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Abstract

We consider two important aspects in understanding and editing images: modeling
regular, program-like texture or patterns in 2D planes, and 3D posing of these planes
in the scene. Unlike prior work on image-based program synthesis, which assumes
the image contains a single visible 2D plane, we present Box Program Induction
(BPI), which infers a program-like scene representation that simultaneously models
repeated structure on multiple 2D planes, the 3D position and orientation of the
planes, and camera parameters, all from a single image. Our model assumes a
box prior, i.e., that the image captures either an inner view or an outer view of a
box in 3D. It uses neural networks to infer visual cues such as vanishing points
or wireframe lines to guide a search-based algorithm to find the program that
best explains the image. Such a holistic, structured scene representation enables
3D-aware interactive image editing operations such as inpainting missing pixels,
changing camera parameters, and extrapolate the image contents.

1 Introduction
We aim to build autonomous algorithms that can infer two important structures for compositional
scene understanding and editing from a single image: the regular, program-like texture or patterns in
2D planes and the 3D posing of these planes in the scene. As a motivating example, when observing
a single image of a corridor like the one in Fig. 1, we humans can effortlessly infer the camera pose,
partition the image into five planes—including left and right walls, floor, ceiling, and a far plane—and
recognize the repeated pattern on each of these planes. Such a holistic and structural representation
allows us to flexibly edit the image, for instance by inpainting missing regions, moving the camera,
and extrapolating the corridor to make it infinite.

A range of computer vision algorithms have utilized such a holistic scene representation to guide image
manipulation tasks. Several recent ones fit into a program-guided image manipulation framework [11,
24, 25]. These methods infer a program-like image representation that captures camera parameters
and scene structures, enabling image editing operations guided by such programs so that the scene
structure is preserved during editing. However, due to the combinatorial complexity of possible
compositions of elementary components based on the program grammar, these methods usually only
work for images in highly specific domains with a fixed set of primitives such as hand-drawn figures
of simple 2D geometric shapes [11] and synthesized tabletop scenes [24], or natural images with of a
single visible plane, such as ground tiles and patterned cloth [25, 21].

To address these issues and scale up program-guided image manipulation, we present a new frame-
work, namely, Box Program Induction (BPI, for short), that jointly segments the image into multiple
planes and infers the repeated structure on each plane. Our model assumes a box prior, leveraging
the observation that box-like structures widely exist in images. Many indoor and outdoor scenes fall
into this category: walking in a corridor or room corresponds to observing a box from the inside, and
taking a picture of a building corresponds to seeing a box from the outside.
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SetCamera(0, +z)

# Plane 1

SetPlane(pos_1, normal_1)

for i in range(0, 4): 

Draw(         , 

x = 54 * i)
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SetPlane(pos_2, normal_2)

for i in range(0, 4): 

Draw(         , 

x = 54 * i)

# Plane 3 ...Camera

Figure 1: We present Box Program Induction (BPI), which infers a program-like scene representation that
simultaneously models repeated structure on multiple 2D planes, 3D positions and orientations of the planes,
relative to the camera, all from a single image. The inferred program can be used to guide perspective- and
regularity-aware image manipulation tasks, including image inpainting, extrapolation, and view synthesis.

To enable efficient inference of box programs, we also propose to utilize mid-level cues, such as
vanishing points or wireframe lines, as well as high-level visual cues such as subject segmentations,
to implicitly constrain the search space of candidate programs. Given the input image, BPI first infers
these visual cues with pre-trained data-driven models. Next, it enumerates all candidate programs
that satisfy the implicit constraints imposed by these inferred visual features. Finally, it ranks all
candidate programs using low-level visual features such as pixel reconstruction.

In summary, we present BPI, a framework for inducing box programs from images by exploiting
learned visual cues. Our experiments show that BPI can efficiently and accurately infer the structure
and camera parameters for both indoor and outdoor scenes. The inference procedure is robust to
errors and noise inherent to visual cue prediction: BPI automatically selects the best candidate
wireframe lines and refines the vanishing points if they are not accurate. BPI also enables users to
make 3D-aware interactive editing to images, such as inpainting missing pixels, extrapolating image
content in specific directions, and changing camera parameters.

2 Related Work
Visual program induction. Computer graphics researchers have used procedural modeling (mostly
top-down) for representing 3D shapes [19, 33] and indoor scenes [35, 20, 29]. With advances in deep
networks, some methods have paired top-down procedural modeling with bottom-up recognition
networks. Such hybrid models have been applied to hand-drawn sketches [11], scenes with simple
2D or 3D geometric primitives [31, 24], and markup code [9, 5]. The high-dimensional nature of
procedural programs poses significant challenges to the search process; hence, even guided by neural
networks, these works focus only on synthetic images in constrained domains. SPIRAL [12] and its
follow-up SPIRAL++ [26] use reinforcement learning to discover latent “doodles” that are later used
to compose the image. Their models work on in-the-wild images, but cannot be directly employed in
tasks involving explicit reasoning, such as image manipulation and analogy making, due to the lack
of program-like, interpretable representations.

In the past year, Young et al. [41] and Mao et al. [25] integrated formal programs into deep generative
networks to represent natural images, and later applied the hybrid representation to image editing. Li
et al. [21] extended these models by jointly inferring perspective effects. All these models, however,
assume a single plane in an image, despite the fact that most images contain multiple planes such as
floor and ceiling. Our BPI moves beyond the single-plane assumption by leveraging box priors.
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(a) Box Program for Corridors (b) Box Program for Buildings

SetCamera(0, +z)

# Plane 1 

SetPlane(pos_1, normal_1)

for i in range(0, 8)

Draw(         , 

x = 59 * i)

# Plane 2 ...

# Plane 3 ...

Figure 2: Example box programs inferred by BPI. Our box program jointly models camera parameters, the 3D
positions and orientations of multiple planes, as well as the regularity structure on individual planes.

Program−→CameraProgram; WorldProgram;
CameraProgram−→SetCamera(pos=Vec3, point_to=Vec3);

WorldProgram−→PlaneProgram; | PlaneProgram; World Program;
PlaneProgram−→SetPlane(pos=Vec3, normal=Vec3) For1Stmt;

For1Stmt−→For ( i in range(Integer, Integer) ){ DrawStmt; | For2Stmt }
For2Stmt−→For ( j in range(Integer, Integer) ){ DrawStmt }

DrawStmt−→Draw (x=Expr, y=Expr)
Expr−→Real× i+ Real× j | Real× i

Table 1: The domain-
specific language (DSL)
of box programs. Lan-
guage tokens For, If,
Integer, Real, and
arithmetic/logical oper-
ators follow the Python
convention. Vec3 denotes
3D real vectors.

Image manipulation. Image manipulation, in particular image inpainting, is a long-standing
problem in graphics and vision. Pixel-based [1, 3] and patch-based methods [10, 4, 13] achieve
impressive results for inpainting regions that requires only local, textural information. They fail on
cases requiring high-level, structural, or semantic information beyond textures. Image Melding [8]
extends patch-based methods by allowing additional geometric and photometric transformations
on patches, but ignores global consistency among patches. Huang et al. [16] also use perspective
correction to assist patch-based inpainting, but rely on vanishing points detected by other methods. In
contrast, BPI segments planes and estimates their normals based on the global regularity of images.

Advances in deep networks have led to impressive inpainting algorithms that integrate information
beyond local pixels or patches [17, 40, 42, 23, 43, 45, 39, 38, 28]. In particular, deep models that learn
from a single image (a.k.a., internal learning) produce high-quality results for image manipulation
tasks such as inpainting, resizing, and expansion [32, 45, 30]. BPI also operates on a single image,
simultaneously preserving the 3D structure and regularity during image manipulation.

3 Box Program Induction
Our proposed framework, Box Program Induction (BPI), takes an image as input and infers a box
program that best describes the image, guided by visual cues.

3.1 Domain-Specific Language
We start by describing the domain-specific language (DSL) that we use to express the multiple planes
in the scene and the regularity structure on individual planes, namely the box programs. We assume
these planes are faces of a 3D box. Take Fig. 2a as an example: the corridor is composed of four
planes, each containing visually regular patterns.

Table 1 specifies the DSL, and Fig. 2 shows sample programs. A box program consists of two parts:
camera parameters and programs for individual planes. A plane program first sets the plane’s surface
normal, then specifies a sub-program defining the regular 2D pattern on the plane. These patterns
utilize the primitive Draw command, which places patterns at specified 2D positions. Draw commands
appear in For-loop statements that characterize the regularity of each plane.

3.2 Box Program Fitness
Given an input image, our goal is to segment the image into different planes, estimate their surface
normals relative to the camera, and infer the regular patterns. We treat this problem as seeking a
program P that best fits the input image I . We first define the fitness of a program P by measuring
how well P reconstructs I . Recall that a box program P is composed of multiple plane programs,
each of which defines the regular pattern on a plane as well as its position and orientation in 3D.
Combined with camera parameters, we can use parameters of each plane program to rectify the
corresponding plane, resulting in images without perspective effects {J1, J2, · · · , Jk}, where k is
the number of planes described by P .
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Figure 3: Our Box Program Induction finds the best-fit program that describes the input image (a). It first detects
the vanishing point and wireframe segments (b), followed by a filtering step (c). It then constructs a set of
candidate plane segmentation maps (d). Given each plane segmentation, it rectifies each plane and infers its
regularity structure (e). We rank all candidate box programs by their fitness (f); the starred candidate is the best.

For each plane i, we compute its fitness score by comparing its rectified image Ji and the corre-
sponding plane program block, denoted as Qi. The fitness score is defined in a similar way as in the
Perspective Plane Program Induction framework [21]. Specifically, executing Qi produces a set of
2D coordinates Ci that can be interpreted as the centers of each visual element, such as the center of
the lights on the ceiling in Fig. 2a. Since Qi contains a nested loop of up to two levels, we denote
the loop variable for each For loop as a and b. Thus, each 2D coordinate in Ci can be written as a
function of a and b, c(a, b) ∈ R2. The fitness score F is defined as

F = −
∑
a,b

[
‖Ji[c(a, b)]− Ji[c(a+ 1, b)]‖22 + ‖Ji[c(a, b)]− Ji[c(a, b+ 1)]‖22

]
, (1)

where ‖ · ‖2 is the L2 norm and Ji[c(a, b)] denotes the patch centered at 2D coordinates c(a, b).
Since we only consider lattice patterns on individual planes, we implement this by first shifting Ji
leftward (or downward) by the ‘width’ (or ‘height’) of a lattice cell and then computing the pixel-wise
difference between the shifted image and the original image Ji. The overall program fitness of P is
the sum of the fitness function for all planes.

3.3 3D Box Priors and the Role of Visual Cues

A naïve way to find the best-fit program P is to enumerate all possible plane segmentations of the
input image I and rank all candidates by the fitness score (Eq. 1). However, the complexity of this
naïve method scales exponentially in the number of planes. Instead, we propose to consider first, the
box prior, which constrains the plane segmentation of the image and, second, visual cues that help to
guide the search. Specifically, we impose the following box prior:

• For an inner view of a box, e.g., a corridor as in Fig. 2a, our box program models four planes: two
side walls, the floor, and the ceiling. For images with a far plane, we will segment the far plane but
do not use programs to model it, as most far planes do not contain a regular structure.

• For an outer view of a box, e.g., a building as in Fig. 2b, our box program models the two side
walls as two planes. We do not model the roof as, in most images, the roof is either nonvisible or
very small in size.

Below, we show how to use visual cues to guide the search for box programs. We focus on the inner
view case, and include details for the outer view case in the supplemental material. The full search
process is illustrated in Fig. 3, and consists of four steps. First, we use pre-trained neural networks
to detect the vanishing point and the 2D wireframes line segments from the image. We also filter
out invalid wireframe segments. Next, we generate a set of candidate plane segmentations based on
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(a) Corrupted Image (f) Inpainted Image(c) Rectified Plane (e) Inpainted Plane(b) Box Program (d) Shift Map
dy

dx

Figure 4: An illustration of the proposed program-guided PatchMatch. Given the corrupted image, we first
detect its box program (b) and rectify each plane (c). We use the regular structure (d) on the plane to guide the
PatchMatch to inpaint the corrupted plane (e). The color in (d) visualizes the relative position of each pixel to
the center of its associated lattice cell.

the detected wireframe segments. Then, for each segmented plane, we seek the program that best
describes the plane structure. Finally, we rank all candidate plane segmentations by the fitness score.

Step 1: Visual cue detection. Following the box prior, all inner views of a box contain a single
vanishing point and four intersection lines that are the intersection between the two walls, the ceiling,
and the floor in 3D. These intersection lines will be projected onto the image plane as four lines that
intersects at the vanishing point. We use this property to constrain the candidate plane segmentation.
Leveraging vanishing point information for inferring box structures of scenes has also been studied
in [15].

Given an input image (Fig. 3a), we apply NeurVPS [46] to detect the vanishing point and L-CNN [47]
to extract wireframes in the image. We use the most confident prediction of NeurVPS as the vanishing
point vp ∈ R2, which is a 2D coordinate on the image plane. Each wireframe segment is represented
as a segment AB on the image, from (xA, yA) to (xB , yB), as illustrated in Fig. 3b. Next, we filter
out wireframe segments whose length is smaller than a threshold δ1 or whose extension does not
cross a neighbourhood centered at vp with radius δ2. The remaining wireframe segments, denoted by
the set WF , are illustrated in Fig. 3c.

Step 2: Plane segmentation. We then enumerate all combinations of four wireframe segments
from WF . As these wireframe segments si = [(xAi , y

A
i ), (x

B
i , y

B
i )], i = 1, 2, 3, 4 may not intersect

at a single point, we compute a new vanishing point vp∗ that minimizes
∑

i dist(vp
∗, si), where dist

is the distance between the point vp∗ and the line containing segment si. Next, we connect the new
vanishing point vp∗ and the farther end of each si to get four rays. These four rays partition the image
into four parts, which we treat as the segmentation of four planes, as illustrated in Fig. 3d.

Step 3: Plane rectification and regularity inference. Fixing the camera at the world origin,
pointing in the +z direction, we then compute the 3D position and surface normal of each plane. As
shown in Fig. 1, because the distance between camera and the corridor is coupled with the focal
length of the camera, here we use a fixed focal length of f = 35mm∗. Based on these assumptions,
the four rays can unambiguously determine the 3D positions and surface normals of four planes. The
proof can be found in the supplemental material.

Based on the inferred surface normal, we can rectify each plane, yielding a set of rectified images
{J1, J2, · · · , J4}. For each rectified plane, we search for the best plane program that describes it,
based on the fitness function Eq. 1. The inferred plane regularity structures are shown in Fig. 3e.

Step 4: Box program ranking. We sum up the fitness score for four planes in each candidate
segmentation as the overall program fitness. We use this score to rank all candidate segmentations,
and choose the program with the highest fitness to describe the entire image.

3.4 Program-Guided Image Manipulation
The inferred box program enables 3D-aware interactive image manipulation: inpainting missing
pixels, changing camera parameters , and extrapolating the image content. Lying at the core of these
applications is a program-guided PatchMatch algorithm.

Our program-guided PatchMatch augments the PatchMatch algorithm [4] by enforcing the regularity
on each plane. Consider the task of inpainting missing pixels on the wall of a building in Fig. 4.

∗Following common practice, we also fix other camera intrinsic properties: optical center to (0, 0), skew
factor to 0, and pixel aspect ratio to 1.
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Taking a corrupted image as input (Fig. 4a), we infer the box program from the undamaged pixels
(Fig. 4b). The inferred box program explains the plane segmentation and the regularity pattern on
each plane. For each plane that contains missing pixels, we can first rectify the corrupted plane as
shown in Fig. 4c. Since the plane program on this plane will partition the image with a lattice, we
construct a “shift map”, illustrated as Fig. 4d, which represents the relative position of each pixel to
the center of the lattice cell that this pixel lies in, normalized to [−0.5, 0.5].
In PatchMatch, the similarity sim(p, q) between pixel p and pixel q is computed as a pixel-level
similarity simpixel between two patches centered at p and q, with a constant patch size δpm. We add
another term to this similarity function:

sim(p, q) , simpixel + simreg = simpixel − λreg‖wraparound(smap[p]− smap[q])‖22, (2)

where λreg is a hyperparameter that controls the weight of the regularity enforcement. abs is the
absolute value function. The shift-map term measures whether two pixels p and q correspond to
the same location on two (possibly different) repeating elements on the plane. We “wrap around”
shift map distance by wraparound(x) ≡ max(1− x,x), as the top-left corner and the bottom-right
corner of a cell also matches. Thus, the PatchMatch algorithm will choose the pixel based on both
pixel similarity and regularity similarity to fill in the missing pixels (Fig. 4e).

4 Experiments
For evaluation, we introduce two datasets, and then apply box programs to vision and graphics
tasks on these datasets, including plane segmentation (Sec. 4.1), image inpainting and extrapolation
(Sec. 4.2), and view synthesis (Sec. 4.3).

Dataset. We collect two datasets from web image search engines for our experiments, a 44-image
Corridor Boxes dataset and a 42-image Building Boxes dataset. These correspond to the inner
view and the outer view of boxes, respectively. For both datasets, we manually annotate the plane
segmentations by specifying edges of the boxes. For corridor images, we also create a mask for the
far plane. For building images, we supplement the subject segmentation (i.e., the building of interest)
to the dataset annotation.

4.1 Plane Segmentation

Because BPI develops a 3D understanding of the scene in the process of inferring the box program
under perspective effects, an immediate application is single-image plane segmentation. Note that
BPI performs this task by jointly inferring the perspective effects and the pattern regularity, in
contrast to supervised learning approaches that train models with direct supervision, such as [22].
The core intuition is that the correct plane segmentation leads to the program that best describes each
segmented plane in terms of repeated visual elements.

Baselines. We compare our method with two baselines: Huang et al. [16] and PlaneRCNN [22].
Huang et al. [16] first uses VLFeat [34] to detect vanishing points and line segments. It then generates
a soft partition of the image into multiple parts by the support lines. PlaneRCNN is a learning-based
method for plane segmentation. It uses a Mask-RCNN-like pipeline [14] and is trained on ScanNet [6].

Method CrdO CrdC BldO BldC

Huang et al. [16] 0.30 0.30 0.73 0.69
PlaneRCNN 0.52 0.52 0.63 0.63
BPI (Ours) 0.84 0.84 0.86 0.86

Table 2: Plane segmentation results in IoU between
detected and groundtruth planes. BPI outperforms
both baselines on both original (CrdO, BldO) and
corrupted images (CrdC, BldC).

Metrics. The output of each model is a set of masks
indicating the segmented planes. We compare these
with the ground-truth masks by computing the best
match between two sets of masks, where the match-
ing metric is the intersection over union (IoU). We
then report the average IoU of all predicted masks.
For corridor images, we exclude pixels in the far
plane region during evaluation. Because we wish to
use the plane segmentation to aid in image manipu-
lation tasks such as image inpainting, we evaluate all
methods on both original images (CrdO, BldO) and
corrupted images (CrdC, BldC).

Results. Fig. 5 and Table 2 show that BPI consistently outperforms the baselines on both corridor
and building images. The baselines fail to detect planes when they contain complex structures and
patterns.
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Input Huang’14 PlaneRCNN BPI (Ours) Ground Truth Input Huang’14 PlaneRCNN BPI (Ours) Ground Truth

Figure 5: Visualization of the plane segmentation by different methods.

Corridors Buildings

Method L1 Mean ↓ PSNR ↑ SSIM ↑ LPIPS ↓ L1 Mean ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PatchMatch 53.12 31.55 0.9872 0.0215 34.88 32.99 0.9896 0.0072
Image Melding 58.50 30.54 0.9880 0.0174 49.10 30.42 0.9890 0.0134
Huang et al. [16] 51.88 31.41 0.9869 0.0177 26.10 34.87 0.9917 0.0049
GatedConv 44.98 32.32 0.9883 0.0153 55.31 29.54 0.9866 0.0112
BPI (Ours) 38.45 34.21 0.9892 0.0170 26.43 34.86 0.9913 0.0054

Table 3: We compare BPI-guided PatchMatch with both patch-based and learning-based methods on the
task of image inpainting. ↑ indicates that the higher the number, the better. Bold indicates models that are
indistinguishable with the best one under that metric with a linear mixed model. See text for details.

4.2 Image Inpainting

The inferred box programs support 3D-aware and regularity-preserving image manipulation, because
they provide information on both what the perspective effects are and how the visual element repeats.
To test BPI’s performance on such tasks, we generate a dataset of corrupted images by randomly
masking out regions of images from our two datasets.

Metrics. We use four metrics: pixel-level L1 distance, peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM) [36], and a learned perceptual metric LPIPS [44]. Following standard
practice [27, 2], we compute PSNR and SSIM on image luma, and compute L1 distance and LPIPS
directly on RGB values.

Baselines. We compare our model against both learning-based GatedConv [43] and three non-
learning-based algorithms: PatchMatch [4], Image Melding [7], and Huang et al. [16]. All three
non-learning algorithms are patch-based. Image Melding allows additional geometric and photometric
transformations on patches. Huang et al. [16] first segments the image into different planes and
augments a standard PatchMatch procedure with the plane rectification results.

Results. The results are summarized in Table 3 and Fig. 6. Here we run linear mixed models between
each pair of methods and, for each metric, we mark in bold all methods that are indistinguishable
with the best one. All p-values are in the supplementary material. Our method outperforms baselines
on corridor images and achieves comparable results on building images with Huang et al. [16]. As
discussed in Sec. 4.1, Huang et al. [16] relies on straight lines on the plane to segment and rectify the
image, so it works well on planes with a plethora of such features. Huang et al. [16] tends to fail on
images without dense straight lines on the plane (rows 3-4 of Fig. 6). On corridor images, beyond
producing high-fidelity inpainting results, our regularity-aware PatchMatch process preserves the
structure of the scene, such as the light on the ceiling in row 1 of Fig. 6.

Image extrapolation. Beyond inpainting missing pixels, our regularity-aware algorithm can ex-
trapolate the box structure. Here, on the Building Boxes dataset, we show that our model can make
the building taller or wider. The input to the model is a foreground mask of the building and the
target region to be filled with the extrapolated building. We compare our method with four baselines:
Content-Aware Scaling in Adobe Photoshop, Kaspar et al. [18], Huang et al. [16] and InGAN [32].
For content-aware scaling, we first select the foreground mask and then scale it so that it fills the
target region. For both Kaspar et al. [18] and InGAN, we extract the bounding box of the foreground
building and use it as the input. The model generates a new image that is 1.5x larger. For Huang et al.
[16], we cast the extrapolation problem as inpainting the target region.

As shown in Fig. 7, Content-Aware Scaling is unaware of perspective effects and fails to preserve the
lattice structure in the image. It also cannot generate new visual elements such as windows. Both
Kaspar et al. [18] and InGAN do not preserve existing pixels when extrapolating the image. Kaspar et
al. [18], as a texture synthesis method, also ignores the two-plane structure when generating the new
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Corrupted Images PatchMatch Image Melding Huang et al. [2014] GatedConv BPI (Ours) Ground Truth

Figure 6: Qualitative results on the task of image inpainting. Compared with the baselines, our model can better
preserve the regular structures even if they are sparse or have strong perspective effects.

InGANInput Image Content-Aware Scale Kaspar et al. [2015] Huang et al. [2014] BPI (Ours)
Figure 7: The “extrapolated” buildings. Content-Aware Scale, Kaspar et al. [18], and InGAN fail to preserve the
building structure while extrapolating the image: they either generate irregular patterns or change the shape of
the planes. Huang et al. [16] fails to preserve the regular structure when inpainting large areas.

image. While InGAN is able to capture the visual elements, it does not follow the lattice pattern
during synthesis. Huang et al. [16] can inpaint small local areas as in Fig. 6, but does not follow the
regular structure when inpainting a large area. In contrast, BPI preserves both the plane structure of
the building and the lattice pattern on each side.

Quantitatively, we randomly select 12 images, and ask 15 people to rank the outputs of different
methods. We collected 12 × 15 = 180 responses. The preference for the models are: Ours(61%),
Content-Aware Scaling(16%), Kaspar et al. [18] (2%), InGAN(16%), and Huang et al. [16] (5%).

4.3 View Synthesis

As our inferred box programs captures a holistic 3D scene representation, we can synthesize novel
views of the scene from a single image. We compare different models on the Corridor Boxes dataset.
We consider three types of camera movement: 1) “step into the corridor”, 2) “step back in the
corridor”, and 3) “step back in the corridor, pan leftward, and tilt upward”. All trajectories generate 5
frames. Detailed parameters are included in the supplemental material. Note that in both trajectories
that involve “stepping back”, the algorithm must synthesize pixels unseen in the original image. For
our BPI, we run our program-guided PatchMatch to extrapolate the planes and synthesize pixels that
are outside the input view frustum.

Results. We compare images generated by our BPI and by SynSin [37] in Fig. 8. The arrow on the
input shows camera movement. As our method can generate a corridor of an arbitrary length, we see
significantly fewer artifacts when the camera movement is large, compared with SynSin. Note that
even in the first columns where the camera movement is small, the pixels synthesized by SynSin that
are outside the original view frustum already fail to preserve the regular structure.
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Input

View Synthesis Results by BPI (Ours)

Input

View Synthesis Results by BPI (Ours)

View Synthesis Results by SynSin View Synthesis Results by SynSin

Figure 8: View synthesis from a single image of a corridor. Compared with the learning-based method SynSin,
our model better preserves the regular patterns on the walls and also has remarkably fewer artifacts.

(a) (b) (c)

Figure 9: Failure cases. Our model may fail when neural networks misdetect visual cues (a). When image
contains a solid color plane, our model may segment the pure white part to other planes (b). The inference might
fail on irregular scenes, but could be mitigated with user interaction (c).

For a quantitative comparison, we randomly select 20 images, generate synchronized videos of the
results produced by our method and by SynSin on all three camera trajectories, and ask 10 people
to rank the outputs. We collected 20× 3× 10 = 600 responses. For the three different trajectories,
100%, 94%, and 99.5% of the responses prefer our result to that by SynSin, respectively.

4.4 Failure Case

Fig. 9 shows three main failure cases of our model. First, our model might misdetect vanishing points
and wireframe segments, as illustrated in (a), where the model missed the wireframe between the
floor and the right plane (detected wireframes shown as red lines). A second type of failure can occur
when the image has a solid color plane. Illustrated in (b), our model segments the pure white part of
the floor as part of the left/right planes. Finally, the inference might fail due to irregular planes, as
shown in (c), where the buildings on the left do not form a rectangular plane. These issues could be
mitigated with light user interaction, such as specifying wireframes.

5 Conclusion
We have presented Box Program Induction (BPI), a framework for inferring program-like representa-
tions that model the regular texture and patterns in 2D planes and the 3D posing of these planes, all
from a single image. Our model assumes a box prior, which constrains the plane segmentation of the
image, and uses visual cues to guide the inference. The inferred box program enables 3D-aware inter-
active image editing, such as inpainting, extrapolation, and view synthesis. Currently, our algorithm
assumes that the full image can be partitioned into planes with regular structures. Future research
may consider integrating models that can handle the presence of irregular image regions.

Broader Impact
This paper presents an improved interactive image manipulation algorithms, which helps visual artists,
photographers, and normal users who wants to perform content-aware and 3D-aware edits to their
images. Moreover, our algorithm only use pixels from the input image itself during editing, which
minimizes the biases coming from external sources. However, misuses of our algorithms can generate
fake images that affect image forensics.
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