In this section, we provide some motivation for the form of the NTK in (17) for networks with a
k-dimensional output, and we prove Theorem 3.8 regarding its spectrum.
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H.1 Derivation of (17) from gradient flow training

Consider gradient flow training of the network (16), with training samples (xα,yα)nα=1 where
xα ∈ Rd0 and yα ∈ Rk, under the general training loss

F (θ) =

n∑
α=1

L(fθ(xα),yα).

Here, L : Rk × Rk → R is the loss function. We denote by ∇L(fθ(xα),yα) ∈ Rk the gradient of
L with respect to its first argument, and by∇W`

fθ(xα) ∈ Rdim(W`)×k the Jacobian of fθ(xα) with
respect to the weights W`.

Consider a possibly reweighted gradient-flow training of θ, where the evolution of weights W` is
given by

d

dt
W`(t) = −τ` · ∇W`

F (θ(t)) = −τ`
n∑
α=1

∇W`
fθ(t)(xα) · ∇L(fθ(t)(xα),yα).

The learning rate for each weight matrix W` is scaled by a constant τ`—this may arise, for example,
from reparametrizing the network (16) using W̃` = τ−1

` ·W` and considering gradient flow training
for W̃`. Denoting the vectorization of all training predictions and its Jacobian by

fθ(X) = (f1
θ (X), . . . , fkθ (X)) ∈ Rnk, ∇W`

fθ(X) ∈ Rdim(W`)×nk,

and the corresponding vectorization of (∇L(fθ(xα),yα))nα=1 by ∇L(fθ(X),y) ∈ Rnk, this may
be written succinctly as

d

dt
W`(t) = −τ` · ∇W`

fθ(t)(X) · ∇L(fθ(t)(X),y).

Then the time evolution of in-sample predictions is given by
d

dt
fθ(t)(X) =

(
∇θfθ(t)(X)

)>
· d
dt
θ(t)

= −
L+1∑
`=1

τ`

(
∇W`

fθ(t)(X)
)>(
∇W`

fθ(t)(X)
)
· ∇L(fθ(t)(X),y)

= −KNTK(t) · ∇L(fθ(t)(X),y),

where KNTK is the matrix defined in (17). For τ1 = . . . = τL+1 = 1, this matrix is simply

KNTK =
(
∇θfθ(X)

)>(
∇θfθ(X)

)
∈ Rnk×nk,

which is a flattening of the neural tangent kernel K ∈ Rn×n×k×k (identified as a map K : Rn×n →
Rk×k) that is defined in [27].

H.2 Proof of Theorem 3.8

The matrix KNTK in (17) admits a k × k block decomposition

KNTK =

K
NTK
11 · · · KNTK

1k
...

. . .
...

KNTK
k1 · · · KNTK

kk

 , KNTK
ij =

L+1∑
`=1

τ`

(
∇W`

f iθ(X)
)>(
∇W`

f jθ (X)
)
∈ Rn×n.

Writing

WL+1 =

w>1
...

w>k

 ,

a computation using the chain rule similar to (54) verifies that

KNTK
ij = 1{i = j}τL+1X

>
LXL +

L∑
`=1

τ`(S
i
`

>
Sj` )� (X>`−1X`−1)

where Si` ∈ Rd`×n is the matrix with the same column-wise definition as in (53), replacing w by wi.
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Lemma H.1. Under the assumptions of Theorem 3.8, for any indices i 6= j ∈ [k], almost surely as
n→∞,

1

n
‖KNTK

ij ‖2F → 0.

Furthermore, for a constant C > 0, almost surely for all large n, ‖KNTK
ij ‖ ≤ C.

Proof. By Corollary D.2, we may assume that each X0, . . . , XL is (εn, B)-orthonormal.

Let us fix i, j, ` and denote the columns of Si` and Sj` by s`,iα and s`,jβ for α, β ∈ [n]. We apply the
Hanson-Wright inequality conditional on W1, . . . ,WL, which is similar to (57). However, since wi

and wj are independent, there is no trace term, and we obtain instead∣∣∣s`,iα >s`,jβ ∣∣∣ ≤ Cεn√n 1

dL
‖ML‖F

for both α = β and α 6= β with probability 1− e−n0.01

, where ML is the same matrix as defined in
(56). Applying the bound ‖ML‖F ≤ C

√
n as in the proof of Corollary G.2, this yields∣∣∣s`,iα >s`,jβ ∣∣∣ ≤ Cεn

almost surely for all α, β ∈ [n] and all large n. Combining with the (εn, B)-orthonormality of X`−1,
we get for α 6= β that∣∣∣(Si`>Sj` )� (X>`−1X`−1)[α, β]

∣∣∣ ≤ Cε2
n,

∣∣∣(Si`>Sj` )� (X>`−1X`−1)[α, α]
∣∣∣ ≤ Cεn.

Then
‖(Si`

>
Sj` )� (X>`−1X`−1)‖2F ≤ Cn(n− 1)ε4

n + Cnε2
n,

and the first statement follows from the assumption εnn1/4 → 0. The second statement on the
operator norm follows from the bound

‖(Si`
>
Sj` )� (X>`−1X`−1)‖ ≤

(
n

max
α=1

∣∣∣s`,iα >s`,iα ∣∣∣)1/2 ( n
max
α=1

∣∣∣s`,jα >s`,jα ∣∣∣)1/2

· ‖X>`−1X`−1‖.

See [29, Eq. (3.7.9)] applied with X = Si` and Y = Sj` . The bound ‖KNTK
ij ‖ ≤ C then follows from

the (εn, B)-orthonormality of X`−1 and Corollary G.2, applied to Si` and Sj` .

Applying this lemma together with Proposition C.3, we obtain

lim specKNTK = lim spec

K
NTK
11

. . .
KNTK
kk


where the off-diagonal blocks KNTK

ij may be replaced by 0. Then the limit spectral distribution of
KNTK is an equally weighted mixture of those of KNTK

11 , . . . ,KNTK
kk . For each diagonal block KNTK

ii ,
the argument of Lemma G.3 shows that

lim specKNTK
ii = lim spec

(
τ · r+ Id +τL+1X

>
LXL +

L−1∑
`=0

τ`+1q`X
>
` X`

)
.

Then by Theorem 3.7, each diagonal block KNTK
ii has the same limit spectral distribution, whose

Stieltjes transform is given by the function mNTK(z) in Theorem 3.8. Furthermore, since ‖KNTK
ii ‖ ≤

C by Lemma G.3 and ‖KNTK
ij ‖ ≤ C for i 6= j by Lemma H.1, this shows ‖KNTK‖ ≤ C. This

establishes Theorem 3.8.

Again, when bσ = 0, the limit spectrum of each KNTK
ii reduces to lim spec(τ · r+ Id +τL+1X

>
LXL),

which can be computed via the Stieltjes transform of ρMP
γL .
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I Reduction to result of Pennington and Worah [46] for one hidden layer

Consider the one-hidden-layer conjugate kernel

KCK = X>1 X1 =
1

d1
σ(W1X)>σ(W1X) ∈ Rn×n.

Define an associated covariance matrix

M =
1

n
σ(W1X)σ(W1X)> ∈ Rd1×d1 , (65)

and observe that the eigenvalues of KCK are those of M multiplied by n/d1 and padded by n− d1

additional zeros (or with d1 − n zeros removed, if n− d1 < 0). [46, Theorem 1] characterizes the
limit spectral distribution of M in terms of a quartic equation in its Stieltjes transform, under the
additional assumptions that X has i.i.d. N (0, 1/d0) entries and n/d0 → γ0 ∈ (0,∞).4 By Theorem
3.4, this should be equivalent to the description

lim specKCK = ρMP
γ1 �

(
(1− b2σ) + b2σµ0

)
(66)

for the limit spectrum of KCK, if we specialize to µ0 = ρMP
γ0 being the Marcenko-Pastur limit of the

input gram matrix X>X . We derive this equivalence in this section.

Let mK(z) and mM (z) be the limit Stieltjes transforms for KCK and M . For any z ∈ C+, by the
relation between the eigenvalues of KCK and M ,

1

n
Tr

(
KCK − n

d1
z Id

)−1

=
n− d1

n

(
− n

d1
z

)−1

+
1

n
Tr

(
n

d1
M − n

d1
z Id

)−1

= −
(

1− d1

n

)
d1

n
· 1

z
+

(
d1

n

)2

· 1

d1
Tr(M − z Id)−1.

Taking the limit on both sides, we obtain the relation between mK(z) and mM (z), which is

mK(γ1z) = −
(

1− 1

γ1

)
1

γ1z
+

1

γ2
1

mM (z) =
1

γ2
1

(
mM (z) +

1− γ1

z

)
. (67)

Following the notation of [46], let us set

φ = 1/γ0, ψ = γ1/γ0, η = 1 = E[σ(ξ)2], ζ = b2σ. (68)

[46, Theorem 1] characterizes G(z) ≡ −mM (z) as the root of a quartic equation. Defining three
z-dependent quantities P, Pφ, Pψ by

G(z) =
ψ

z
P +

1− ψ
z

, Pφ = 1 + (P − 1)φ, Pψ = 1 + (P − 1)ψ, (69)

this quartic equation is expressed as

P = 1 + (1− ζ)tPφPψ +
ζtPφPψ

1− ζtPφPψ
where t =

1

zψ
, (70)

see [46, Equations (10–12)].

To verify that (66) is equivalent to this equation (70), note that (66) means the Stieltjes transform
mK(z) is defined by the Marcenko-Pastur equation (6) as

mK(z) =

∫
1

[(1− b2σ) + b2σx][1− γ1 − γ1zmK(z)]− z
dµ0(x). (71)

Applying the identity 1− γ1 − γ2
1zmK(γ1z) = −zmM (z) from rearranging (67), and applying also

ζ = b2σ in (68),

mK(γ1z) =

∫
1

[(1− ζ) + ζx][−zmM (z)]− γ1z
dµ0(x). (72)

4In [46], the 1/
√
d0 scaling is inW1 rather thanX , but these are clearly the same. We consider σw = σx = 1

and η = 1 in the results of [46].

37



When X has i.i.d. N (0, 1/d0) entries, the limit spectral distribution of X>X is the Marcenko-Pastur
law µ0 = ρMP

γ0 . The Stieltjes transform m(z) of this law µ0 = ρMP
γ0 is characterized by the quadratic

equation
1 = m(z)[1− γ0 − γ0zm(z)− z]

(which is the specialization of (6) when µ is the point distribution at 1). Defining

g(a, b) =

∫
1

ax− b
dµ0(x) =

1

a
m

(
b

a

)
,

we obtain then that g(a, b) satisfies the quadratic equation

1 = g(a, b)[a− γ0a− γ0bm(b/a)− b]
= g(a, b)[(a− b)− γ0a− γ0ab · g(a, b)].

Applying this with a = −ζzmM (z) and b = (1 − ζ)zmM (z) + γ1z, the quantity (72) is exactly
g(a, b). Thus this equation holds for g(a, b) = mK(γ1z) and these settings of (a, b), i.e.

1 = mK(γ1z)
(
−zmM (z)−γ1z+γ0ζzmM (z)+γ0ζzmM (z)[(1−ζ)zmM (z)+γ1z]mK(γ1z)

)
.

(73)
From the relation (67), we see that this is a quartic equation in mM (z). Note that the definitions of
Pψ and Pφ in (69) may be equivalently written as

Pψ = ψP + 1− ψ = zG(z) = −zmM (z),

Pφ = 1 +
φ

ψ
(zG(z)− 1) =

1

γ1
(−zmM (z)− 1 + γ1) = −γ1zmK(γ1z)

where we have used G(z) = −mM (z), ψ/φ = γ1 from (68), and the relation (67). Applying now
γ1z = (ψ/φ)z = 1/(φt) and γ0 = 1/φ, the equation (73) becomes

1 = −φtPφ
(
Pψ −

1

φt
− ζ

φ
Pψ +

ζ

φ
Pψ

[
−(1− ζ)Pψ +

1

φt

]
φtPφ

)
= −φtPφPψ + Pφ + (1− Pφ)ζtPφPψ + ζ(1− ζ)φ(tPφPψ)2.

This may be rearranged as

(1− Pφ − φ)(1− ζtPφPψ) = −φ(1− ζtPφPψ)− φtPφPψ + ζ(1− ζ)φ(tPφPψ)2,

and dividing both sides by −φ(1− ζtPφPψ) yields

1

φ
(Pφ − 1) + 1 = 1 +

tPφPψ − ζ(1− ζ)(tPφPψ)2

1− ζtPφPψ
= 1 + (1− ζ)tPφPψ +

ζtPφPψ
1− ζtPφPψ

.

Identifying the left side as P by (69), we obtain (70) as desired.

J Additional simulation results

J.1 Pairwise orthogonality of training samples

a) b) c)

All pairwise inner-products {x>αxβ : 1 ≤ α < β ≤ n}, for (a) 5000 CIFAR-10 training samples, (b)
5000 CIFAR-10 training samples with the first 10 PCs removed, and (c) i.i.d. Gaussian training data
of the same dimensions. Results for (b) were reported in Section 4.2, and results for (a) are reported
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below in Appendix J.2. CIFAR-10 training samples were mean-centered and normalized to satisfy
x>α 1 = 0 and ‖xα‖2 = 1 in (a) and (b).

The pairwise inner-products in (a) span a typical range of [−0.5, 0.5]. Those in (b) span a range
of about [−0.2, 0.2], and those in (c) about [−0.02, 0.02]. Thus, with 10 PCs removed, these inner-
products for CIFAR-10 are larger than for i.i.d. Gaussian inputs by a factor of 10. We found in
Section 4.2 that the inner-products of (b) are sufficiently small for the observed spectra to match the
theoretical limits of Theorems 3.4 and 3.7.

J.2 CK and NTK spectra for CIFAR-10 without removal of leading PCs

a) b) c)

Same plots as Figure 2 for CIFAR-10 training samples, without the removal of the 10 leading PCs.
We observe a close agreement of the observed CK spectrum with the limit spectrum of Theorem 3.4.
However, there is a greater discrepancy of the NTK spectrum with the limit spectrum of Theorem 3.7
in this setting.

J.3 Example images of CIFAR-10 with/without leading PCs

0) 1) 2) 3) 4) 5) 6) 7) 8) 9)

0) 1) 2) 3) 4) 5) 6) 7) 8) 9)

0) 1) 2) 3) 4) 5) 6) 7) 8) 9)

Example CIFAR-10 training samples for each class. For each training sample, we compare the
original image (above) and the corresponding normalized image upon removing the top 10 PCs
(below). Most of the image details are preserved upon removing these 10 PCs.
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J.4 Observed and limit CK spectra for all layers

Simulated spectra of the initial CK matrices X>` X` at all intermediate layers ` = 1, . . . , 5, corre-
sponding to the i.i.d. Gaussian training data example of Figure 1. Numerical computations of the
limit spectra from Theorem 3.4 are overlaid in red. We observe a merging of the two bulk spectral
components and an extension of the spectral support with increase in layer number.

The same as above, corresponding to the CIFAR-10 training samples in Appendix J.2. (Results with
10 PCs removed look the same.) A close agreement with the limit spectrum described by Theorem
3.4 is observed at each layer.
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Spectra of the CK matrices at all three layers, corresponding to the trained 3-layer network of Section
4.3. The limit spectra at random initialization of weights are depicted in red, and the two largest
eigenvalues of each matrix are depicted by blue arrows.

J.5 CK spectrum after training on a CIFAR-10 example

We train a binary classifier on n = 10000 training samples from CIFAR-10, corresponding to classes
0 (airplane) and 1 (automobile). The classifier is a fully-connected network with L = 4 hidden layers
of dimensions d1 = . . . = d4 = 1000, with bias terms and a normalized sigmoid activation at each
hidden layer and also at the output layer. This network is given by

fθ(x) = σ(w>xL + b), x` =
1√
d`
σ(W`x

`−1 + b`) for ` = 1, . . . , L

where b ∈ R and b` ∈ Rd` for each ` = 1, . . . , L are the bias parameters. The acti-
vation function σ(x) ∝ (1 − e−x)/(1 + e−x) is scaled such that E[σ(ξ)2] = 1. Weights
θ = (vec(W1), . . . , vec(W4),w) are initialized to independent N (0, 1) for each entry, and biases
(b1, . . . ,b4, b) are initialized to 0. Hence, KCK at random initialization has the same definition as in
the main text.

We train the weights and biases using the Adam optimizer in Keras, with learning rate 0.01, batch
size 128, and 60 training epochs. To ensure that the leading PCs of the untrained kernel matrix KCK

are not too predictive of the training labels, and to better separate the original PCs from those that
emerge after training, we remove the leading 5 PCs of the input data before training. The resulting
0–1 classification accuracy on the CIFAR-10 test set is 85.3%. (Training without removing these 5
PCs yields a slightly higher test accuracy of 90.7%, using the same network architecture.)

a) b)

Panel (a) above shows the eigenvalue distribution of KCK at random initialization, with the largest
eigenvalue being approximately 500. We observe a close agreement with the limit spectrum of
Theorem 3.4. Panel (b) shows the eigenvalues of KCK after training. We observe an elongation of
the bulk spectral support and the emergence of large outlier eigenvalues, analogous to the synthetic
example of Section 4.3.

a) b)

The above figure depicts the information about the training labels that is contained in the top 2 PCs
of KCK, (a) before training and (b) after training. Denoting by X̂L the rank-2 approximation of
XL, with columns x̂L1 , . . . , x̂

L
n (both before and after training), we re-fit a linear binary classifier

yα = σ(w>x̂Lα + b) of the training labels to these columns. The in-sample 0–1 training accuracy of
this classifier is 51.4% pre-training and 96.8% post-training, and the figure shows the linear predictions
w>x̂Lα + b against the training labels yα. We observe that the leading principal components of KCK

are not predictive of the training labels before training, but become highly predictive after training.
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