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Abstract

The performance of generative adversarial networks (GANs) heavily deteriorates
given a limited amount of training data. This is mainly because the discriminator
is memorizing the exact training set. To combat it, we propose Differentiable
Augmentation (DiffAugment), a simple method that improves the data efficiency of
GANs by imposing various types of differentiable augmentations on both real and
fake samples. Previous attempts to directly augment the training data manipulate
the distribution of real images, yielding little benefit; DiffAugment enables us to
adopt the differentiable augmentation for the generated samples, effectively stabi-
lizes training, and leads to better convergence. Experiments demonstrate consistent
gains of our method over a variety of GAN architectures and loss functions for both
unconditional and class-conditional generation. With DiffAugment, we achieve a
state-of-the-art FID of 6.80 with an IS of 100.8 on ImageNet 128×128 and 2-4×
reductions of FID given 1,000 images on FFHQ and LSUN. Furthermore, with only
20% training data, we can match the top performance on CIFAR-10 and CIFAR-100.
Finally, our method can generate high-fidelity images using only 100 images with-
out pre-training, while being on par with existing transfer learning algorithms. Code
is available at https://github.com/mit-han-lab/data-efficient-gans.

1 Introduction

Big data has enabled deep learning algorithms achieve rapid advancements. In particular, state-
of-the-art generative adversarial networks (GANs) [11] are able to generate high-fidelity natural
images of diverse categories [2, 18]. Many computer vision and graphics applications have been
enabled [32, 43, 53]. However, this success comes at the cost of a tremendous amount of computation
and data. Recently, researchers have proposed promising techniques to improve the computational
efficiency of model inference [22,36], while the data efficiency remains to be a fundamental challenge.

GANs heavily rely on vast quantities of diverse and high-quality training examples. To name a few,
the FFHQ dataset [17] contains 70,000 selective post-processed high-resolution images of human
faces; the ImageNet dataset [6] annotates more than a million of images with various object categories.
Collecting such large-scale datasets requires months or even years of considerable human efforts
along with prohibitive annotation costs. In some cases, it is not even possible to have that many
examples, e.g., images of rare species or photos of a specific person or landmark. Thus, it is of critical
importance to eliminate the need of immense datasets for GAN training. However, reducing the
amount of training data results in drastic degradation in the performance. For example in Figure 1,
given only 10% or 20% of the CIFAR-10 data, the training accuracy of the discriminator saturates
quickly (to nearly 100%); however, its validation accuracy keeps decreasing (to lower than 30%),
suggesting that the discriminator is simply memorizing the entire training set. This severe over-fitting
problem disrupts the training dynamics and leads to degraded image quality.

A widely-used strategy to reduce overfitting in image classification is data augmentation [20, 38, 42],
which can increase the diversity of training data without collecting new samples. Transformations such
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Figure 1: BigGAN heavily deteriorates given a limited amount of data. left: With 10% of CIFAR-
10 data, FID increases shortly after the training starts, and the model then collapses (red curve).
middle: the training accuracy of the discriminator D quickly saturates. right: the validation accuracy
of D dramatically falls, indicating that D has memorized the exact training set and fails to generalize.
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Figure 2: Unconditional generation results on CIFAR-10. StyleGAN2’s performance drastically
degrades given less training data. With DiffAugment, we are able to roughly match its FID and
outperform its Inception Score (IS) using only 20% training data. FID and IS are measured using 10k
samples; the validation set is used as the reference distribution for FID calculation.

as cropping, flipping, scaling, color jittering [20], and region masking (Cutout) [8] are commonly-used
augmentations for vision models. However, applying data augmentation to GANs is fundamentally
different. If the transformation is only added to the real images, the generator would be encouraged
to match the distribution of the augmented images. As a consequence, the outputs suffer from
distribution shift and the introduced artifacts (e.g., a region being masked, unnatural color, see
Figure 5a). Alternatively, we can augment both the real and generated images when training the
discriminator; however, this would break the subtle balance between the generator and discriminator,
leading to poor convergence as they are optimizing completely different objectives (see Figure 5b).

To combat it, we introduce a simple but effective method, DiffAugment, which applies the same
differentiable augmentation to both real and fake images for both generator and discriminator training.
It enables the gradients to be propagated through the augmentation back to the generator, regularizes
the discriminator without manipulating the target distribution, and maintains the balance of training
dynamics. Experiments on a variety of GAN architectures and datasets consistently demonstrate
the effectiveness of our method. With DiffAugment, we improve BigGAN and achieve a Fréchet
Inception Distance (FID) of 6.80 with an Inception Score (IS) of 100.8 on ImageNet 128×128 without
the truncation trick [2] and reduce the StyleGAN2 baseline’s FID by 2-4× given 1,000 images on
the FFHQ and LSUN datasets. We also match the top performance on CIFAR-10 and CIFAR-100
using only 20% training data (see Figure 2). Furthermore, our method can generate high-quality
images with only 100 examples (see Figure 3). Without any pre-training, we achieve competitive
performance with existing transfer learning algorithms that used to require tens of thousands of
training images.

2 Related Work
Generative Adversarial Networks. Following the pioneering work of GAN [11], researchers have
explored different ways to improve its performance and training stability. Recent efforts are centered
on more stable objective functions [1, 12, 26, 27, 35], more advanced architectures [28, 29, 33, 48],
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Figure 3: Low-shot generation without pre-training. Our method can generate high-fidelity images
using only 100 Obama portraits (top) from our collected 100-shot datasets, 160 cats (middle) or
389 dogs (bottom) from the AnimalFace dataset [37] at 256×256 resolution. See Figure 7 for the
interpolation results; nearest neighbor tests are provided in the supplementary material.

and better training strategy [7, 15, 24, 49]. As a result, both the visual fidelity and diversity of
generated images have increased significantly. For example, BigGAN [2] is able to synthesize natural
images with a wide range of object classes at high resolution, and StyleGAN [17, 18] can produce
photorealistic face portraits with large varieties, often indistinguishable from natural photos. However,
the above work paid less attention to the data efficiency aspect. A recent attempt [3, 25] leverages
semi- and self-supervised learning to reduce the amount of human annotation required for training.
In this paper, we study a more challenging scenario where both data and labels are limited.

Regularization for GANs. GAN training often requires additional regularization as they are highly
unstable. To stabilize the training dynamics, researchers have proposed several techniques including
the instance noise [39], Jensen-Shannon regularization [34], gradient penalties [12, 27], spectral
normalization [28], adversarial defense regularization [52], and consistency regularization [50]. All of
these regularization techniques implicitly or explicitly penalize sudden changes in the discriminator’s
output within a local region of the input. In this paper, we provide a different perspective, data aug-
mentation, and we encourage the discriminator to perform well under different types of augmentation.
In Section 4, we show that our method is complementary to the regularization techniques in practice.

Data Augmentation. Many deep learning models adopt label-preserving transformations to reduce
overfitting: e.g., color jittering [20], region masking [8], flipping, rotation, cropping [20, 42], data
mixing [47], and local and affine distortion [38]. Recently, AutoML [40, 54] has been used to
explore adaptive augmentation policies for a given dataset and task [4, 5, 23]. However, applying data
augmentation to generative models, such as GANs, remains an open question. Different from the
classifier training where the label is invariant to transformations of the input, the goal of generative
models is to learn the data distribution itself. Directly applying augmentation would inevitably alter
the distribution. We present a simple strategy to circumvent the above concern. Concurrent with our
work, several methods [16, 41, 51] independently proposed data augmentation for training GANs. We
urge the readers to check out their work for more details.

3 Method

Generative adversarial networks (GANs) aim to model the distribution of a target dataset via a
generator G and a discriminator D. The generator G maps an input latent vector z, typically drawn
from a Gaussian distribution, to its output G(z). The discriminator D learns to distinguish generated
samples G(z) from real observations x. The standard GANs training algorithm alternately optimizes
the discriminator’s loss LD and the generator’s loss LG given loss functions fD and fG:

LD = Ex∼pdata(x)[fD(−D(x))] + Ez∼p(z)[fD(D(G(z)))], (1)

LG = Ez∼p(z)[fG(−D(G(z)))]. (2)
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Figure 4: Overview of DiffAugment for updating D (left) and G (right). DiffAugment applies the
augmentation T to both the real samples x and the generated output G(z). When we update G,
gradients need to be back-propagated through T , which requires T to be differentiable w.r.t. the input.

Method Where T ? Color + Transl. + Cutout Transl. + Cutout Translation

(i) (ii) (iii) IS FID IS FID IS FID

BigGAN (baseline) 9.06 9.59 9.06 9.59 9.06 9.59

Aug. reals only X 5.94 49.38 6.51 37.95 8.40 19.16
Aug. reals + fakes (D only) X X 3.00 126.96 3.76 114.14 3.50 100.13
DiffAugment (D + G, ours) X X X 9.25 8.59 9.16 8.70 9.07 9.04

Table 1: DiffAugment vs. vanilla augmentation strategies on CIFAR-10 with 100% training
data. “Augment reals only” applies augmentation T to (i) only (see Figure 4) and corresponds
to Equations (3)-(4); “Augment D only” applies T to both reals (i) and fakes (ii), but not G (iii),
and corresponds to Equations (5)-(6); “DiffAugment” applies T to reals (i), fakes (ii), and G (iii).
(iii) requires T to be differentiable since gradients should be back-propagated through T to G.
DiffAugment corresponds to Equations (7)-(8). IS and FID are measured using 10k samples; the
validation set is the reference distribution. We select the snapshot with the best FID for each method.
Results are averaged over 5 evaluation runs; all standard deviations are less than 1% relatively.

Here, different loss functions can be used, such as the non-saturating loss [11], where fD(x) =
fG(x) = log (1 + ex), and the hinge loss [28], where fD(x) = max(0, 1 + x) and fG(x) = x.

Despite extensive ongoing efforts of better GAN architectures and loss functions, a fundamental
challenge still exists: the discriminator tends to memorize the observations as the training progresses.
An overfitted discriminator penalizes any generated samples other than the exact training data points,
provides uninformative gradients due to poor generalization, and usually leads to training instability.

Challenge: Discriminator Overfitting. Here we analyze the performance of BigGAN [2] with
different amounts of data on CIFAR-10. As plotted in Figure 1, even given 100% data, the gap
between the discriminator’s training and validation accuracy keeps increasing, suggesting that the
discriminator is simply memorizing the training images. This happens not only on limited data
but also on the large-scale ImageNet dataset, as observed by Brock et al. [2]. BigGAN already
adopts Spectral Normalization [28], a widely-used regularization technique for both generator and
discriminator architectures, but still suffers from severe overfitting.

3.1 Revisiting Data Augmentation

Data augmentation is a commonly-used strategy to reduce overfitting in many recognition tasks — it
has an irreplaceable role and can also be applied in conjunction with other regularization techniques:
e.g., weight decay. We have shown that the discriminator suffers from a similar overfitting problem
as the binary classifier. However, data augmentation is seldom used in the GAN literature compared
to the explicit regularizations on the discriminator [12, 27, 28]. In fact, a recent work [50] observes
that directly applying data augmentation to GANs does not improve the baseline. So, we would like
to ask the questions: what prevents us from simply applying data augmentation to GANs? Why is
augmenting GANs not as effective as augmenting classifiers?

Augment reals only. The most straightforward way of augmenting GANs would be directly apply-
ing augmentation T to the real observations x, which we call “Augment reals only”:

LD = Ex∼pdata(x)[fD(−D(T (x)))] + Ez∼p(z)[fD(D(G(z)))], (3)

LG = Ez∼p(z)[fG(−D(G(z)))]. (4)
However, “Augment reals only” deviates from the original purpose of generative modeling, as the
model is now learning a different data distribution of T (x) instead of x. This prevents us from
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artifacts appear on the generated images.
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Figure 5: Understanding why vanilla augmentation strategies fail: (a) “Augment reals only”
mimics the same data distortion as introduced by the augmentations, e.g., the translation padding, the
Cutout square, and the color artifacts; (b) “Augment D only” diverges because of the unbalanced
optimization — D perfectly classifies the augmented images (both T (x) and T (G(z)) but barely
recognizes G(z) (i.e., fake images without augmentation) from which G receives gradients.

applying any augmentation that significantly alters the distribution of the real images. The choices
that meet this requirement, although strongly dependent on the specific dataset, can only be horizontal
flips in most cases. We find that applying random horizontal flips does increase the performance
moderately, and we use it in all our experiments to make our baselines stronger. We demonstrate
the side effects of enforcing stronger augmentations quantitatively in Table 1 and qualitatively in
Figure 5a. As expected, the model learns to produce unwanted color and geometric distortion (e.g.,
unnatural color, cutout holes) as introduced by these augmentations, resulting in a significantly worse
performance (see “Augment reals only” in Table 1).

Augment D only. Previously, “Augment reals only” applies one-sided augmentation to the real
samples, and hence the convergence can be achieved only if the generated distribution matches the
manipulated real distribution. From the discriminator’s perspective, it may be tempting to augment
both real and fake samples when we update D:

LD = Ex∼pdata(x)[fD(−D(T (x)))] + Ez∼p(z)[fD(D(T (G(z))))], (5)

LG = Ez∼p(z)[fG(−D(G(z)))]. (6)

Here, the same function T is applied to both real samples x and fake samples G(z). If the generator
successfully models the distribution of x, T (G(z)) and T (x) should be indistinguishable to the
discriminator as well asG(z) and x. However, this strategy leads to even worse results (see “Augment
D only” in Table 1). Figure 5b plots the training dynamics of “Augment D only” with Translation
applied. Although D classifies the augmented images (both T (G(z)) and T (x)) perfectly with an
accuracy of above 90%, it fails to recognize G(z), the generated images without augmentation, with
an accuracy of lower than 10%. As a result, the generator completely fools the discriminator by G(z)
and cannot obtain useful information from the discriminator. This suggests that any attempts that
break the delicate balance between the generator G and discriminator D are prone to failure.

3.2 Differentiable Augmentation for GANs

The failure of “Augment reals only” motivates us to augment both real and fake samples, while the
failure of “Augment D only” warns us that the generator should not neglect the augmented samples.
Therefore, to propagate gradients through the augmented samples to G, the augmentation T must be
differentiable as depicted in Figure 4. We call this Differentiable Augmentation (DiffAugment):

LD = Ex∼pdata(x)[fD(−D(T (x)))] + Ez∼p(z)[fD(D(T (G(z))))], (7)

LG = Ez∼p(z)[fG(−D(T (G(z))))]. (8)

Note that T is required to be the same (random) function but not necessarily the same random seed
across the three places illustrated in Figure 4. We demonstrate the effectiveness of DiffAugment
using three simple choices of transformations and its composition, throughout the paper: Translation
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Figure 6: Analysis of different types of DiffAugment on CIFAR-10 with 100% training data. A
stronger DiffAugment can dramatically reduce the gap between the discriminator’s training accuracy
(middle) and validation accuracy (right), leading to a better convergence (left).

Method 100% training data 50% training data 25% training data

IS FID IS FID IS FID

BigGAN [2] 94.5 ± 0.4 7.62 ± 0.02 89.9 ± 0.2 9.64 ± 0.04 46.5 ± 0.4 25.37 ± 0.07
+ DiffAugment 100.8 ± 0.2 6.80 ± 0.02 91.9 ± 0.5 8.88 ± 0.06 74.2 ± 0.5 13.28 ± 0.07

Table 2: ImageNet 128×128 results without the truncation trick [2]. IS and FID are measured using
50k samples; the validation set is used as the reference distribution for FID. We select the snapshot
with the best FID for each method. We report means and standard deviations over 3 evaluation runs.

(within [−1/8, 1/8] of the image size, padded with zeros), Cutout [8] (masking with a random square
of half image size), and Color (including random brightness within [−0.5, 0.5], contrast within
[0.5, 1.5], and saturation within [0, 2]). As shown in Table 1, BigGAN can be improved using the
simple Translation policy and further boosted using a composition of Cutout and Translation; it is
also robust to the strongest policy when Color is used in combined. Figure 6 analyzes that stronger
DiffAugment policies generally maintain a higher discriminator’s validation accuracy at the cost of a
lower training accuracy, alleviate the overfitting problem, and eventually achieve better convergence.

4 Experiments

We conduct extensive experiments on ImageNet [6], CIFAR-10 [19], CIFAR-100, FFHQ [17],
and LSUN-Cat [46] based on the leading class-conditional BigGAN [2] and unconditional Style-
GAN2 [18]. We use the common evaluation metrics Fréchet Inception Distance (FID) [13] and
Inception Score (IS) [35]. In addition, we apply our method to low-shot generation both with and
without pre-training in Section 4.4. Finally, we perform analysis studies in Section 4.5.

4.1 ImageNet

We follow the top-performing model BigGAN [2] on ImageNet dataset at 128×128 resolution.
Additionally, we augment real images with random horizontal flips, yielding the best reimplementation
of BigGAN to our knowledge (FID: ours 7.6 vs. 8.7 in the original paper [2]). We use the simple
Translation DiffAugment for all the data percentage settings. In Table 2, our method achieves
significant gains especially under the 25% data setting, in which the baseline model undergoes an
early collapse, and advances the state-of-the-art FID and IS with 100% data available.

4.2 FFHQ and LSUN-Cat

We further experiment with StyleGAN2 [18] on the FFHQ portrait dataset [17] and the LSUN-Cat
dataset [46] at 256×256 resolution. We investigate different limited data settings, with 1k, 5k,
10k, and 30k training images available. We apply the strongest Color + Translation + Cutout
DiffAugment to all the StyleGAN2 baselines without any hyperparameter changes. The real images
are also augmented with random horizontal flips as commonly applied in StyleGAN2 [18]. Results
are shown in Table 3. Our performance gains are considerable under all the data percentage settings.
Moreover, with the fixed policies used in DiffAugment, our performance is on par with ADA [16], a
concurrent work based on the adaptive augmentation strategy.
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Method FFHQ LSUN-Cat

30k 10k 5k 1k 30k 10k 5k 1k

ADA [16] 5.46 8.13 10.96 21.29 10.50 13.13 16.95 43.25

StyleGAN2 [18] 6.16 14.75 26.60 62.16 10.12 17.93 34.69 182.85
+ DiffAugment 5.05 7.86 10.45 25.66 9.68 12.07 16.11 42.26

Table 3: FFHQ and LSUN-Cat results with 1k, 5k, 10k, and 30k training samples. With the fixed
Color + Translation + Cutout DiffAugment, our method improves the StyleGAN2 baseline and is on
par with a concurrent work ADA [16]. FID is measured using 50k generated samples; the full training
set is used as the reference distribution. We select the snapshot with the best FID for each method.
Results are averaged over 5 evaluation runs; all standard deviations are less than 1% relatively.

Method CIFAR-10 CIFAR-100

100% data 20% data 10% data 100% data 20% data 10% data

BigGAN [2] 9.59 21.58 39.78 12.87 33.11 66.71
+ DiffAugment 8.70 14.04 22.40 12.00 22.14 33.70

CR-BigGAN [50] 9.06 20.62 37.45 11.26 36.91 47.16
+ DiffAugment 8.49 12.84 18.70 11.25 20.28 26.90

StyleGAN2 [18] 11.07 23.08 36.02 16.54 32.30 45.87
+ DiffAugment 9.89 12.15 14.50 15.22 16.65 20.75

Table 4: CIFAR-10 and CIFAR-100 results. We select the snapshot with the best FID for each
method. Results are averaged over 5 evaluation runs; all standard deviations are less than 1% relatively.
We use 10k samples and the validation set as the reference distribution for FID calculation, as done
in prior work [50]. Concurrent works [14, 16] use a different protocol: 50k samples and the training
set as the reference distribution. If we adopt this evaluation protocol, our BigGAN + DiffAugment
achieves an FID of 4.61, CR-BigGAN + DiffAugment achieves an FID of 4.30, and StyleGAN2 +
DiffAugment achieves an FID of 5.79.

4.3 CIFAR-10 and CIFAR-100

We experiment on the class-conditional BigGAN [2] and CR-BigGAN [50] and unconditional
StyleGAN2 [18] models. For a fair comparison, we also augment real images with random horizontal
flips for all the baselines. The baseline models already adopt advanced regularization techniques,
including Spectral Normalization [28], Consistency Regularization [50], and R1 regularization [27];
however, none of them achieves satisfactory results under the 10% data setting. For DiffAugment, we
adopt Translation + Cutout for the BigGAN models, Color + Cutout for StyleGAN2 with 100% data,
and Color + Translation + Cutout for StyleGAN2 with 10% or 20% data. As summarized in Table 4,
our method improves all the baselines independently of the baseline architectures, regularizations,
and loss functions (hinge loss in BigGAN and non-saturating loss in StyleGAN2) without any
hyperparameter changes. We refer the readers to the supplementary material for the complete tables
with IS. The improvements are considerable especially when limited data is available. This is, to
our knowledge, the new state of the art on CIFAR-10 and CIFAR-100 for both class-conditional and
unconditional generation under all the 10%, 20%, and 100% data settings.

4.4 Low-Shot Generation

For a certain person, an object, or a landmark, it is often tedious, if not completely impossible, to
collect a large-scale dataset. To address this, researchers recently exploit few-shot learning [9, 21]
in the setting of image generation. Wang et al. [45] use fine-tuning to transfer the knowledge of
models pre-trained on external large-scale datasets. Several works propose to fine-tune only part of
the model [30,31,44]. Below, we show that our method not only produces competitive results without
using external datasets or models but also is orthogonal to the existing transfer learning methods.

We replicate the recent transfer learning algorithms [30, 31, 44, 45] using the same codebase as Mo et
al. [30] on their datasets (AnimalFace [37] with 160 cats and 389 dogs), based on the pre-trained
StyleGAN model from the FFHQ face dataset [17]. To further demonstrate the data efficiency,
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Method Pre-training? 100-shot AnimalFace [37]

Obama Grumpy cat Panda Cat Dog

Scale/shift [31] Yes 50.72 34.20 21.38 54.83 83.04
MineGAN [44] Yes 50.63 34.54 14.84 54.45 93.03

TransferGAN [45] Yes 48.73 34.06 23.20 52.61 82.38
+ DiffAugment Yes 39.85 29.77 17.12 49.10 65.57

FreezeD [30] Yes 41.87 31.22 17.95 47.70 70.46
+ DiffAugment Yes 35.75 29.34 14.50 46.07 61.03

StyleGAN2 [18] No 80.20 48.90 34.27 71.71 130.19
+ DiffAugment No 46.87 27.08 12.06 42.44 58.85

Table 5: Low-shot generation results. With only 100 (Obama, Grumpy cat, Panda), 160 (Cat),
or 389 (Dog) training images, our method is on par with the transfer learning algorithms that are
pre-trained with 70,000 images. FID is measured using 5k generated samples; the training set is the
reference distribution. We select the snapshot with the best FID for each method.

Figure 7: Style space interpolation of our method for low-shot generation without pre-training. The
smooth interpolation results suggest little overfitting of our method even given small datasets.

we collect the 100-shot Obama, grumpy cat, and panda datasets, and train the StyleGAN2 model
on each dataset using only 100 images without pre-training. For DiffAugment, we adopt Color +
Translation + Cutout for StyleGAN2, Color + Cutout for both the vanilla fine-tuning algorithm
TransferGAN [45] and FreezeD [30] that freezes the first several layers of the discriminator. Table 5
shows that DiffAugment achieves consistent gains independently of the training algorithm on all the
datasets. Without any pre-training, we still achieve results on par with the existing transfer learning
algorithms that require tens of thousands of images, with an exception on the 100-shot Obama dataset
where pre-training with human faces clearly leads to better generalization. See Figure 3 and the
supplementary material for qualitative comparisons. While there might be a concern that the generator
is likely to overfit the tiny datasets (i.e., generating identical training images), Figure 7 suggests
little overfitting of our method via linear interpolation in the style space [17]; please refer to the
supplementary material for the nearest neighbor tests.

4.5 Analysis

Below, we investigate whether smaller model or stronger regularization would similarly reduce over-
fitting and whether DiffAugment still helps. Finally, we analyze additional choices of DiffAugment.
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(a) Impact of model size. (b) Impact of R1 regularization γ.

Figure 8: Analysis of smaller models or stronger regularization on CIFAR-10 with 10% training
data. (a) Smaller models reduce overfitting for the BigGAN baseline, while our method dominates
its performance at all model capacities. (b) Over a wide sweep of the R1 regularization γ for the
baseline StyleGAN2, its best FID (26.87) is still much worse than ours (14.50).

Model Size Matters? We reduce the model capacity of BigGAN by progressively halving the
number of channels for both G and D. As plotted in Figure 8a, the baseline heavily overfits on
CIFAR-10 with 10% training data when using the full model and achieves a minimum FID of 29.02 at
1/4 channels. However, it is surpassed by our method over all model capacities. With 1/4 channels,
our model achieves a significantly better FID of 21.57, while the gap is monotonically increasing as
the model becomes larger. We refer the readers to the supplementary material for the IS plot.

Stronger Regularization Matters? As StyleGAN2 adopts the R1 regularization [27] to stabilize
training, we increase its strength from γ = 0.1 to up to 104 and plot the FID curves in Figure 8b.
While we initially find that γ = 0.1 works best under the 100% data setting, the choice of γ = 103

boosts its performance from 34.05 to 26.87 under the 10% data setting. When γ = 104, within
750k iterations, we only observe a minimum FID of 29.14 at 440k iteration and the performance
deteriorates after that. However, its best FID is still 1.8× worse than ours (with the default γ = 0.1).
This shows that DiffAugment is more effective compared to explicitly regularizing the discriminator.
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Figure 9: Various types of DiffAugment consis-
tently outperform the baseline. We report Style-
GAN2’s FID on CIFAR-10 with 10% training data.

Choice of DiffAugment Matters? We in-
vestigate additional choices of DiffAugment
in Figure 9, including random 90◦ rotations
({−90◦, 0◦, 90◦} each with 1/3 probability),
Gaussian noise (with a standard deviation of
0.1), and general geometry transformations
that involve bilinear interpolation, such as bi-
linear translation (within [−0.25, 0.25]), bilin-
ear scaling (within [0.75, 1.25]), bilinear rota-
tion (within [−30◦, 30◦]), and bilinear shearing
(within [−0.25, 0.25]). While all these policies
consistently outperform the baseline, we find
that the Color + Translation + Cutout DiffAug-
ment is especially effective. The simplicity also
makes it easier to deploy.

5 Conclusion

We present DiffAugment for data-efficient GAN training. DiffAugment reveals valuable observations
that augmenting both real and fake samples effectively prevents the discriminator from over-fitting,
and that the augmentation must be differentiable to enable both generator and discriminator training.
Extensive experiments consistently demonstrate its benefits with different network architectures
(StyleGAN2 and BigGAN), supervision settings, and objective functions, across multiple datasets
(ImageNet, CIFAR, FFHQ, LSUN, and 100-shot datasets). Our method is especially effective when
limited data is available. Our code, datasets, and models are available for future comparisons.
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Broader Impact

In this paper, we investigate GANs from the data efficiency perspective, aiming to make generative
modeling accessible to more people (e.g., visual artists and novice users) and research fields who
have no access to abundant data. In the real-world scenarios, there could be various reasons that lead
to limited amount of data available, such as rare incidents, privacy concerns, and historical visual
data [10]. DiffAugment provides a promising way to alleviate the above issues and make AI more
accessible to everyone.
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[25] Mario Lučić, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, and Sylvain Gelly.
High-Fidelity Image Generation With Fewer Labels. In International Conference on Machine Learning
(ICML), 2019. 3

[26] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 2

[27] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually
converge? In International Conference on Machine Learning (ICML), 2018. 2, 3, 4, 7, 9

[28] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations (ICLR), 2018.
2, 3, 4, 7

[29] Takeru Miyato and Masanori Koyama. cgans with projection discriminator. In International Conference
on Learning Representations (ICLR), 2018. 2

[30] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze Discriminator: A Simple Baseline for Fine-tuning
GANs. arXiv, 2020. 7, 8

[31] Atsuhiro Noguchi and Tatsuya Harada. Image generation from small datasets via batch statistics adaptation.
In IEEE International Conference on Computer Vision (ICCV), 2019. 7, 8

[32] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-
adaptive normalization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
1

[33] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Representations
(ICLR), 2016. 2

[34] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of generative
adversarial networks through regularization. In Conference on Neural Information Processing Systems
(NeurIPS), pages 2018–2028, 2017. 3

[35] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. In Conference on Neural Information Processing Systems (NeurIPS), 2016.
2, 6

[36] Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen, Chunjing Xu, Qi Tian, and Chang Xu. Co-
Evolutionary Compression for Unpaired Image Translation. In IEEE International Conference on Computer
Vision (ICCV), 2019. 1

[37] Zhangzhang Si and Song-Chun Zhu. Learning Hybrid Image Templates (HIT) by Information Projection.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2011. 3, 7, 8

[38] Patrice Y Simard, David Steinkraus, and John C Platt. Best practices for convolutional neural networks
applied to visual document analysis. In Proceedings of International Conference on Document Analysis
and Recognition, 2003. 1, 3

[39] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised map
inference for image super-resolution. arXiv, 2016. 3

[40] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002. 3

[41] Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Trung-Kien Nguyen, and Ngai-Man Cheung.
Towards good practices for data augmentation in gan training. arXiv, 2020. 3

[42] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural networks
using dropconnect. In International Conference on Machine Learning (ICML), 2013. 1, 3

[43] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive generation via
adversary for object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. 1

11



[44] Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, and Joost van de
Weijer. Minegan: effective knowledge transfer from gans to target domains with few images. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 7, 8

[45] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer, Abel Gonzalez-Garcia, and Bogdan
Raducanu. Transferring gans: generating images from limited data. In European Conference on Computer
Vision (ECCV), 2018. 7, 8

[46] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun: Construc-
tion of a large-scale image dataset using deep learning with humans in the loop. arXiv, 2015. 6

[47] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond Empirical Risk
Minimization. In International Conference on Learning Representations (ICLR), 2018. 3

[48] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-Attention Generative Adversarial
Networks. In International Conference on Machine Learning (ICML), 2019. 2

[49] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N
Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks.
In IEEE International Conference on Computer Vision (ICCV), 2017. 3

[50] Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency regularization for generative
adversarial networks. In International Conference on Learning Representations (ICLR), 2020. 3, 4, 7

[51] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image augmentations for gan
training. arXiv, 2020. 3
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