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Contained in the supplementary are several standalone components. We have tried to include all relevant preliminary
information where applicable. The proof of Theorem 1 is contained in Appendix A. The proofs of the statements in section
3 of the main paper are contained in Appendix B. The inapproximability results are presented in Appendix C. The formal
construction and bound-propagation schemes of LipMIP are contained in Appendix D. Extension of LipMIP to general
position vector-valued networks over a wider class of norms is contained in Appendix E. Appendix F has full experimental
details and additional experiments.
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A. Analytical proofs
We first start with formal definitions and known facts. We present our results in general for vector-valued functions, but we
will make remarks about the implications for scalar-valued networks along the way.

A.1. Definitions and Preliminaries

A.1.1. NORMS

As we will be frequently referring to arbitrary norms, we recall the formal definition:
Definition A.1. A norm || · || over vector space V is a nonnegative valued function that meets the following three properties:

• Triangle Inequality: For all x, y ∈ V , ||x+ y|| ≤ ||x||+ ||y||

• Absolute Homogeneity: For all x ∈ V , and any field element a, ||ax|| = |a| · ||x||.

• Point Separation: If ||x|| = 0, then x = 0, the zero vector of V .

The most common norms are the `p norms over Rd, with ||x||p := (
∑
i |xi|p)

1/p, though these are certainly not all possible
norms over Rd. We can also describe norms over matrices. One such norm that we frequently discuss is a norm over
matrices in Rm×n and is induced by norms over Rd and Rm:
Definition A.2. Given norm || · ||α over Rd, and norm || · ||β over Rm, the matrix norm || · ||α,β over Rm×n is defined as

||A||α,β := sup
||x||α≤1

||Ax||β = sup
x 6=0

||Ax||β
||x||α

(1)

A convenient way to keep the notation straight is that A, above, can be viewed as a linear operator which maps elements
from a space which has norm || · ||α to a space which has norm || · ||β , and hence is equipped with the norm ||A||α,β . As
long as || · ||α, || · ||β are norms, then || · ||α,β is a norm as well in that the three properties listed above are satisfied.

Every norm induces a dual norm, defined as
||x||∗ := sup

||y||≤1

|〈x, y〉| (2)

Where the 〈·, ·〉 is the standard inner product for vectors over Rd or matrices Rm×d. We note that if matrix A is a row-vector,
then ||A||α,|·| = ||A||α∗ by definition.

We also have versions of Holder’s inequality for arbitrary norms over Rd:
Proposition A.1. Let || · ||α be a norm over Rd, with dual norm || · ||α∗ . Then, for all x, y ∈ Rd

xT y ≤ ||x||α · ||y||α∗ (3)

Proof. Indeed, assuming WLOG that neither x nor y are zero, and letting u = x
||x||α , we have

xT y = ||x||α · uT y ≤ ||x||α · sup
||u||α≤1

uT y = ||x||α · ||y||α∗ (4)

We can make a similar claim about the matrix norms defined above, || · ||α,β :
Proposition A.2. Letting ||·||α,β be a matrix norm induced by norms ||·||α over Rd, and ||·||β over Rm, for anyA ∈ Rm×n,
x ∈ Rd:

||Ax||β ≤ ||A||α,β ||x||α (5)

Proof. Indeed, assuming WLOG that x is nonzero, letting y = x/||x||α such that ||y||α = 1, we have

||Ax||β = ||x||α||Ay||β ≤ sup
||y||α≤1

||x||α||Ay||β = ||x||α||A||α,β (6)

2
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A.1.2. LIPSCHITZ CONTINUITY AND DIFFERENTIABILITY

When f : Rd → Rm is a vector-valued over some open set X ⊆ Rd we say that it is (α, β)-Lipschitz continuous if there
exists a constant L for norms || · ||α, || · ||β such that all x, y ∈ X ,

||f(x)− f(y)||β ≤ L · ||x− y||α (7)

Then the Lipschitz constant, L(α,β)(f,X ), is the infimum over all such L. Equivalently, one can define Lα,β(f,X ) as

L(α,β)(f,X ) = sup
x,y∈X ,;x 6=y

||f(x)− f(y)||β
||x− y||α

(8)

We say that f is differentiable at x if there exists some linear operator∇f(x) ∈ Rn×m such that

lim
h→0

f(x+ h)− f(x)−∇f(x)Th

||h||
= 0 (9)

A linear operator such that the above equation holds is defined as the Jacobian 1

The directional derivative of f along direction v ∈ Rd is defined as

dvf(x) := lim
t→0

f(x+ tv)− f(x)

t
(10)

Where we note that we are taking limits of a vector-valued function. We now add the following known facts:

• If f is lipschitz continuous, then it is absolutely continuous.

• If f is differentiable at x, all directional derivatives exist at x. The converse is not true, however.

• If f is differentiable at x, then for any vector v, dvf(x) = ∇f(x)T v.

• (Rademacher’s Theorem): If f is Lipschitz continuous, then f is differentiable everywhere except for a set of measure
zero, under the standard Lebesgue measure in Rd (Heinonen, 2005).

Finally we introduce some notational shorthand. Letting f : Rd → Rm, be Lipschitz continuous and defined over an open
set X , we denote Diff(X ) refer to the differentiable subset of X . Let D be the set of (x, v) ∈ R2n for which dvf(x) exists
and x ∈ X . Additionally, let Dv be the set Dv = {x | (x, v) ∈ D}.

A.2. Proof of Theorem 1

Now we can state our first lemma, which claims that for any norm, the maximal directional derivative is attained at a
differentiable point of f :

Lemma A.1. For any (α, β) Lipschitz continuous function f , norm || · ||β over Rm, any v ∈ Rd, lettingDv := {x | (x, v) ∈
D}, we have:

sup
x∈Dv

||dvf(x)||β ≤ sup
x∈Diff(X )

||∇f(x)T v||β (11)

Remark: For scalar-valued functions and norm || · ||α over Rd, one can equivalently state that for all vectors v with
||v||α = 1:

sup
x∈Dv

|dvf(x)| ≤ sup
x∈Diff(X )

||∇f(x)||α∗ (12)

Proof. Essentially the plan is to say each of the following quantities are within ε of each other: ||dvf(x)||β , the limit
definition of ||dvf(x)||β , the limit definition of ||dvf(x′)||β for nearby differentiable x′, and the norm of the gradient at x′

applied to the direction v.

1We typically write the Jacobian of a function f : Rd → Rm as ∇f(x)T ∈ Rm×n. This is because we like to think of the Jacobian of
a scalar-valued function, referred to as the gradient and denoted as ∇f(x), as a vector/column-vector

3
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We fix an arbitrary v ∈ Rd. It suffices to show that for every ε > 0, there exists some differentiable x′ ∈ Diff(X ) such that
||∇f(x′)T · v|| ≥ supx∈Dv ||dvf(x)|| − ε.

By the definition of sup, for every ε > 0, there exists an x ∈ Dv such that

||dvf(x)||β ≥ sup
y∈Dv

||δf (y)||β − ε/4 (13)

Then for all ε > 0, by the limit definition of dvf(x) there exists a δ > 0 such that for all t with |t| < δ∣∣∣∣∣∣dvf(x)−
(f(x+ tv)− f(x)

||tv||α

)∣∣∣∣∣∣
β
≤ ε/4 (14)

Next we note that, since lipschitz continuity implies absolute continuity of f , and t is now a fixed constant, the function
h(x) := f(x)

||tv||α is absolutely continuous. Hence there exists some δ′ such that for all y ∈ X , z with ||z||α ≤ δ′

||f(y + z)− f(y)||β
||tv||α

= ||h(y + z)− h(y)||β ≤ ε/4 (15)

Hence, by Rademacher’s theorem, there exists some differentiable x′ within a δ′-neighborhood of x, such that both
||f(x′)−f(x)||β

||tv||α < ε/4 and ||f(x′+tv)−f(x+tv)||β
||tv||α < ε/4, hence by the triangle inequality for || · ||β∣∣∣∣∣∣h(x+ tv)− h(x)

∣∣∣∣∣∣|β ≤ ∣∣∣∣∣∣h(x+ tv)− h(x′ + tv)
∣∣∣∣∣∣
β

+
∣∣∣∣∣∣h(x)− h(x′)

∣∣∣∣∣∣
β

+
∣∣∣∣∣∣h(x′ + tv)− h(x′)

∣∣∣∣∣∣
β

(16)

≤ ε/2 +
∣∣∣∣∣∣h(x′ + tv)− h(x′)

∣∣∣∣∣∣
β

= ε/2 +
||f(x′ + tv)− f(x′)||β

||tv||α

Combining equations 14 and 16 we have that

||dvf(x)||β ≤ 3ε/4 +
||f(x′ + tv)− f(x′)||β

||tv||α
(17)

Taking limits over δ → 0, we get that the final term in equation 17 becomes 3ε/4 + ||dvf(x′)||β , which is equivalent to
3ε/4 + ||∇f(x)T v||β . Hence we have that

||∇f(x′)T · v||β ≥ sup
x∈Dv

||dvf(x)||β − ε (18)

as desired, as our choice of v was arbitrary.

Now we can restate and prove our main theorem.

Theorem A.1. Let || · ||α, || · ||β be arbitrary norms over Rd,Rm, and let f : Rd → Rm be locally (α, β)-Lipschitz
continuous over an open set X . The following equality holds:

L(α,β)(f,X ) = sup
G∈δf (X )

||GT ||α,β (19)

Remarks: Before we proceed with the proof, we make some remarks. First, note that if f is scalar-valued and continuously
differentiable, then ∇f(x)T is a row-vector, and ||∇f(x)T ||α,β = ||∇f(x)||α∗ , recovering the familiar known result.
Second, to gain some intuition for this statement, consider the case where f(x) = Ax + b is an affine function. Then
∇f(x)T = A, and by applying the theorem and leveraging the definition of L(α,β)(f,X ), we have

L(α,β)(f,X ) := sup
x 6=y∈X

||A(x− y)||β
||x− y||α

= ||A||α,β , (20)

where the last equality holds because X is open.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Appendices

Proof. It suffices to prove the following equality:

L(α,β)(f,X ) = sup
x∈Diff(X )

||∇f(x)T ||α,β (21)

This follows naturally as if x ∈ Diff(X ) then δf (x) = {∇f(x)}. On the other hand, if x 6∈ Diff(X ), then for every extreme
point G in δf (x), there exists an x′ ∈ Diff(X ) such that∇f(x′) = G (by definition). As we seek to optimize over a norm,
which is by definition convex, there exists an extreme point of δf (x) which attains the optimal value. Hence, we proceed by
showing that Equation 21 holds.

We show that for all x, y ∈ X that ||f(x)−f(y)||β
||x−y||α is bounded above by supx∈Diff(X ) ||∇f(x)||α,β . Then we will show the

opposite inequality.

Fix any x, y ∈ X , and note that since the dual of a dual norm is the original norm,

||f(x)− f(y)||β = sup
||c||β∗≤1

|cT (f(x)− f(y)| (22)

Moving the sup to the outside, we have

||f(x)− f(y)||β = sup ||c||β∗ |hc(0)− hc(1)| (23)

for hc : R→ R defined as hc(t) := cT f(x+ t(y − x)). Then certainly hc is lipschitz continous on the interval [0, 1], and
the limit h′c(t) exists almost everywhere, defined as

h′c(t) := lim
δ→0

cT (f(x+ (t+ δ)(y − x))− cT (f(x+ t(y − x))

|δ|
= cT δ(y−x)f(x+ t(y − x)) (24)

Further, there exists a lebesgue integrable function g(t) that equals h′c(t) almost everywhere and

|h(0)− h(1)| =
∣∣ ∫ 1

0

g(t)dµ| (25)

We can assume without loss of generality that

g(t) =

{
h′c(t) if h′c(t) exists
sups∈[0,1] |h′(s)| otherwise

(26)

where the supremum is defined over all points where h′c(t) is defined. Then because g agrees almost everywhere with h′c
and is bounded pointwise, we have the following chain of inequalities:

||f(x)− f(y)||β = sup
||c||β∗≤1

|hc(0)− hc(1)| = sup
||c||β∗≤1

∣∣∣ ∫ 1

0

|g(t)dµ
∣∣∣ (27)

≤ sup
||c||β∗≤1

∫ 1

0

|g(t)|dµ (28)

≤ sup
||c||β∗≤1

∫ 1

0

sup
s∈[0,1]

|h′c(s)|dµ (29)

≤ sup
||c||β∗≤1

∫ 1

0

sup
s∈[0,1]

|cT δ(y−x)f(x+ s(y − x))|dµ (30)

≤ sup
||c||β∗≤1

∫ 1

0

sup
z∈D(y−x)

|cT δ(y−x)f(z)|dµ (31)

≤ sup
||c||β∗≤1

∫ 1

0

||c||β∗ sup
z∈D(y−x)

||δ(y−x)f(z)||βdµ (32)

≤ sup
z∈Diff(X )

||∇f(z)(y − x)||β (33)

≤ sup
z∈Diff(X )

||∇f(z)||α,β ||x− y||α (34)

5
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Where Equation 32 holds by Proposition A.1, Equation 33 holds by Lemma A.1, and the final inequality holds by Proposition
A.2. Dividing by ||x− y||α yields the desired result.

On the other hand, we wish to show, for every ε > 0, the existence of an x, y ∈ X such that

||f(x)− f(y)||β
||x− y||α

≥ sup
x∈Diff(X )

||∇f(x)||α,β − ε (35)

Fix ε > 0 and consider any point z ∈ X with ||∇f(z)T ||α,β ≥ supx∈X ||∇f(x)T ||α,β − ε/2.

Then ||∇f(z)T ||α,β = sup||v||α≤1 ||∇f(z)T v||β = sup||v||α≤1 ||dvf(z)||β . By the definition of the directional derivative,
there exists some δ > 0 such that for all |t| < δ,

||f(z + tv)− f(z)||β
||tv||α

≥ ||dvf(z)||β − ε/2 ≥ sup
x∈Diff(X )

||∇f(x)T ||α,β − ε (36)

Hence setting x = z + tv and y = v, we recover equation 35.

6
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B. Chain Rule and General Position proofs
In this section, we provide the formal proofs of statements made in Section 3.

B.1. Preliminaries

Polytopes: We use the term polytope to refer to subsets of Rd of the form {x | Ax ≤ b}. The affine hull of a polytope is the
smallest affine subspace which contains it. The dimension of a polytope is the dimension of its affine hull. The relative
interior of a polytope P is the interior of P within the affine hull of P (i.e., lower-dimensional polytopes have empty interior,
but not nonempty relative interior unless the polytope has dimension 0).

Hyperplanes: A hyperplane is an affine subspace of Rd of codimension 1. A hyperplane may equivalently be viewed as the
zero-locus of an affine function: H := {x | aTx = b}. A hyperplane partitions Rd into two closed halfspaces, H+, H−

defined by H+ := {x | aTx ≥ b} and similarly for H−. When the inequality is strict, we define the open halfspaces as
H+
o , H

−
o . We remark that if U is an affine subspace of Rd and H is a hyperplane that does not contain U , then H ∩ U

is a subspace of codimension 1 relative to U . If this is the case, then H ∩ U is a subspace of dimension dim(U)− 1. A
hyperplane H is called a separating hyperplane of a convex set C if H ∩ C = ∅. H is called a supporting hyperplane of C
if H ∩ C 6= ∅ and C is contained in either H+ or H−.

ReLU Kernels: For a ReLU network, define the functions gi(x) as the input to the ith ReLU of f . We define the ith ReLU
kernel as the set for which gi = 0:

Ki := {x | gi(x) = 0} (37)

The Chain Rule: The chain rule is a means to compute derivatives of compositions of smooth functions. Backpropagation
is a dynamic-programming algorithm to perform the chain rule, increasing efficiency by memoization. This is most easily
viewed as performing a backwards pass over the computation graph, where each node has associated with it a partial
derivative of its output with respect to its input. As mentioned in the main paper, the chain rule may perform incorrectly
when elements of the composition are nonsmooth, such as the ReLU operator. Indeed, the ReLU σ has a derivative which is
well defined everywhere except for zero, for which it has a subdifferential of [0, 1].

Definition B.1. Consider any implementation of the chain rule which may arbitrarily assign any element of the generalized
gradient δσ(0) for each required partial derivative σ′(0). We define the set-valued function ∇#f(·) as the collection of
answers yielded by any such chain rule.

While we note that our mixed-integer programming formulation treats∇#(f) in this set-valued sense, most implementations
of automatic differentiation choose either {0, 1} to be the evaluation of σ′(0) such that∇#f is not set valued (e.g.,in PyTorch
and Tensorflow, σ′(0) = 0). Our theory holds for our set-valued formulation, but in the case of automatic differentiation
packages, as long as σ′(0) ∈ [0, 1], our results will hold.

A Remark on Hyperplane Arrangements: As noted in the main paper, our definition of general position neural networks is
spiritually similar to the notion of general position hyperplane arrangements. A hyperplane arrangementA := {H1, . . . ,Hn}
is a collection of hyperplanes in Rd and is said to be in general position if the intersection of any k hyperplanes is a (d− k)
dimensional subspace. Further, if a ReLU network only has one hidden layer, each ReLU kernel is a hyperplane. Thus,
hyperplane arrangements are a subset of ReLU kernel arrangements.

B.2. Proof of Theorem 2

Before restating Theorem 2 and the proof, we introduce the following lemmas:

Lemma B.1. Let {Ki}mi=1 be the ReLU kernels of a general position neural net, f . Then for any x contained in exactly k of
them, say WLOG K1, . . . ,Kk, x lies in the relative interior of one of the polyhedral components of ∩ki=1Ki.

Proof. Since f is in general position, ∩ki=1Ki is a union of (d− k)-dimensional polytopes. Let P be one of the polytopes
in this union such that x ∈ P . Since P is an (d− k)-face in the polyhedral complex induced by {Ki}mi=1, each point on the
boundary of P is the intersection of at least k + 1 ReLU kernels of f . Thus x cannot be contained in the boundary of P and
must reside in the relative interior.

The rest of the components are geometric. We introduce the notion of a cutting hyperplane:

7
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Figure 1. Examples of the three classes of hyperplanes with respect to a polytope P (pink). The blue hyperplane is a separating hyperplane
of P , the green hyperplane is a supporting hyperplane of P , and the red hyperplane is a cutting hyperplane of P .

Definition B.2. We say that a hyperplane H is a cutting hyperplane of a polytope P if it is neither a separating nor
supporting hyperplane of P .

We now state and prove several properties of cutting hyperplanes:

Lemma B.2. The following are equivalent:

(a) H is a cutting hyperplane of P .

(b) H contains a point in the relative interior of P , and H ∩ P 6= P .

(c) H cuts P into two polytopes with the same dimension as P : dim(P ∩ H+) = dim(P ∩ H−) = dim(P ) and
H ∩ P 6= P .

Proof. Throughout we will denote the affine hull of P as U .
(a) =⇒ (b): By assumption, H is neither a supporting nor separating hyperplane. Since neither H+ ∩ P nor H− ∩ P is P ,
H ∩ P 6= P . Thus H ∩ P is a codimension 1 subspace, with respect to U . Since H is not a supporting hyperplane, H ∩ U
must not lie on the boundary of P (relative to U ). Thus H ∩ U contains a point in the relative interior of P and so does H .

(b) =⇒ (c): By assumption H ∩ P 6= P . Consider some point, x, inside H and the relative interior of P . By definition of
relative interior, there is some neighborhood Nε(x) such that Nε(x) ∩ U ⊂ P . Thus there exists some x′ ∈ Nε(x) such that
(Nε′(x

′) ∩U) ⊂ (H+
o ∩ P ) and thus the affine hull of H+ ∩ P must have the same dimension as U . Similarly for H− ∩ P .

(c) =⇒ (a): Since P ∩H+ and P ∩H− are nonempty, then P ∩H is nonempty and thus H is not a separating hyperplane
of P . Suppose for the sake of contradiction that H+∩P = P . Then H−o ∩P = ∅, this implies that dim(H ∩P ) = dim(P )
which only occurs if P ⊆ H which is a contradiction. Repeating this for H− ∩ P , we see that H is not a supporting
hyperplane of P .

Lemma B.3. Let F be a (k)-dimensional face of a polytope P . If H is a cutting hyperplane of F , then H is a cutting
hyperplane of P .

Proof. Since H is a cutting hyperplane of F , H is neither a separating hyperplane nor is P ⊆ H . Thus it suffices to show
that H is not a supporting hyperplane of P . Since H cuts F , there exist points inside F ∩H+

o and F ∩H−o , where H+
o ,

H−o are the open halfspaces induced by H . Thus neither P ∩H+
o nor P ∩H−o are empty, which implies that H is not a

supporting hyperplane of P , hence H must also be a cutting hyperplane of P .
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Now we can proceed with the proof of Theorem 2:
Theorem B.1. Let f be a general position ReLU network, then for every x in the domain of f , the set of elements returned
by the generalized chain rule ∇#f(x) is exactly the generalized Jacobian:

∇#f(x) = δf (x) (38)

Proof. Part 1: The first part of this proof shows that if x is contained in exactly k ReLU kernels, then x is contained in 2k

full-dimensional linear regions of f . We prove this claim by induction on k. The case where k = 1 is trivial. Now assume
that the claim holds up to k − 1. Assume that x lies in the ReLU kernel for every neuron in a set S ⊆ [m], with |S| = k.
Without loss of generality, let j ∈ S be a neuron whose depth, L, is at least as great as the depth of every other neuron in S.
Then one can construct a subnetwork f ′ of f by considering only the first L layers of f and omitting neuron j. Now Ki is a
ReLU kernel of f ′ for every i ∈ S \ {j}, and further suppose that f ′ is a general position ReLU net. From the inductive
hypothesis, we can see that x is contained in exactly 2k−1 linear regions of f ′. By Lemma B.1, x resides in the relative
interior of a (n− k + 1)-dimensional polytope, P , contained in the union that defines ∩k−1

i=1 Ki. Since j has maximal depth,
gj(·) is affine in P , and thus there exists some hyperplane H such that P ∩Kj = P ∩H . Thus by Lemma B.2 (b), H is a
cutting hyperplane of P .

Consider some linear regionR of f ′ containing x. Then gj(x) is affine inside eachR and hence there exists some hyperplane
HR such that R ∩Kj = R ∩HR, with the additional property that HR ∩ P = H ∩ P . By general position, H ∩ P 6= P
and thus HR is a cutting hyperplane for P by Lemma B.2 (b). Since P is a (n − k + 1)-dimensional face of R, we can
apply Lemma B.3 to see that HR is a cutting hyperplane for R as desired.

Part 2:

Now we show that the implication proved in part 1 of the proof implies that∇#f(x) = δf (x). This follows in two steps.
The first step is to show that ∇f#(x) is a convex set for all x, and the second step is to show the following inclusion holds:

V(δf (x)) = V(∇#f(x)) (39)

Where, for any convex set C, V(C) denotes the set of extreme points of C. Then the theorem will follow by taking convex
hulls.

To show that ∇#f(x) is convex, we make the following observation: every element of ∇#f(x) must be attainable by some
implementation of the chain rule which assigns values for every σ′(0). If Λ0 ∈ ∇#f(x) is attainable by setting exactly zero
σ′(0)′s to lie in the open interval (0, 1), then Λ0 is the Jacobian matrix corresponding to one of the full-dimensional linear
regions that x is contained in. Consider some Λr ∈ ∇#f(x) which is attainable by setting exactly r σ′(0)′s to lie in the
open interval (0, 1). Then certainly Λr may be written as the convex combination of Λ

(1)
r−1 and Λ

(2)
r−1 for two elements of

δf (x), attainable by setting exactly (r − 1) ReLU partial derivatives to be nonintegral. This holds for all r ∈ {1, . . . k} and
thus∇#f(x) is convex.

To show the equality in Equation 39, we first consider some element of V(δf (x)). Certainly this must be the Jacobian
of some full-dimensional linear region containing x, and hence there exists some assignment of ReLU partial derivatives
such that the chain rule yields this Jacobian. On the other hand, we’ve shown in the previous section that every element of
∇#f(x) may be written as a convex combination of the Jacobians of the full-dimensional linear regions of f containing x.
Hence each extreme point of∇#f(x) must be the Jacobian of one of the full-dimensional linear regions of f containing
x.

B.3. Proof of Theorem 3

Before presenting the proof of Theorem 3, we will more explicitly define a Lebesgue measure over parameter space of a
ReLU network. Indeed, consider every ReLU network with a fixed architecture and hence a fixed number of parameters.
We can identify each of these parameters with R such that the parameter space of a ReLU network with k parameters is
identifiable with Rk. We introduce the measure µf as the Lebesgue measure over neural networks with the same architecture
as a defined ReLU network f . Now we present our Theorem:
Theorem B.2. The set of ReLU networks not in general position has Lebesgue measure zero over the parameter space.

Proof. We prove the claim by induction over the number of neurons of a ReLU network. As every ReLU network with
only one neuron is in general position, the base case holds trivially. Now suppose that the claim holds for families of ReLU
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networks with k − 1 neurons. Then we can add a new neuron in one of two ways: either we add a new neuron to the final
layer, or we add a new layer with only a single neuron. Every neural network may be constructed in this fashion, so the
induction suffices to prove the claim. Both cases of the induction may be proved with the same argument:

Consider some ReLU network, f , with k − 1 neurons. Then consider adding a new neuron to f in either of the two ways
described above. Let Bf denote the set of neural networks with the same architecture as f that are not in general position,
and similarly for Bf ′ . Let Cf ′ denote the set of neural networks with the same architecture as f ′ that are not in general
position, but are in general position when the kth neuron is removed. Certainly if f is not in general position, then f ′ is not
in general position. Thus

µf ′(B
′
f ) ≤ µf (Bf ) + µf ′(Cf ′) = µf ′(Cf ′) (40)

where µf (Bf ) = 0 by the induction hypothesis. We need to show the measure of Cf ′ is zero as follows. Letting Kk denote
the ReLU kernel of the neuron added to f to yield f ′, we note that f is not in general position only if one of the affine hulls
of the polyhedral components of Kk contains the affine hull of some polyhedral component of some intersection ∩i∈SKi

where S is a nonempty subset of the k− 1 neurons of f . We primarily control the bias parameter, as this is universal over all
linear regions, and notice that this problem reduces to the following: what is the measure of hyperplanes that contain any of
a finite collection of affine subspaces? By the countable subadditivity of the Lebesgue measure and the fact that the set of
hyperplanes that contain any single affine subspace has measure 0, µf ′(Cf ′) = 0.
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C. Complexity Results
C.1. Complexity Theory Preliminaries

Here we recall some relevant preliminaries in complexity theory. We will gloss over some formalisms where we can, though
a more formal discussion can be found here (Williamson and Shmoys, 2011; Hromkovič, 2013; Demaine, 2014).

We are typically interested in combinatorial optimization problems, which we will define informally as follows:

Definition C.1. A combinatorial optimization problem is composed of 4 elements: i) A set of valid instances; ii) A set of
feasible solutions for each valid instance; iii) A non-negative cost or objective value for each feasible solution; iv) A goal:
signifying whether we want to find a feasible solution that either minimizes or maximizes the cost function.

In this subsection, we will typically refer to problems using the letter Π, where instances of that optimization problem are x,
and feasible solutions are y, and the cost of y is m(y). We will refer to the cost of the optimal solution to instance x ∈ Π as
OPT (x). Optimization problems then typically have 3 formulations, listed in order of decreasing difficulty:

• Search Problem: Given an instance x of optimization problem Π, find y such that m(y) = OPT (x).

• Computational Problem: Given an instance x of optimization problem Π, find OPT (x)

• Decision Problem: Given an instance x of optimization problem Π, and a number k, decide whether or notOPT (x) ≥
k.

Certainly an efficient algorithm to do one of these implies an efficient algorithm to do the next one. Also note that by a
binary search procedure, the computational problem is polynomially-time reducible to the decision problem. As complexity
theory is typically couched in discussion about membership in a language, it is slightly awkward to discuss hardness
of combinatorial optimization problems. Since, every computational flavor of an optimization problem has a poly-time
equivalent decision problem, we will simply claim that an optimization problem is NP-hard if its decision problem is
NP-hard.

While many interesting optimization problems are hard to solve exactly, for many of these interesting problems there exist
efficient approximation algorithms that can provide a guarantee about the cost of the optimal solution.

Definition C.2. For a maximization problem Π, an approximation algorithm with approximation ratio α is a polynomial-time
algorithm that, for every instance x ∈ Π, produces a feasible solution, y, such that m(y) ≥ OPT (x)/α.

Noting that α > 1 can either be a constant or a function parameterized by |x|, length of the binary encoding of instance x.
We also note that this definition frames approximation algorithms as a “search problem”.

A very powerful tool in showing the hardness of approximation problems is the notion of a c-gap problem. This is a form of
promise problem, and proofs of hardness here are slightly stronger than what we actually desire.

Definition C.3. Given an instance of an maximization problem x ∈ Π and a number k, the c-gap problem aims to
distinguish between the following two cases:

• YES: OPT (x) ≥ k

• NO: OPT (x) < k/c

where there is no requirement on what the output should be, should OPT (x) fall somewhere in [k/c, k). For minimization
problems, YES cases imply OPT (x) ≤ k, and NO cases imply OPT (x) > k · c.

Again we note that c may be a function that takes the length of x as an input. We now recall how a c-approximation
algorithm may be used to solve the c-gap problem, implying the c-gap problem is at least as hard as the c-approximation.

Proposition C.1. If the c-gap problem is hard for a maximization problem Π, then the c-approximation problem is hard for
Π.

Proof. Suppose we have an efficient c-approximation algorithm for Π, implying that for any instance x ∈ Π, we can
output a feasible solution y such that OPT (x)/c ≤ m(y) ≤ OPT (x). Then we let Ak be an algorithm that retuns YES if
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m(y) ≥ k/c, and NO otherwise, where y is the solution returned by the approximation algorithm Then for the gap-problem,
if OPT (x) ≥ k, we have that m(y) ≥ k/c so the Ak will output YES. On the other hand, if OPT (x) < k/c, then Ak will
output NO. Hence, Ak is an efficient algorithm to decide the c-gap problem.

While hardness of approximation results arise from various forms, most notably the PCP theorem, we can black-box the
heavy machinery and prove our desired results using only strict reductions, which we define as follows.

Definition C.4. A strict reduction from problem Π to problem Π′, is a functions f , such that f : Π→ Π′ maps problem
instances of Π to problem instances of Π′. f must satisfy the following properties that for all x ∈ Π

1. |f(x)|
|x| ≤ α, where α is a fixed constant

2. OPTΠ(x) = OPTΠ′(f(x))

For which we can now state and prove the following useful proposition:

Proposition C.2. If f, g are a strict reduction from optimization problem Π to optimization problem Π′, and the c-gap
problem is hard for Π, where c is polynomial in the size of |x|, then the c′-gap problem is hard for Π′, where c′ ∈ Θ(c).

Proof. Suppose both Π and Π′ are maximization problems, and the c-gap problem is hard for Π. We consider the case
where c is a function that takes as input the encoding size of instances of Π. We can define the function c′(n) := c(n/α) for
all n. Hence c(|x|) = c′(|f(x)|) for all x ∈ Π by point 1 of the definition of strict reduction. Then for all k and all x ∈ Π,
the following two implications hold

OPTΠ′(f(x)) ≥ k =⇒ OPTΠ(x) ≥ k

OPTΠ′(f(x)) <
k

c′(f |x|)
=⇒ OPTΠ(x) <

k

c(|x|)
Where both implications hold because OPTΠ(x) = OPTΠ′ (f(x)). If the c′-gap problem were efficiently decidable for Π′,
then the c′-gap problem would be efficiently decidable for Π.

If Π is a maximization problem and Π′ is a minimization problem, then the following two implications hold:

OPTΠ′(f(x)) ≤ k′ =⇒ OPTΠ(x) ≤ k′

OPTΠ′(f(x)) > k′ · c′(|f(x)|) =⇒ OPTΠ(x) > k′ · c(|x|)
Then letting k = k′ · c(|x|) we have that solving the c′-gap problem for Π′ would solve the c-gap problem for Π. The proofs
for Π,Π′ both being minimization problems, or Π being a minimization and Π′ being a maximization hold using similar
strategies.

C.2. Proof of Theorem 4

Now we return to ReLU networks and prove novel results about the inapproximability of computing the local Lipschitz
constant of a ReLU network. Recall that we have defined ReLU networks as compositions of functions of the form :

f(x) = cTσ (Zd(x)) Zi(x) = Wiσ (Zi−1(x)) + bi, (41)

where Z0(x) = x and σ is the elementwise ReLU operator. In this section, we only consider scalar-valued general position
ReLU networks, f : Rn → R. Towards the end of the proof we see that we show that the general position assumption is not
needed for our construction. We can formulate the chain rule as follows:

Proposition C.3. If x is contained in the interior of some linear region of a general position ReLU network f , then the
chain rule provides the correct gradient of f at x, where the ith coordinate of∇f(x) is given by:

∇f(x)i =
∑

Γ∈Paths(i)

( ∏
wj∈Γ

wj

)
where Paths(i) is the set of paths from the ith input, xi, to the output in the computation graph, where the ReLU at each
vertex is on, and wj is the weight of the jth edge along the path.
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We define the following optimization problems:

Definition C.5. MAX-GRAD is an optimization problem, where the set of valid instances is the set of scalar-valued ReLU
networks. The feasible solutions are the set of differentiable points x ∈ X , which have cost ||∇f(x)||1. The goal is to
maximize this gradient norm.

Definition C.6. MIN-LIP is an optimization problem where the set of valid instances is the set of piecewise linear neural
nets. The feasible solutions are the set of constants L such that L ≥ L(f). The cost is the identity function, and our goal is
to minimize L.

Of course, each of these problems have decision-problem variants, denoted by MAX-GRADdec and MIN-LIPdec. We also
remark that by Theorem A.1, and proposition C.2, the trivial strict reduction implies that it is at least as hard to approximate
MIN-LIP as it is to approximate MAX-GRAD. For the rest of this section, we will only strive to prove hardness and
inapproximability results for MAX-GRAD.

To do this, we recall the definition of the maximum independent set problem:

Definition C.7. MIS is an optimization problem, where valid instances are undirected graphs G = (V,E), and feasible
solutions are U ⊆ V such that for any vi, vj ∈ U , (vi, vj) 6∈ E. The cost is the size of U , and the goal is to maximize this
cost.

Classically, it has been shown that MIS is NP-hard to optimize, but also is one of the hardest problems to approximate and
does not admit a deterministic polynomial time algorithm to solve the O(|V |1−ε)-gap problem (Zuckerman, 2007).

For ease of exposition, we rephrase instances of MIS into instances of an equivalent problem which aims to maximize the
size of consistent collections of locally independent sets. Given graph G = (V,E), for any vertex vi ∈ V , we let N(vi)
refer to the set of vertices adjacent to Vi in G. We sometimes will abuse notation and refer to variables by their indices, e.g.,
N(i). We also refer to the degree of vertex i as d(vi) or d(i).

Definition C.8. A locally indpendent set centered at vi is a {−1,+1}-labelling of the vertices {vi} ∪N(vi) such that the
label of vi is +1 and the label of vj ∈ N(vi) is −1. Two locally independent sets are said to be consistent if, for every vj
appearing in both locally independent sets, the label is the same in both locally independent sets. A consistent collection of
locally independent sets is a set of locally independent sets that is pairwise consistent.

Then we can define an optimization problem:

Definition C.9. LIS is an optimization problem, where valid instances are undirected graphs G = (V,E), and feasible
solutions are consistent collections of locally indpendent sets. The cost is the size of the collection, and the goal is to
maximize this cost.

It is obvious to see that there is a trivial strict reduction between MIS and LIS. Indeed, any independent set defines the
centers of a consistent collection of locally independent sets, and vice versa. As we will see, this is a more natural problem
to encode with neural networks than MIS.

Now we can state our first theorem about the inapproximability of MAX-GRAD.

Theorem C.1. Let f be a scalar-valued ReLU network, not necessarily in general position, taking inputs in Rd. Then
assuming the exponential time hypothesis, there does not exist a polynomial-time approximation algorithm with ratio
Ω(d1−c) for computing L∞(f,X ) and L1(f,X ) for any constant c > 0.

Proof. We will prove this first for L∞(f,X ) and then slightly modify the construction to prove this for L1(f,X ). We
will throughout take X := Rd. The key idea of the proof is to, given a graph G = (V,E) with |V | =: n, encode a neural
network h with n inputs, each representing the labeling value. We then build a neuron for each possible locally independent
set, where the neuron is ’on’ if and only if the labelling is close to a locally independent set. And then we also ensure that
each locally independent set contributes +1 to the norm of the gradient of f .

A critical gadget we will use is a function ψ(x) : R→ R defined as follows:

which is implementable with affine layers and ReLU’s as: ψ(x) = σ(x+ 1)− σ(x− 1)− 1. We are now ready to construct
our neural net. For every vertex vi in V , we construct an input to the neural net, hence f : Rn → R. We denote the ith input
to f as xi. The first order of business is to map each xi through ψ(·), which can be done by two affine layers and one ReLU
layer. e.g., we can define ψ(xi) = A1(ReLU(A0(xi)) where
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ψ(x) =


−1 x ∈ (−∞,−1]

x x ∈ [−1, 1]

1 x ∈ [1,+∞)

(42)

A0(x) :=

[
1
1

]
x+

[
1
−1

]

A1(z) :=
[

1 −1
]
z − 1

Next we define the second layer of ReLU’s, which has width n, and each neuron represents the status of a locally indpendent
set. We define the input to the ith ReLU in this layer as Ii with

Ii(x) := ψ(xi)−
∑

j∈N(i)

ψ(xj)− (d+ 1− ε) (43)

for some fixed-value ε to be chosen later. Finally, we conclude our construction with a final affine layer to our neural net as

h(x) :=

n∑
i=1

σ (Ii(x))

d(i) + 1
(44)

Let I(x) denote the set of indices of ReLU’s that are ‘on’ in the second-hidden layer of h: I(x) := {i | Ii(x) > 0}. Now
we make the following claims about the structure of h.

Claim C.1. For every i, if i ∈ I(x) then xi > 1 − ε and xj < −1 + ε for all j ∈ N(i). In addition, I(x) denotes the
centers of a consistent collection of locally independent sets.

Proof. Indeed, if Ii(x) > 0, then the sum of (d(i) + 1) ψ-terms is greater than 1− ε. As each ψ-term is in the range [−1, 1],
each ψ-term must individually be at least 1− ε. And ψ(xi) ≥ 1− ε implies xi ≥ 1− ε. Similarly, −ψ(xj) ≥ 1− ε implies
that xj ≤ −1 + ε. Now consider any i1, i2 in I(x). Then the pair of locally independent sets centered at vi1 and vi2 is
certainly consistent.

Figure 2. Complete construction of a neural network h that is the reduction from LIS, such that the supremal gradient of h corresponds to
the maximum locally indendent set. The first step is to map each xi to ψ(xi), then to construct Ii(x). Finally, we route each σ(Ii(x)) to
the output.
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Claim C.2. For any x such that h is differentiable at x,∇h(x)i · xi ≥ 0.

Proof. We split into cases based on the value of xi and rely on Claim C.1. Suppose xi ∈ (−1 + ε, 1 − ε), then we have
Ij < 0 for any j in {i} ∪ N(i) and hence ∇h(x)i = 0. If xi ≥ 1 − ε, then every j ∈ N(i) has Ij < 0 and hence by
Proposition C.3, the only contributions to the ∇h(x)i can be from paths that route from xi to the output through Ii. Hence

∇h(x)i =
δh

δIi
· δIi
δxi

, (45)

where both terms are nonnegative and hence so is∇h(x)i. Finally, if xi ≤ −1 + ε, then the only contributions to∇h(x)i
come from paths that route through Ij for j ∈ N(i), hence

∇h(x)i =
∑

j∈N(i)

δh

δIj
· δIj
δxi

(46)

where the first term is nonnegative and the second term is always nonpositive. We remark that because we have assumed h
to be differentiable at x, the chain rule provides correct answers, by Rademacher’s theorem.

Claim C.3. For any x, let I(x) be defined as above, I(x) := {i | Ii(x) > 0}. Then ||∇h(x)||1 ≤ |I(x)| and for every x.
In addition, for every x, there exists a y with ||∇h(y)||1 ≥ |I(x)|.

Proof. To show the first part, observe that

h(x) =

n∑
i=1

σ (Ii(x))

d(i) + 1
=
∑
i∈I(x)

Ii(x)

d(i) + 1
=⇒ ∇h(x) =

∑
i∈I(x)

∇Ii(x)

d(i) + 1
(47)

hence

||∇h(x)||1 ≤
n∑

i∈I(x)

1

d(i) + 1
||∇Ii(x)||1 (48)

and
Ii(x) := ψ(xi)−

∑
j∈N(i)

ψ(xj)− (d+ 1− ε) =⇒ ∇Ii(x) = ∇ψ(xi)−
∑

j∈N(i)

∇ψ(xj) (49)

hence
||∇Ii(x)||1 ≤ ||∇ψ(xi)||1 +

∑
j∈N(i)

||∇ψ(xj)||1 ≤ d(i) + 1 (50)

where the final inequality follows because ||∇ψ(xi)||1 ≤ 1 everywhere it is defined. Combining equations 48 and 50 yields
that ||∇h(x)||1 ≤ |I(x)|.

On the other hand, suppose I(x) is given. Then we can construct y such that I(y) = I(x) and ||∇h(y)||1 = |I(x)|. To do
this, set yi = 1− ε

2n if i ∈ I(x) and yi = −1 + ε
2n otherwise. Then note that I(x) = I(y) and for every i ∈ I(y)

∇Ii(y)k =


+1 k = i

−1 k ∈ N(i)

0 otherwise

and hence by Claim 2, we can replace the inequalities in equations 48 and 50 we have that

||∇h(y)||1 =
∑
i∈I(x)

1

d(i) + 1
||∇Ii(y)||1 = |I(x)|

as desired.
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To demonstrate that this is indeed a strict reduction, we need to define functions f and g, where f maps instances of LIS
to instances of MAX-GRAD, and g maps feasible solutions of MAX-GRAD back to LIS. Clearly the construction we have
defined above is f . The function g can be attained by reading off the indices in I(x).

To demonstrate that the size of this construction does not blow up by more than a constant factor, observe that by representing
weights as sparse matrices, the number of nonzero weights is a constant factor times the number of edges in G. Indeed,
encoding each ψ in the first layer takes O(1) parameters for each vertex in G. Encoding Ii(x) requires only O(d(i))
parameters for each i, and hence 2|E| parameters total. Assuming a RAM model where numbers can be represented by
single atomic units, and ε is chosen to be (n+ 2)−1, this is only a constant factor expansion.

The crux of this argument is to demonstrate that OPTMAX-GRAD(f(q)) = OPTLIS(q). It suffices to show that for every
locally independent set L, there exists an x such that ||∇h(x)||1 ≥ k, and for every y, there exists a locally independent set
L′ such that |L′| ≥ ||∇h(y)||1.

Suppose L is a consistent collection of locally independent sets, with |L| = k. Any consistent collection of locally
independent sets equivalently defines a labelling of each vertex of G, where li denotes the label of vertex vi: li := +1 if the
locally independent set centered at vi is contained in the collection, and li := −1 otherwise. Then one can construct an x
such that ||∇h(x)||1 ≥ k. Indeed, for every vi with label li, set xi = li(1− ε

2n ). By Claim C.1, under this x, Ii(x) ≥ 0 for
every i such that li = +1, Ii(x) > 0. Then |I(x)| = k and by Claim C.3 there exists a y such that ||∇h(y)||1 ≥ k.

On the other hand, suppose the maximum gradient of h is k. Then there exists an x that attains this and by Claim C.3,
|I(x)| ≥ k. By Claim C.1, we have that I(x) denotes the centers of a consistent collection of locally independent sets.

Approximating the maximum `∞ norm: We only slightly modify our construction of the reduction for MAX-GRAD to
show inapproximability of L1(f,X ). Namely, we add a new input so h : Rn+1 → R, called xn+1. Then we map xn+1

through ψ like all the other indices, but instead redefine

Ii(x) := ψ(xi) + (d(i) + 1)ψ(xn+1)−
∑

j∈N(i)

ψ(xj)− 2(d(i) + 1− ε)

H(x) :=

n∑
i=1

σ (Ii(x))

2(d(i) + 1)

The rest of this contsruction is nearly identical to the preceding construction, with the exception being that ||∇h(x)||1 can

be replaced by
δh(x)

δxn+1
throughout as an indicator to count the size of I(x).

About General Position: Finally we note that this proof is valid even when you do not assume the network be in general
position. Observe that the optimal value of the gradient norm is attained at a point in the strict interior of some linear
region. Next observe that a network not being in general position may only increase the optimal objective value over what is
reported by the Jacobians of the linear regions of f , but this cannot happen by claim C.3. Thus general position-ness has no
bearing on this construction.

As an aside, we note that the strict reduction demonstrates that MAX-GRADdec is NP-complete, which implies that
MIN-LIPdec is CoNP-complete.
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D. LipMIP Construction
In this appendix we will describe in detail the necessary steps for LipMIP construction. In particular, we will present how
to formulate the gradient norm ||∇#f ||∗ for scalar-valued, general position ReLU network f as a composition of affine,
conditional and switch operators. Then we will present the proofs of MIP-encodability of each of these operators. Finally,
we will describe how the global upper and lower bounds are obtained using abstract interpretation.

D.1. MIP-encodable components of ReLU networks

Our aim in this section is to demonstrate how ||∇#f ||∗ may be written as a composition of affine, conditional, and switch
operators. For completeness, we redefine these operators here:

Affine operators A : Rn → Rm are defined as
A(x) = Wx+ b, (51)

for some fixed matrix W and vector b.

The conditional operator C : R→ P({0, 1}) is defined as

C(x) =


{1} if x > 0

{0} if x < 0

{0, 1} if x = 0

(52)

The switch operator S : R× {0, 1} → R is defined as

S(x, a) = x · a. (53)

We will often abuse notation, and let conditional and switch operators apply to vectors, where the operator is applied
elementwise. Now we recover Lemma 1 from section 5 of the main paper.

Lemma D.1. Let f be a scalar-valued general position ReLU network. Then f(x),∇#f(x), || · ||1, and || · ||∞ may all be
written as a composition of affine, conditional and switch operators.

Proof. We recall that f is defined recursively like:

f(x) = cTσ (Zd(x)) Zi(x) = Wiσ (Zi−1(x)) + bi Z0(x) = x (54)

It amounts to demonstrate how Zi(x) may be computed as a composition of affine, conditional and switch operator. Since
σ(x) = S(x,C(x)), one can write, Z1(x) = WiS(x,C(x)) + bi. Letting Λi(x) := C(Zi(x)) and Ai(x) := Wi(x) + bi,
one can write Zi(x) = Ai ◦ S (Zi(x),Λi(x))). Since f(x) is an affine operator applied to Zd(x), f(x) can certainly be
encoded using only affine, switch, and conditional operators.

To demonstrate that∇f(x) may also be written as such a composition, we require the same definition to compute Zi(x) as
above. Then by the chain rule, we have that

∇#f(x) = WT
1 Y1(x) Yi(x) = WT

i+1Diag(Λi(x))Yi+1(x) Yd+1(x) = c (55)

As the ∇#f(x) is an affine operator applied to Y1(x), and Yd+1(x) is constant, we only need to show that Yi(x) may be
written as a composition of affine, conditional, and switch operators. This follows from the fact that

Diag(Λi(x))Yi+1(x) = S(Yi+1(x),Λi(x)) (56)

Then letting ATi (x) := WT
i x we have that Yi(x) = ATi ◦ (S (Yi+1(x),Λi(x)). Hence ∇#f(x) may be encoded as a

composition of affine, conditional, and switch operators.

All that is left is to show that || · ||1, || · ||∞ may be encoded likewise. For each of these, we require | · | which can
equivalently be written |x| = σ(x) + σ(−x), and hence |x| = S(x,C(x)) + S(−x,C(−x)). ||x||1 then is encoded
as the sum of the elementwise sum over |xi|. || · ||∞ requires the max(. . . ) operator. To encode this, we see that
max(x1, . . . ) = max(x1,max(. . . )) and max(x, y) = x+ σ(y − x) = x+ S(y − x,C(y − x)).
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D.2. MIP-encodability of Affine, Conditional, Switch:

Here we will explain the MIP-encodability each of the affine, conditional, and switch operators. For completeness, we copy
the definition of MIP-encodability:

Definition D.1. We say that a function g is MIP-encodable if, for every mixed-integer polytope M , the image of M mapped
through g is itself a mixed-integer polytope.

We now prove Lemma 2 from the main paper:

Lemma D.2. Let g be a composition of affine, conditional, and switch operators, where global lower and upper bounds are
known for each input to each element of the composition. Then g is a MIP-encodable function.

Proof. It suffices to show that each of the primitive operators are MIP-encodable. This amounts to, for each operator g, to
define a system of linear inequalities Γ(x, x′) which is satisfied if and only if g(x) = x′ (or x′ ∈ g(x) for set valued g),
provided x lies in the global lower and upper bounds, x ∈ [l, u].

Affine Operators: The affine operator is trivially attainable by letting Γ(x, x′) be the equality constraint

x′ = Wx+ b (57)

Conditional Operators: To encode C(x) as a system of linear constraints, we introduce the integer variable a and wish
to encode a = C(x), or equivalently, a = 1⇔ x ≥ 0. We assume that we know values l, u such that l ≤ x ≤ u. Then the
implication a = 1⇒ x ≥ 0 is encoded by the constraint:

x ≥ (a− 1) · u (58)

Since if x < 0, then a = 1 yields a contradiction in that 0 > x ≥ (1 − 1) · u = 0. The implication x ≥ 0 ⇒ a = 1 is
encoded by the constraint

x ≤ a · (1− l)− 1 (59)

Since if x ≥ 0, then a = 0 yields a contradiction in that 0 ≤ x ≤ (0) · (1− l)− 1 = −1. Hence a = 1⇔ x ≥ 0. We note
that if l > 0 or u < 0, then the value of a is fixed and can be encoded with one equality constraint.

Switch Operators: Encoding S(x, a) as a system of linear inequalities requires the introduction of continuous variable
y. As we assume we know l, u such that l ≤ x ≤ u. Denote l̂ := min(l, 0) and û := max(u, 0). The system of linear
inequalities Γ(a, x, y) is defined as the conjunction of:

y ≥ x− u · (1− a)

y ≤ x− l · (1− a)

y ≥ l · a
y ≤ u · a

(60)

We wish to show that y = S(x, a)⇔ Γ(a, x, y). Suppose that Γ(a, x, y) is satisfied. Then if a = 1, x must equal y, since it
is implied by left-column constraints of equation 60. The right-column constraints are satisfied by assumption. Alternatively,
if a = 0 then y must equal 0: it is implied by the right-column constraints of equation 60. The left columns are satisfied
with a = 0 and y = 1 since l ≤ x ≤ u by assumption. On the other hand, suppose y = S(x, a). If a = 1, then y = x by
definition and we have already shown that Γ(1, x, x) satisfied for all x ∈ [l, u]. Similarly, if a = 0, then y = 0 and we have
shown that Γ(0, x, 0) is satisfied for all x ∈ [l, u].

Finally we note that if one can guarantee that a = 0 or a = 1 always, then only the equality constraint y = x or y = 0 is
needed.

More efficient encodings: Finally we’ll remark that while the above are valid encodings of affine, conditional and switch
operators, encodings with fewer constraints for compositions of these primitives do exist. For example, suppose we instead
wish to encode a continuous piecewise linear function with one breakpoint over one variable

R(x) =

{
A1(x) if x ≥ z
A2(x) if x < z

(61)
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for affine funtcions A1, A2 : R→ R, with A1(z) = A2(z). Certainly we could use affine, conditional and switch operators,
as

R(x) = A1(x) + S (A1(x)−A2(x), C(z − x)) (62)

Where which requires 12 linear inequalities. Instead we can encode this function using only 4 linear inequalities. Supposing
we know l, u such that l ≤ x ≤ u, then R(x) can be encoded by introducing an auxiliary integer variable a and four
constraints. Letting

ζ− = min
x∈[l,u]

A1(x)−A2(x) (63)

ζ+ = max
x∈[l,u]

A1(x)−A2(x) (64)

then the constraints Γ(a, x, y) are

y ≥ A1(x)− aζ+

y ≤ A1(x)− aζ−
y ≥ A2(x) + (1− a)ζ−

y ≤ A2(x) + (1− a)ζ+
(65)

This formulation admits a more efficient encoding for functions like σ(·), and | · |.

D.3. Abstract Interpretations for Bound Propagation

Here we discuss techniques to compute the lower and upper bounds needed for the MIP encoding of affine, conditional and
switch operators. We will only need to show that for each of our primitive operators, we can map sound input bounds to
sound output bounds.

For this, we turn to the notion of abstract interpretation. Classically used in static program analysis and control theory,
abstract interpretation develops machinery to generate sound approximations for passing sets through functions. This has
been used to great success to develop certifiable robustness techniques for neural networks (Singh et al., 2019). Formally,
this requires an abstract domain, abstraction and concretization operators, and a pushforward operator for every function
we wish to model. An abstract domain An is a family of abstract mathematical objects, each of which represent a set over
Rn. An abstraction operator αn : P(Rn)→ An maps subsets of Rn into abstract elements, and a concretization operator
γn : An → P(R)n maps abstract elements back into subsets of Rn. A pushforward operator for function f : Rn → Rm, is
denoted as f# : An → Am, and is called sound, if for all X ⊂ Rn,

{f(x) | x ∈ X} ⊆ γm(f#(αn(X ))) (66)

D.3.1. HYPERBOXES AND BOOLEAN HYPERBOXES

The simplest abstract domains are the hyperbox and boolean hyperbox domains. The hyperbox abstract domain over Rn is
denoted asHn. For each X ⊂ Rn such that H = α(X ), H is parameterized by two vectors l, u such that

li ≤ inf
x∈X

xi ui ≥ sup
x∈X

xi (67)

and γn(H) = {x | l ≤ x ≤ u}. An equivalent parameterization is by vectors c, r such that c = l+u
2 and r = u−l

2 . We will
sometimes use this parameterization when it is convenient.

Similarly, the boolean hyperbox abstract domain Bn represents sets over {0, 1}n. For each Xb ⊆ {0, 1}n such that
B = α(Xb), B is parameterized by a vector v ∈ {0, 1, ?}n such that

vi =


1 if xi = 1 ∀x ∈ Xb
0 if xi = 0 ∀x ∈ Xb
? otherwise

(68)

And
γn(B) = {x | (xi = vi) ∨ (vi =?)} (69)

Finally, we can compose these two domains to represent subsets of Rn × {0, 1}m. For any set X ⊆ Rn × {0, 1}m, we
let XR refer to the restriction of X to Rn and let Xb refer to the restriction of X to {0, 1}m. Then α(X ) := (H,B) where
H = α(XR), B = α(Xb). The concretization operator is defined γ(H,B) := γ(H)× γ(B).
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D.3.2. PUSHFORWARDS FOR AFFINE, CONDITIONAL, SWITCH

We will now define pushforward operators for each of our primitives.

Affine Pushforward Operators Provided with bounded set X ⊂ Rn, with H = α(X ) parameterized by c, r, and affine
operator A(x) = Wx+ b, the pushforward A# is defined A#(H) = H ′, where H ′ is parameterized by c′, r′ with

c′ = Wc+ b r′ = |W |r (70)

where |W | is the elementwise absolute value of W . To see that this is sound, it suffices to show that for every x ∈ X ,
c′i − r′i ≤ A(xi) ≤ c′i + r′i. Fix an x ∈ X and consider A(x)i = wTi x + bi where wi is the ith row of W . Note that
x = c+ e for some vector e with |e| ≤ r elementwise. Then

wTi x+ bi = wTi c+ wTi e+ bi

≥ wTi c− |wTi e|+ bi

≥ wTi c− |wTi ||e|+ bi

≥ wTi c− |wTi |r + bi

wTi x+ bi = wTi c+ wTi e+ bi

≤ wTi c+ |wTi e|+ bi

≤ wTi c+ |wTi ||e|+ bi

≤ wTi c+ |wTi |r + bi

as desired.

Conditional Pushforward Operators Provided with bounded set X ⊂ Rn with H = αn(X ) parameterized by l, u, the
elementwise conditional operator is defined C#(H) = B where B is parameterized by v with

vi =


0 if ui < 0

1 if li > 0

? otherwise
(71)

Soundness follows trivially: for any x ∈ X , if li > 0, then xi > 0 and C(x)i = 1. If ui < 0, then xi < 0 and C(x)i = 0.
Otherwise, vi =?, which is always a sound approximation as C(x)i ∈ {0, 1}.

Switch Pushforward Operators Provided with X ⊂ Rn × {0, 1}n, we define XR := {x | (x, a) ∈ X} and Xb :=
{a | (x, a) ∈ X}. We’ve defined α(X ) := (α(XR), α(Xb)). Then if H := α(XR) parameterized by l, u, and B := α(Xb)
parameterized by v, we define the pushforward operator for switch S#(H,B) = H ′ where H ′ is parameterized by l′, u′

with

l′i =


li if vi = 1

0 if vi = 0

min(li, 0) otherwise
(72)

u′i =


ui if vi = 1

0 if vi = 0

max(ui, 0) otherwise
(73)

Soundness follows: letting (x, a) ∈ X , if vi = 0, then ai = 0, and S(x, a)i = 0, hence l′i, u
′
i = 0 is sound. If vi = 1, then

ai = 1 and S(x, a)i = xi and hence l′i = li, u′i = ui is sound by the soundness of H over XR. Finally, if vi =?, then ai = 0
or ai = 1, and S(x, a)i ∈ {0} ∪ [li, ui] ⊆ [min(li, 0),max(ui, 0)].

D.3.3. ABSTRACT INTERPRETATION AND OPTIMIZATION

We make some remarks about the applications of abstract interpretation as a technique for optimization. Recall that, for any
set X and functions g, f , if Y = {f(x) | x ∈ X} we have that

max
x∈X

g(f(x)) = max
y∈Y

g(y) (74)

Instead if Z is such that {f(x) | x ∈ X} ⊆ Z , then

max
x∈X

g(f(x)) ≤ max
z∈Z

g(z) (75)
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In particular, suppose f is a nasty function, but g has properties that make it amenable to optimization. Optimization
frameworks may not be able to solve maxx∈X g(f(x)). On the other hand, it might be the case that the RHS of equation 75
is solvable. In particular, if g is concave and Z is a convex set obtained by Z := γ(f#(α(X ))), then by soundness we have
Z ⊃ Y . In fact, this is the formal definition of a convex relaxation.

Under this lens, one can use the abstract domains and pushforward operators previously defined to recover FastLip (Weng
et al., 2018a), though the algorithm was not presented using abstract interpretations. Indeed, using the hyperbox and boolean
hyperbox domains, over a set X , one can recover a hyperbox Z ⊇ {∇f(x) | x ∈ X}. Then we have that

max
x∈X
||∇f(x)|| ≤ max

z∈Z
||z|| (76)

where it is easy to optimize `p-norms over hyperboxes. In addition, many convex-relaxation approaches towards certifiable
robustness may be recovered by this framework (Singh et al., 2019; Zico Kolter and Wong, 2017; Raghunathan et al., 2018;
Zhang et al., 2018).
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E. Extensions of LipMIP
This section will provide more details regarding how we extend LipMIP to be applicable to vector-valued functions and to
other norms. We will present an example of a nonstandard norm by detailing an application towards untargeted classification
robustness.

E.1. Extension of LipMIP to Vector-Valued Networks

Letting f : Rn → Rm be a vector-valued ReLU network in general position, suppose || · ||α is a norm over Rn and || · ||β is
a norm over Rm. Further, suppose X is some open subset of Rn. Then Theorem 1 states that

L(α,β)(f,X ) := sup
x 6=y∈X

||f(x)− f(y)||β
||x− y||α

= sup
G∈δf (X )

||GT ||α,β . (77)

And noting that
||GT ||α,β := sup

||y||α≤1

sup
||z||β∗≤1

|zGT y| (78)

one can substitute Equation 78 into Equation 77 to yield

L(α,β)(f,X ) = sup
G∈δf (X )

sup
||y||α≤1

sup
||z||β∗≤1

|zGT y| (79)

The key idea is that we can define function gz : Rn → R as

gz(x) = 〈z, f(x)〉 (80)

Where
δgz (x)T = {Gz | G ∈ δf (x)} (81)

The plan is to make LipMIP optimize over x and z simultaneously and maximize the gradient norm of gz(x). To be more
explicit, we note that the scalar-valued LipMIP solves::

sup
x∈X
||∇#f(x)T ||α,|·| = sup

G∈∇#fX
||G||α∗ = sup

x∈∇#f(X )

sup
||y||α≤1

|∇#f(x)T y| (82)

where we have shown that ∇f(x) is MIP-encodable and the supremum over y can be encoded for || · ||1, || · ||∞, because
there exist nice closed form representations of || · ||1, || · ||∞. The extension, then, only comes from the sup||z||β∗≤1 term.
We can explicitly define f as

f(x) = Wd+1σ (Zd(x)) Zi(x) = Wiσ (Zi−1(x)) + bi Z0(x) = x (83)

such that

gz(x) = zTWd+1σ (Zd(x)) Zi(x) = Wiσ (Zi−1(x)) + bi Z0(x) = x (84)

And the recursion for∇#gz(x) is defined as

∇#gz(x) = WT
1 Y1(x) Yi(x) = WT

i+1Diag(Λi(x))Yi+1(x) Yd+1(x) = WT
d+1z (85)

Thus we notice the only change occurs in the definition of Yd+1(x). In the scalar-valued f case, Yd+1(x) is always the
constant vector, c. In the vector-valued case, we can let Yd+1(x) be the output of an affine operator. Thus as long as the dual
ball {z | ||z||∗β} is representable as a mixed-integer polytope, we may solve the optimization problem of Equation 79.

Definition E.1. We say that a norm || · ||β is a linear norm over Rk if the set of points such that ||z||β∗ ≤ 1 is representable
as a mixed-integer polytope.
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Certainly the `1, `∞ norms are linear norms, but we will demonstrate another linear norm in the next subsection.

Corollary E.1. In the same setting as Theorem 5, if || · ||α is || · ||1 or || · ||∞, and || · ||β is a linear norm, then LipMIP
applied to f and X yields the answer

L(α,β) (f,X ) (86)

where the parameters of LipMIP have been adjusted to reflect the norms of interest.

Proof. The proof ideas are identical to that for Theorem 5. The only difference is that the norm || · ||β has been replaced
from | · | to an arbitrary linear norm. The argument for correctness in this case is presented in the paragraphs preceding the
corollary statement.

E.2. Application to Untargeted Classification Robustness

Now we turn our attention towards untargeted classification robustness. In the binary classification setting, we let f : Rn → R
be a scalar-valued ReLU network. Then the label that classifier f assigns to point x is sign(f(x)). In this case, it is known
that for any open set X , any norm || · ||α, any x, y ∈ X ,

||x− y||α <
|f(x)|

Lα(f,X )
=⇒ sign(f(y)) = sign(f(x)) (87)

Indeed, this follows from the definition of the Lipschitz constant as

Lα(f,X ) := sup
x6=y

|f(x)− f(y)|
||x− y||α

. (88)

Then, by the contrapositive of implication 87 , if sign(f(x)) 6= sign(f(y)) then |f(x)−f(y)| ≥ |f(x)| and for all x, y ∈ X ,

Lα(f,X ) ≥ |f(x)− f(y)|
||x− y||α

(89)

Rearranging, we have

||x− y||α ≥
|f(x)− f(y)|
Lα(f,X )

≥ |f(x)|
Lα(f,X )

(90)

arriving at the desired contrapositive implication.

In the multiclass classification setting, we introduce the similar lemma.

Lemma E.1. f : Rn → Rm assigns the label as the index of the maximum logit. We will define the hard classifier
F : Rn → [m] as F (x) = arg maxi f(x)i. We claim that for any X , and norm || · ||α, if F (x) = i, then for all y ∈ X ,

||x− y||α < min
j

|fij(x)|
Lα(fij ,X )

=⇒ F (y) = i (91)

where we’ve defined fij(x) := (ei − ej)T f(x).

Proof. To see this, suppose F (y) = j for some j 6= i. Then |fij(x)− fij(y)| ≥ |fij(x)|, as by definition fij(x) > 0 and
fij(y) < 0. Then by the definition of Lipschitz constant :

Lα(fij ,X ) ≥ |fij(x)− fij(y)|
||x− y||α

≥ |fij(x)|
||x− y||α

(92)

arriving at the desired contrapositive LHS. We only note that we need to take min over all j so that fij(y) ≥ 0 for all j.

Now we present our main Theorem regarding multiclassification robustness:
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Theorem E.1. Let f be a vector-valued ReLU network, and let || · ||× be a norm over Rm, such that for any x in any open
set X , with F (x) = i,

min
j

|fij(x)|
L(α,×)(f,X )

≤ min
j

|fij(x)|
Lα(fij ,X )

. (93)

Then for x, y ∈ X with F (x) = i,

||x− y||α < min
j

|fij(x)|
L(α,×)(f,X )

=⇒ F (y) = i. (94)

In addition, if || · ||× is a linear norm, and f is in general position, then L(α,×)(f,X ) is computable by LipMIP.

Proof. Certainly equation 94 follows directly from Lemma E.1 and equation 93.

What remains to be shown is a || · ||× such that equation 93 holds. To this end, we present a lemma describing convenient
formulations for norms:

Lemma E.2. Let C ⊆ Rn be a set that contains an open set. Then

||x||C := sup
y∈C
|yTx| (95)

is a norm.

Proof. Nonnegativity and absolute homogeneity are trivial. To see the triangle inequality holds for || · ||C , we see that, for
any x, y,

||x+ y||C := sup
z∈C
|zT (x+ y)| ≤ sup

z∈C
|zTx|+ sup

z′∈C
|z′T y| ≤ ||x||C + ||y||C (96)

And point separation follows because C contains an open set and if x 6= 0, then there exists at least one y in C such that
|yTx| > 0.

Now we can define our norm || · ||× that satisfies equation 93:

Definition E.2. Let eij := ei − ej where each ei is the elementary basis vector in Rm. Then let E be the convex hull of all
such eij and all ei, E := Conv({ei | i ∈ [m]} ∪ {eij | i 6= j ∈ [m]}). We define the cross-norm, || · ||× as

||x||× := sup
y∈E
|yTx| (97)

We note that by Lemma E.2 and since E contains the positive simplex, E contains an open set and hence the cross-norm is
certainly a norm. Indeed, because the convex hull of a finite point-set is a polytope, the cross-norm is a linear norm. Further,
we note that the polytope E has an efficient H-description.

Proposition E.1. The set E ⊆ Rm, is equivalent to the polytope P defined as

P =

x
∣∣∣∣∣∣∣∣
x = x+ − x−
x+ ≥ 0 ;

∑
i x

+
i ≤ 1

x− ≥ 0 ;
∑
i x
−
i ≤ 1∑

i x
+
i ≥

∑
i x
−
i

 (98)

Proof. As E is the convex hull of eij and ei for all i 6= j ∈ [m]. Certainly each of these points is feasible in P , and since P
is convex, by the definition of a convex hull, E ⊆ P . In the other direction, consider some x ∈ P . Decompose x into x+,
and −x−, by only considering the positive and negative components of x. The goal is to write x as a convex combination of
{eij , ei}. Further decompose x+ into y+, z+ such that x+ = y+ + z+, y+ ≥ 0, z+ ≥ 0, and

∑
i y

+
i =

∑
i x
−
i . Then we

can write y+
i − x

−
i as a convex combination of e′ijs andz+

i is a convex combination of e′is and 0, where we note that 0 ∈ E
because eij , eji are in E .

Now we desire to show equation 93 holds for the cross-norm.
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Proposition E.2. For any open set X , the Lipschitz constant with respect to the cross norm, || · ||×, and any norm || · ||α,
for x ∈ X with F (x) = i, then

min
j

|fij(x)|
L(α,×)(f,X )

≤ min
j

|fij(x)|
Lα(fij ,X )

. (99)

To see this, notice
minj |fij(x)|

maxj Lα(fij ,X )
≤ min

j

|fij(x)|
Lα(fij ,X )

. (100)

so it amounts to show that L(α,×)(f,X ) ≥ maxj L
α(fij ,X ). By the definition of the Lipschitz constant:

max
j
Lα(fij ,X ) = max

j
sup

x 6=y∈X

|〈ei − ej , f(x)− f(y)〉|
||x− y||α

(101)

By switching the sup and max above, and observing that, for all z,

max
j
|〈ei − ej , z〉| ≤ ||z||× (102)

we can bound

max
j
Lα(fij ,X ) ≤ ||f(x)− f(y)||×

||x− y||α
≤ L(α,×)(f,X ) (103)

as desired.
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F. Experiments
In this section we describe details about the experimental section of the main paper and present additional experimental
results.

F.1. Experimental Setup

Computing environment: All experiments were run on a desktop with an Intel Core i7-9700K 3.6 GHz 8-Core Processor
and 64GB of RAM. All experiments involving mixed-integer or linear programming were optimized using Gurobi, using
two threads maximum (Gurobi Optimization, 2020).

Synthetic Datasets: The main synthetic dataset used in our experiments is generated procedurally with the following
parameters:

{dim, num points, min separation, num classes, num leaders}

The procedure is as follows: randomly sample num points from the unit hypercube in dim dimensions. Points are
sampled sequentially, and a sample is replaced if it is within min separation of another, previously sampled point. Next,
num leaders points are selected uniformly randomly from the set of points and uniformly randomly assigned a label
from 1 to num classes. The remaining points are labeled according to the label of their closest ‘leader’. An example
dataset and classifier learned to classify it are presented in Figure 3.

Figure 3. (Left): Synthetic dataset used for evaluating effect of training on Lipschitz Estimation. (Right): Decision boundaries of a neural
network trained using only CrossEntropy loss for 1000 epochs on the synthetic dataset.

Estimation Techniques: Here we will outline the hyperparameters and computing environment for each estimation
technique compared against.

• RandomLB: We randomly sample 1000 points in the domain of interest. At each point, we evaluate the appropriate
gradient norm that lower-bounds the Lipschitz constant. We report the maximum amongst these sampled gradient
norms.

• CLEVER: We randomly sample 500 batches of size 1024 each and compute the appropriate gradient norm for each,
for a total of 512,000 random gradient norm evaluations. The hyperparameters used to estimate the best-fitting Reverse
Weibull distribution are left to their defaults from the CLEVER Github Repository: https://github.com/IBM/
CLEVER-Robustness-Score, (Weng et al., 2018b).
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• LipMIP: LipMIP is evaluated exactly without any early stopping or timeout parameters, using 2 threads and the
Gurobi optimizer.

• LipSDP: We use the LipSDP-Network formulation outlined in Fazlyab et al. (2019), which is the slowest but tightest
formulation. We note that since this only provides an upper bound of the `2-norm of the gradient. We scale by a factor
of
√
n for `1, `∞ estimates over domains that are subsets of Rn.

• SeqLip: SeqLip bounds are attained by splitting each network into subproblems, with one subproblem per layer. The
|| · ||2,2 norm of the Jacobian of each layer is estimated using the Greedy SeqLip heuristic (Virmaux and Scaman, 2018).
We scale the resulting output by a factor of

√
d. We remark that a cheap way to make this technique local would be

to use interval analysis over a local domain to determine which neurons are fixed to be on or off, and do not include
decision variables for these neurons in the optimization step.

• FastLip: We use a custom implementation of FastLip that more deeply represents the abstract interpretation view of
this technique. As we have noted several times throughout this paper, this is equivalent to the FastLip formulation of
Weng et al. (2018a).

• NaiveUB: This naive upper bound is generated by multiplying the operator norm of each affine layer’s Jacobian matrix
and scaling by

√
d.

F.2. Experimental Details

Here we present more details about each experiment presented in the main paper.

Accuracy vs. Efficiency Experiments In the random dataset example, we evaluated 20 randomly generated neural
networks with layer sizes [16, 16, 16, 2]. Parameters were initialized according to He initialization (He et al., 2015).

In the synthetic dataset example, a random dataset with 2000 points over R10, 20 leaders 2 classes, were used to train 20
networks, each of layer sizes [10, 20, 30, 30, 2] and was trained for 500 epochs using CrossEntropy loss with the Adam
optimizer with learning rate 0.001 and no weight decay (Kingma and Ba, 2014).

In the MNIST example, only MNIST 1’s and 7’s were selected for our dataset. We trained 20 random networks of size
[784, 20, 20, 20, 2]. We trained for 10 epochs using the Adam optimizer, with a learning rate of 0.001, where the loss was
the CrossEntropy loss and an `1 weight decay regularization term with value 1 · 10−5. For each of these networks, 20
randomly centered `∞ balls of radius 0.1 were evaluated.

For each experiment, we presented only the results for compute time and standard deviations, as well as mean relative error
with respect to the answer returned by LipMIP.

Effect of Training on Lipschitz Constant When demonstrating the effect of different regularization schemes we train
a 2-dimensional network with layer sizes [2, 20, 40, 20, 2] over a synthetic dataset generated using 256 points over R2,
2 classes and 20 leaders. All training losses were optimized for 1000 epochs using the Adam optimizer with a learning
rate of 0.001, and no implicit weight decay. Snapshots were taken every 25 epochs and LipMIP was evaluated over the
[0, 1]2 domain. All loss functions incorporated the CrossEntropy loss with a scalar value of 1.0. The FGSM training
scheme replaced all clean examples with adversarial examples generated via FGSM and a step size of 0.1. The `1-weight
regularization scheme had a penalization weight of 1 · 10−4 and the `2-weight regularization scheme had a penalization
weight of 1 · 10−3. Weights for `p weight penalties were chosen to not affect training accuracy and were determined by a
line search.

The same setup was used to evaluate the accuracy of various estimators during training. The network that was considered in
this case was the one trained only using CrossEntropy loss.

Random Networks and Lipschitz Constants For the random network experiment, 5000 neural networks with size
[10, 10, 10, 1] were initialized using He initialization. LipMIP evaluated the maximal `1 norm of the gradient over an
origin-centered `∞ ball of radius 1000.
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Figure 4. (Left): Evaluation of Lipschitz estimators over changing width. A fixed dataset and training scheme is picked, and multiple
networks with varying width are trained. Notice the small increase in Lipschitz constant returned by LipMIP, while the ever-increasing
absolute error between efficient estimation techniques. (Right): Evaluation of Lipschitz estimators over changing depth. A fixed dataset
and training scheme is picked, and multiple networks with varying depth are trained. Note that the y-axis is a log-scale, implying that
Lipschitz constants are much more sensitive to depth than width

F.3. Additional Experiments

Effect of Architecture on Lipschitz Estimation We investigate the effects of changing architecture on Lipschitz estima-
tion techniques. We generate a single synthetic dataset, train networks with varying depth and width, and evaluate each
Lipschitz Estimation technique on each network over the [0, 1]2 domain. The synthetic dataset used is over 2 dimensions,
with 300 random points, 10 leaders and 2 classes. Training for both the width and depth series is performed using 200
epochs of Adam with learning rate 0.001 over the CrossEntropy loss, with no regularization.

To investigate the effects of changing width, we train networks with size [2, C, C,C, 2] where C is the x-axis displayed in
Figure 4 (left).

To explore the effects under changing depth, we train networks with size [2]+ [20]×C+[2], where C is the x-axis displayed
in Figure 4 (right). Note that the y-axis is a log-scale: indicating that estimated Lipschitz constants rise exponentially with
depth.

Estimation of L1(f,X ): Experiments presented in the main paper evaluate L∞(f,X ), which is the maximal `1 norm
of the gradient. We can present the same experiments over the `∞ norm of the gradient. Tables 1 and 2 display results
comparing estimation techniques for L1(f,X ) under the same settings as the “Accuracy vs. Efficiency” experiments in the
main paper: that is, we estimate the maximal ||∇f ||∞ over random networks, networks trained on synthetic datasets, and
MNIST networks. Figure 5 demonstrates the effects of training and regularization on Lipschitz estimators on L1(f,X ).
Figure 6 plots a histogram of both L1(f) and L∞(f) over random networks.

Relaxed LipMIP In section 7 of the main paper, we described two relaxed forms of LipMIP: one that leverages early
stopping of mixed-integer programs that can be terminated at a desired integrality gap, and one that is a linear-programming
relaxation of LipMIP. Here we present results regarding the accuracy vs. efficiency tradeoff for these techniques. We
evaluate LipMIP with integrality gaps of at most {100%, 10%, 1%, 0%} and LipLP over the unit hypercube on the same
random networks and synthetic datasets used to generate the data in Table 1. These results are displayed in Table 3.

Cross-Lipschitz Evaluation We evaluate the || · ||× norm for applications in untargeted robustness verification. We
generate a synthetic dataset over 8 dimensions, with 2000 data points, 200 leaders, and 100 classes. We run 10 trials of the
following procedure: train a network with layer sizes [8, 40, 40, 40, 100] and pick 20 random data points to evaluate over an
`∞ ball of radius 0.1. We train the network with CrossEntropy loss, `1-regularization with constant 5 · 10−4 and train for
2000 epochs using Adam with a learning rate of 0.001 and no other weight-decay terms. Accuracy is at least 65% for each
trained network. We evaluate the time and reported Lipschitz value for the following metrics, for data points that have label
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Random Network Synthetic Dataset

Method Time (s) Relative Error Time (s) Relative Error

RandomLB 0.238± 0.004 −30.43% 0.301± 0.004 −29.27%

CLEVER 1.442± 0.071 −13.00% 55.847± 79.212 0.00%

LipMIP 18.825± 19.244 0.00% 1.873± 0.030 4.18%

FastLip 0.001± 0.000 167.55% 0.028± 0.001 156.67%

LipLP 0.018± 0.009 167.55% 0.001± 0.000 156.67%

LipSDP 2.624± 0.026 559.97% 2.705± 0.030 432.47%

SeqLip 0.007± 0.001 773.38% 0.015± 0.002 674.84%

NaiveUB 0.000± 0.000 3121.51% 0.000± 0.000 11979.62%

Table 1. Accuracy vs. Efficiency tradeoffs for estimating L1(f,X ) over the unit hypercube on random networks of layer sizes
[16, 16, 16, 2] and networks with layer sizes [10, 20, 30, 2] trained over a synthetic dataset.

Radius 0.1 Radius 0.2

Method Time (s) Relative Error Time (s) Relative Error

RandomLB 0.330± 0.006 −44.25% 0.325± 0.005 −35.08%

CLEVER 6.855± 4.984 −38.31% 23.010± 0.612 −27.24%

LipMIP 4.550± 2.519 0.00% 4.292± 1.183 0.00%

FastLip 0.001± 0.000 +43.45% 0.233± 0.012 +32.66%

LipLP 0.229± 0.021 +43.45% 0.002± 0.001 +32.66%

NaiveUB 0.000± 0.000 +961.31% 0.000± 0.000 +891.10%

LipSDP 18.184± 1.935 +16147.15% 20.161± 2.333 +14526.92%

SeqLip 0.013± 0.004 +16559.65% 0.021± 0.004 +14917.94%

Table 2. Accuracy vs. Efficiency for estimating local L1(f) Lipschitz constants on a network with layer sizes [784, 20, 20, 20, 2] trained
to distinguish between MNIST 1’s and 7’s. We evaluate the local lipschitz constant where X ’s are chosen to be `1-balls with specified
radius centered at random points in the unit hypercube.

Figure 5. (Left) Effect of training on various Lipschitz estimators in the L1(f,X ) setting. A network of layer sizes [2, 20, 40, 20, 2] was
trained using Adam to minimize CrossEntropy loss over a synthetic dataset. Notice how in this setting, even LipSDP does not provide a
tight bound. (Right) Effect of regularization scheme on L1(f,X ).
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Figure 6. Histograms for L1(f) and L∞(f) over random networks with layer sizes [10, 10, 10, 1]. Notice the much tighter concentration
for L1(f).

Random Network Synthetic Dataset

Method Time (s) Value Relative Error Time (s) Value Relative Error

LipLP 0.017± 0.003 5.508 +462.26% 0.032± 0.003 2087.957 +389.80%

LipMIP(100%) 132.988± 119.857 1.937 +91.98% 14.690± 12.773 742.395 +69.91%

LipMIP(10%) 355.974± 294.666 1.102 +9.37% 50.931± 53.403 484.550 +8.75%

LipMIP(1%) 357.620± 287.511 1.015 +0.72% 59.969± 63.484 448.872 +0.57%

LipMIP 362.533± 304.685 1.009 0.00% 60.123± 63.721 446.327 0.00%

Table 3. Performance vs. accuracy evaluations of various relaxations of LipMIP. LipLP is the linear programming relaxation, and
LipMIP(x%) refers to early stopping of LipMIP once an integrality gap of x% has been attained. It can be significantly more efficient to
attain reasonable upper bounds than it is to compute the Lipschitz constant exactly.
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Method Time (s) Value Relative Error

Naive 97.698± 104.281 72.083 0.00%

CrossLip(i) 6.156± 14.256 350.176 +441.14%

MIPCrossLip(i) 6.987± 14.704 350.176 +441.14%

Table 4. Application to multiclass robustness verification. On networks trained on a synthetic dataset with 100 classes, we evaluate
untargeted robustness verification techniques across random datasets. The value column refers to the computed Lipschitz value, and
relative error is relative to the Naive value. Notice that a 15x speedup is attainable on average at the cost of providing a 4.5x looser bound
on robustness.

i:
min
j
L∞(fij ,X ), (104)

where we evaluate this naively (Naive), or with the search space of all eij encoded directly with mixed-integer-programming
(MIPCrossLip(i)). We also evaluate the || · ||×(i) norm in lieu of || · ||β , where || · ||×(i) is defined as

||x||×(i) := sup
y∈P(i)

|yTx| (105)

P(i) := Conv ({ei − ej | j ∈ [m]} ∪ {ei | i ∈ [m]}) (106)

and we evaluate
L(∞,||·||×(i))(f,X ) (107)

where we denote this technique (CrossLip(i)). Times and returned Lipschitz values are displayed in Table 4.
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