Appendices

Contained in the supplementary are several standalone components. We have tried to include all relevant preliminary
information where applicable. The proof of Theorem 1 is contained in Appendix A. The proofs of the statements in section
3 of the main paper are contained in Appendix B. The inapproximability results are presented in Appendix C. The formal
construction and bound-propagation schemes of LipMIP are contained in Appendix D. Extension of LipMIP to general
position vector-valued networks over a wider class of norms is contained in Appendix E. Appendix F has full experimental
details and additional experiments.

Contents
A Analytical proofs 2
A.l1 Definitions and Preliminaries 2
A2 Proofof Theorem 1 e 3
B Chain Rule and General Position proofs 7
B.1 Preliminaries L e 7
B.2 Proofof Theorem 2 e e e 7
B.3 Proofof Theorem 3 e 9
C Complexity Results 11
C.1 Complexity Theory Preliminaries it 11
C.2 Proofof Theorem4 e 12
D LipMIP Construction 17
D.1 MIP-encodable components of ReLU networks 17
D.2 MIP-encodability of Affine, Conditional, Switch: oL 18
D.3 Abstract Interpretations for Bound Propagationo oo L. 19
E Extensions of LipMIP 22
E.1 Extension of LipMIP to Vector-Valued Networks 22
E.2 Application to Untargeted Classification Robustness 23
F Experiments 26
F1 Experimental SEtup o o e e e e e e e e e e e 26
F2 Experimental Details e e e 27

F3 Additional Experiments L 28

Appendices

A. Analytical proofs

We first start with formal definitions and known facts. We present our results in general for vector-valued functions, but we
will make remarks about the implications for scalar-valued networks along the way.

A.1. Definitions and Preliminaries
A.1.1. NORMS

As we will be frequently referring to arbitrary norms, we recall the formal definition:

Definition A.1. A norm || - || over vector space V' is a nonnegative valued function that meets the following three properties:

o Triangle Inequality: Forall x,y € V,

z+yll < ll=ll + Iyl

o Absolute Homogeneity: For all x € V, and any field element a,

az|| = |af - [[]
e Point Separation: If ||x|| = 0, then x = 0, the zero vector of V.
The most common norms are the £, norms over R%, with ||z||, := (3, |2; \P)l/ P_ though these are certainly not all possible

norms over R%. We can also describe norms over matrices. One such norm that we frequently discuss is a norm over
matrices in R™*™ and is induced by norms over R% and R™:

Definition A.2. Given norm || - ||, over R%, and norm || - || 5 over R™, the matrix norm || - lla.s over R™ " is defined as
[|Az
llella<1 20 |17]la

A convenient way to keep the notation straight is that A, above, can be viewed as a linear operator which maps elements
from a space which has norm || - ||, to a space which has norm || - ||, and hence is equipped with the norm || 4|4, 3. As
long as || - ||, || - || are norms, then || - ||, g is a norm as well in that the three properties listed above are satisfied.

Every norm induces a dual norm, defined as

|lz[l« := sup |(z,y)| 2
Iyl <1

Where the (-, -) is the standard inner product for vectors over R? or matrices R™*“, We note that if matrix A is a row-vector,
then |[A[[q,.| = [|A]|o- by definition.

We also have versions of Holder’s inequality for arbitrary norms over R%:

Proposition A.1. Let || - ||, be a norm over R%, with dual norm || - ||+ Then, for all z,y € R?
2"y < llla - [[ylla- 3)
Proof. Indeed, assuming WLOG that neither = nor y are zero, and letting u = H;"‘ , we have
oty = lofla - u'y < lollo - sup u'y = ||zla - [[ylla-)
lulla<1
O
We can make a similar claim about the matrix norms defined above, || - ||, s:

Proposition A.2. Letting ||-||o.3 be a matrix norm induced by norms ||-||o over R%, and ||-||5 over R™, for any A € R™*",
r € R%:
1Az][s < [Alla,p

|z]]a 5

Proof. Indeed, assuming WLOG that x is nonzero, letting y = x/||z||» such that ||y||, = 1, we have

1 Az[[s = [|z]lal|Aylls < e zllallAylls = [lz]lallAlla,p (6)
Ylla>

Appendices

A.1.2. LIPSCHITZ CONTINUITY AND DIFFERENTIABILITY

When f : R? — R™ is a vector-valued over some open set X C R we say that it is (c, 3)-Lipschitz continuous if there
exists a constant L for norms || - ||, || - || such thatall z,y € X,

F (@) = FW)lls < L[|z = ylla)

Then the Lipschitz constant, L(®?)(f, X), is the infimum over all such L. Equivalently, one can define L*?(f, X) as

Loy =y W@ I o

z,YyEX ;x Ay |2 = ylla

We say that f is differentiable at x if there exists some linear operator V f(z) € R™*™ such that

fl@+h)— fl@) = Vf@)h

li =
Jim, Inl !)
A linear operator such that the above equation holds is defined as the Jacobian !
The directional derivative of f along direction v € R? is defined as
t —
dy f(x) = lim L&) = (@) (10)
t—0 t

Where we note that we are taking limits of a vector-valued function. We now add the following known facts:

e If f is lipschitz continuous, then it is absolutely continuous.

e If f is differentiable at x, all directional derivatives exist at . The converse is not true, however.

e If f is differentiable at z, then for any vector v, d, f(z) = V f(z)Tv.

¢ (Rademacher’s Theorem): If f is Lipschitz continuous, then f is differentiable everywhere except for a set of measure

zero, under the standard Lebesgue measure in R4 (Heinonen, 2005).

Finally we introduce some notational shorthand. Letting f : R¢ — R™, be Lipschitz continuous and defined over an open
set X', we denote Diff(X') refer to the differentiable subset of X'. Let D be the set of (x,v) € R?" for which d, f(z) exists
and z € X. Additionally, let D,, be the set D,, = {z | (z,v) € D}.

A.2. Proof of Theorem 1
Now we can state our first lemma, which claims that for any norm, the maximal directional derivative is attained at a
differentiable point of f:

Lemma A.1. For any («, 8) Lipschitz continuous function f, norm ||-||g over R™, any v € RY, letting D, := {z | (z,v) €
D}, we have:

sup [|dof(x)llg < sup [[Vf(z) vl (11)
z€D, 2 €DIff(X)
Remark: For scalar-valued functions and norm || - ||, over R%, one can equivalently state that for all vectors v with

[|vlfa = 1:

sup [dy f(z)] < sup)HVf(x)l o (12)

z€D, zEDIff(X

Proof. Essentially the plan is to say each of the following quantities are within € of each other: ||d, f(x)]||g, the limit
definition of ||d, f (x)||, the limit definition of ||d, f(2")||s for nearby differentiable z’, and the norm of the gradient at 2’
applied to the direction v.

'We typically write the Jacobian of a function f : R* — R™ as Vf(z)” € R™*". This is because we like to think of the Jacobian of
a scalar-valued function, referred to as the gradient and denoted as V f(z), as a vector/column-vector

Appendices

We fix an arbitrary v € R%. It suffices to show that for every e > 0, there exists some differentiable 2’ € Diff(X’) such that
IVF(@)T -0l = sup,ep, [lduf ()] — €

By the definition of sup, for every € > 0, there exists an x € D,, such that

ldo f(@)[l5 = sup [|05(y)lls — /4 (13)

yED,

Then for all € > 0, by the limit definition of d,, f (z) there exists a 6 > 0 such that for all ¢ with |¢| < ¢

flx+tv) — f(x)
duf () — ()H < ¢/4 (14)
(@) Tl <ol
Next we note that, since lipschitz continuity implies absolute continuity of f, and ¢ is now a fixed constant, the function
h(zx) := % is absolutely continuous. Hence there exists some ¢’ such that for all y € X, z with ||z||o < ¢
fly+2) - fly
W2l H0e gy +-2) - hils < (15)

Hence, by Rademacher’s theorem, there exists some differentiable =’ within a ¢’-neighborhood of x, such that both
[1f (")~ f(=)lls < ¢/4and [|f (&' +tv) — f(z4tv) ||

< €/4, hence by the triangle inequality for || - ||

Ielle I
R e [R e L R
]
£ (2 +tv) — f(2')lls
! Tl
Combining equations 14 and 16 we have that
o f()l]s < 3e/a+ WE) = T@lls .

[[tv]]a

Taking limits over § — 0, we get that the final term in equation 17 becomes 3¢/4 + ||d,, f (/)]
3e/4 + ||V f(z)Tv|| 5. Hence we have that

IVf(z)" - vlls > Sup lldo f(x)[|5 — € (18)

8, which is equivalent to

as desired, as our choice of v was arbitrary.

Now we can restate and prove our main theorem.

Theorem A.1. Let || - ||a, || - || be arbitrary norms over R, R™, and let f : R? — R™ be locally («, 3)-Lipschitz
continuous over an open set X. The following equality holds:

LD (f,X) = sup [|GT[|a,s "
Gedyp(X)

Remarks: Before we proceed with the proof, we make some remarks. First, note that if f is scalar-valued and continuously
differentiable, then V f(x)7 is a row-vector, and ||V f(2)T||a.s = ||V f(2)||ax, recovering the familiar known result.
Second, to gain some intuition for this statement, consider the case where f(x) = Az + b is an affine function. Then
Vf(z)T = A, and by applying the theorem and leveraging the definition of L(*#)(f, X), we have

Az —
LOB(F.) = sup 1A = ylls _ 1A]la.s, (20)
TAYEX HCE _y”("

where the last equality holds because X is open.

Appendices

Proof. 1t suffices to prove the following equality:

LOP(,2) = s V@) s e
2EDIff(X)

This follows naturally as if € Diff(&X’) then §(z) = {V f(x)}. On the other hand, if ¢ Diff(X’), then for every extreme
point G in ¢ (z), there exists an 2’ € Diff(X’) such that V f(2') = G (by definition). As we seek to optimize over a norm,
which is by definition convex, there exists an extreme point of d () which attains the optimal value. Hence, we proceed by
showing that Equation 21 holds.

We show that for all z,y € X that % is bounded above by sup,¢pig(xy ||V f(2)|la,5. Then we will show the
opposite inequality.

Fix any z,y € X, and note that since the dual of a dual norm is the original norm,

1f(z) = fFWlls = sup |c"(f(2) = f(y)] (22)

llellg= <1

Moving the sup to the outside, we have

1f () = F(W)lls = sup [[c]] g+ [he(0) — he(1)] (23)

for h. : R — R defined as h.(t) := ¢ f(z + t(y — z)). Then certainly h,. is lipschitz continous on the interval [0, 1], and
the limit A’ (¢) exists almost everywhere, defined as

Bt o= tim @+ =) — I (fla +tly — 2)
5—0 |5|

B*

= T8y [z +t(y — 1)) (24)

Further, there exists a lebesgue integrable function g(¢) that equals h.(¢) almost everywhere and

|h(1)| = I/ t)dpl (25)

We can assume without loss of generality that

g(t) = {h/c(t) if h.(t) exists

26
Sup,epo,1] |/ (s)| otherwise (26)

where the supremum is defined over all points where R/ (t) is defined. Then because g agrees almost everywhere with h.,
and is bounded pointwise, we have the following chain of inequalities:

15~ 5@l = s 1)~ 0= s | [oo @)
lle|| 5+ <1 [lellg= <1
sup / l9(t) dp (28)
HC||B*<1
< sup / sup_ |RL(s)du (29)
[lellg=<1J0 s€[0,1]
1
< sup / sup [¢" 8y o) f(x + s(y — 2))ldu (30)
llellg=<1Jo s€[0,1]
1
< sup / sup [¢" 0y f(2)]dp 31)
[le|lg=<1J0 2z€Dy—x)
o [ell s 1y N)
\|c||ﬂ*<1 2eDy—a)
< s [[VAE)—2)lls 33)
2€DIff(X)
< sup [[VF@llasllz — ylla (34)
ZEDIff(X)

Appendices

Where Equation 32 holds by Proposition A.1, Equation 33 holds by Lemma A.1, and the final inequality holds by Proposition
A.2. Dividing by ||z — y||a yields the desired result.

@) = Sl

On the other hand, we wish to show, for every € > 0, the existence of an z,y € X such that
> sup [[Vf(z)llas —€ (35)
|z = ylla zEDIff(X)

Fix € > 0 and consider any point z € X with ||V f(2)T /a5 > supgex ||V (2)T||a,p — €/2.

Then ||V f(2)T |0, = SUP|jy||. <1 IVF(2)Tv|ls = SUp|jy||. <1 ||dv f(2)]|5- By the definition of the directional derivative,
there exists some ¢ > 0 such that for all |¢| < J,

Wt D LM > ja,fo)l - /2> s IV5) o — ¢ (36)
[|tv]|a 2EDiff(X)

Hence setting x = z + tv and y = v, we recover equation 35. [

Appendices

B. Chain Rule and General Position proofs

In this section, we provide the formal proofs of statements made in Section 3.

B.1. Preliminaries

Polytopes: We use the term polytope to refer to subsets of R of the form {z | Az < b}. The affine hull of a polytope is the
smallest affine subspace which contains it. The dimension of a polytope is the dimension of its affine hull. The relative
interior of a polytope P is the interior of P within the affine hull of P (i.e., lower-dimensional polytopes have empty interior,
but not nonempty relative interior unless the polytope has dimension 0).

Hyperplanes: A hyperplane is an affine subspace of R? of codimension 1. A hyperplane may equivalently be viewed as the
zero-locus of an affine function: H := {x | a”2 = b}. A hyperplane partitions R? into two closed halfspaces, H*, H~
defined by H := {x | a”x > b} and similarly for H~. When the inequality is strict, we define the open halfspaces as
H}, H;. We remark that if U is an affine subspace of R? and H is a hyperplane that does not contain U, then H N U
is a subspace of codimension 1 relative to U. If this is the case, then H N U is a subspace of dimension dim(U) — 1. A
hyperplane H is called a separating hyperplane of a convex set C' if H N'C' = (). H is called a supporting hyperplane of C
if HN C # () and C is contained in either HT or H~.

ReLU Kernels: For a ReLU network, define the functions g;(z) as the input to the i*" ReLU of f. We define the i‘" ReLU
kernel as the set for which g; = 0:
Ki:={z|gi(z) =0} 37)

The Chain Rule: The chain rule is a means to compute derivatives of compositions of smooth functions. Backpropagation
is a dynamic-programming algorithm to perform the chain rule, increasing efficiency by memoization. This is most easily
viewed as performing a backwards pass over the computation graph, where each node has associated with it a partial
derivative of its output with respect to its input. As mentioned in the main paper, the chain rule may perform incorrectly
when elements of the composition are nonsmooth, such as the ReLU operator. Indeed, the ReLU ¢ has a derivative which is
well defined everywhere except for zero, for which it has a subdifferential of [0, 1].

Definition B.1. Consider any implementation of the chain rule which may arbitrarily assign any element of the generalized
gradient 6,(0) for each required partial derivative o'(0). We define the set-valued function V# f(-) as the collection of
answers yielded by any such chain rule.

While we note that our mixed-integer programming formulation treats V# (f) in this set-valued sense, most implementations
of automatic differentiation choose either {0, 1} to be the evaluation of ¢’ (0) such that V# f is not set valued (e.g.,in PyTorch
and Tensorflow, ¢’(0) = 0). Our theory holds for our set-valued formulation, but in the case of automatic differentiation
packages, as long as ¢’(0) € [0, 1], our results will hold.

A Remark on Hyperplane Arrangements: As noted in the main paper, our definition of general position neural networks is
spiritually similar to the notion of general position hyperplane arrangements. A hyperplane arrangement A := {H1, ..., H,}
is a collection of hyperplanes in R and is said to be in general position if the intersection of any k hyperplanes is a (d — k)
dimensional subspace. Further, if a ReLU network only has one hidden layer, each ReLLU kernel is a hyperplane. Thus,
hyperplane arrangements are a subset of ReL.U kernel arrangements.

B.2. Proof of Theorem 2

Before restating Theorem 2 and the proof, we introduce the following lemmas:

Lemma B.1. Let {K;}7, be the ReLU kernels of a general position neural net, f. Then for any x contained in exactly k of
them, say WLOG K, ..., Ky, x lies in the relative interior of one of the polyhedral components ofﬁleKi.

Proof. Since f is in general position, ﬂleKi is a union of (d — k)-dimensional polytopes. Let P be one of the polytopes
in this union such that « € P. Since P is an (d — k)-face in the polyhedral complex induced by { K; }!™,, each point on the
boundary of P is the intersection of at least k + 1 ReLU kernels of f. Thus x cannot be contained in the boundary of P and
must reside in the relative interior. O

The rest of the components are geometric. We introduce the notion of a cutting hyperplane:

Appendices

T~

Figure 1. Examples of the three classes of hyperplanes with respect to a polytope P (pink). The blue hyperplane is a separating hyperplane
of P, the green hyperplane is a supporting hyperplane of P, and the red hyperplane is a cutting hyperplane of P.

Definition B.2. We say that a hyperplane H is a cutting hyperplane of a polytope P if it is neither a separating nor
supporting hyperplane of P.

We now state and prove several properties of cutting hyperplanes:

Lemma B.2. The following are equivalent:

(a) H is a cutting hyperplane of P.
(b) H contains a point in the relative interior of P, and H N P # P.

(c) H cuts P into two polytopes with the same dimension as P: dim(P N HY) = dim(P N H~) = dim(P) and
HNP#P.

Proof. Throughout we will denote the affine hull of P as U.

(a) = (b): By assumption, H is neither a supporting nor separating hyperplane. Since neither H N P nor H~ N P is P,
H NP # P.Thus H N P is a codimension 1 subspace, with respect to U. Since H is not a supporting hyperplane, H N U
must not lie on the boundary of P (relative to U). Thus H N U contains a point in the relative interior of P and so does H.

(b) = (c): By assumption H N P # P. Consider some point, z, inside H and the relative interior of P. By definition of
relative interior, there is some neighborhood N () such that N.(x) N U C P. Thus there exists some ' € N(x) such that
(N (2')NU) C (H} N P) and thus the affine hull of H* N P must have the same dimension as U. Similarly for H~ N P.

(c) = (a): Since PN H ™' and PN H~ are nonempty, then P N H is nonempty and thus H is not a separating hyperplane
of P. Suppose for the sake of contradiction that H™ N P = P. Then H, N P = (), this implies that dim(H N P) = dim(P)
which only occurs if P C H which is a contradiction. Repeating this for H~ N P, we see that H is not a supporting
hyperplane of P. O

Lemma B.3. Let F be a (k)-dimensional face of a polytope P. If H is a cutting hyperplane of F, then H is a cutting
hyperplane of P.

Proof. Since H is a cutting hyperplane of F', H is neither a separating hyperplane nor is P C H. Thus it suffices to show
that H is not a supporting hyperplane of P. Since H cuts F, there exist points inside F' N H, and F N H, , where H,
H are the open halfspaces induced by H. Thus neither P N H nor P N H are empty, which implies that H is not a
supporting hyperplane of P, hence H must also be a cutting hyperplane of P.

O

Appendices

Now we can proceed with the proof of Theorem 2:

Theorem B.1. Let f be a general position ReLU network, then for every x in the domain of f, the set of elements returned
by the generalized chain rule V7 f(x) is exactly the generalized Jacobian:

V#f(z) = 6¢(z) (38)

Proof. Part 1: The first part of this proof shows that if « is contained in exactly & ReLU kernels, then « is contained in 2%
full-dimensional linear regions of f. We prove this claim by induction on k. The case where k = 1 is trivial. Now assume
that the claim holds up to & — 1. Assume that x lies in the ReLU kernel for every neuron in a set S C [m], with |S| = k.
Without loss of generality, let j € S be a neuron whose depth, L, is at least as great as the depth of every other neuron in S.
Then one can construct a subnetwork f’ of f by considering only the first L layers of f and omitting neuron j. Now K is a
ReLU kernel of f’ for every i € S\ {j}, and further suppose that f’ is a general position ReLU net. From the inductive
hypothesis, we can see that x is contained in exactly 2! linear regions of f’. By Lemma B.1I, x resides in the relative
interior of a (n — k 4+ 1)-dimensional polytope, P, contained in the union that defines ﬂf:_ 11 K. Since j has maximal depth,
g;(+) is affine in P, and thus there exists some hyperplane H such that P N K; = P N H. Thus by Lemma B.2 (b), H is a
cutting hyperplane of P.

Consider some linear region R of f’ containing =. Then g, (x) is affine inside each R and hence there exists some hyperplane
Hp such that RN K; = RN Hp, with the additional property that Hp N P = H N P. By general position, H N P # P
and thus Hp, is a cutting hyperplane for P by Lemma B.2 (b). Since P is a (n — k + 1)-dimensional face of R, we can
apply Lemma B.3 to see that Hp, is a cutting hyperplane for R as desired.

Part 2:

Now we show that the implication proved in part 1 of the proof implies that V# f(z) = §;(z). This follows in two steps.
The first step is to show that V f# () is a convex set for all , and the second step is to show the following inclusion holds:

V(0¢(x)) = V(VF f(x)) (39)

Where, for any convex set C, V(C') denotes the set of extreme points of C. Then the theorem will follow by taking convex
hulls.

To show that V# f(z) is convex, we make the following observation: every element of V# f(x) must be attainable by some
implementation of the chain rule which assigns values for every o’(0). If Ag € V# f(z) is attainable by setting exactly zero
o’(0)’s to lie in the open interval (0, 1), then Ay is the Jacobian matrix corresponding to one of the full-dimensional linear
regions that z is contained in. Consider some A, € V# f(z) which is attainable by setting exactly r ¢/(0)’s to lie in the

open interval (0, 1). Then certainly A, may be written as the convex combination of A(rl_)1 and AE.Q_)I for two elements of
ds(x), attainable by setting exactly (r — 1) ReLU partial derivatives to be nonintegral. This holds for all » € {1,...%} and

thus V# f(z) is convex.

To show the equality in Equation 39, we first consider some element of V(d7(x)). Certainly this must be the Jacobian
of some full-dimensional linear region containing z, and hence there exists some assignment of ReLU partial derivatives
such that the chain rule yields this Jacobian. On the other hand, we’ve shown in the previous section that every element of
V# f(z) may be written as a convex combination of the Jacobians of the full-dimensional linear regions of f containing x.
Hence each extreme point of V7 f () must be the Jacobian of one of the full-dimensional linear regions of f containing
T. O

B.3. Proof of Theorem 3

Before presenting the proof of Theorem 3, we will more explicitly define a Lebesgue measure over parameter space of a
ReLU network. Indeed, consider every ReLU network with a fixed architecture and hence a fixed number of parameters.
We can identify each of these parameters with R such that the parameter space of a ReLU network with k parameters is
identifiable with R¥. We introduce the measure 1 as the Lebesgue measure over neural networks with the same architecture
as a defined ReLU network f. Now we present our Theorem:

Theorem B.2. The set of ReLU networks not in general position has Lebesgue measure zero over the parameter space.

Proof. We prove the claim by induction over the number of neurons of a ReLU network. As every ReLU network with
only one neuron is in general position, the base case holds trivially. Now suppose that the claim holds for families of ReLU

Appendices

networks with k£ — 1 neurons. Then we can add a new neuron in one of two ways: either we add a new neuron to the final
layer, or we add a new layer with only a single neuron. Every neural network may be constructed in this fashion, so the
induction suffices to prove the claim. Both cases of the induction may be proved with the same argument:

Consider some ReLU network, f, with kK — 1 neurons. Then consider adding a new neuron to f in either of the two ways
described above. Let By denote the set of neural networks with the same architecture as f that are not in general position,
and similarly for By/. Let C denote the set of neural networks with the same architecture as f’ that are not in general
position, but are in general position when the k** neuron is removed. Certainly if f is not in general position, then f’ is not
in general position. Thus

pp(By) < pp(By) + pp (Cpr) = g (Cyr) (40)

where i ¢(By) = 0 by the induction hypothesis. We need to show the measure of C'y- is zero as follows. Letting K}, denote
the ReLU kernel of the neuron added to f to yield f’, we note that f is not in general position only if one of the affine hulls
of the polyhedral components of K}, contains the affine hull of some polyhedral component of some intersection N;csK;
where S is a nonempty subset of the £ — 1 neurons of f. We primarily control the bias parameter, as this is universal over all
linear regions, and notice that this problem reduces to the following: what is the measure of hyperplanes that contain any of
a finite collection of affine subspaces? By the countable subadditivity of the Lebesgue measure and the fact that the set of
hyperplanes that contain any single affine subspace has measure 0, s/ (Cy/) = 0. O

10

Appendices

C. Complexity Results
C.1. Complexity Theory Preliminaries

Here we recall some relevant preliminaries in complexity theory. We will gloss over some formalisms where we can, though
a more formal discussion can be found here (Williamson and Shmoys, 2011; Hromkovi¢, 2013; Demaine, 2014).

We are typically interested in combinatorial optimization problems, which we will define informally as follows:

Definition C.1. A combinatorial optimization problem is composed of 4 elements: i) A set of valid instances; ii) A set of
feasible solutions for each valid instance; iii) A non-negative cost or objective value for each feasible solution; iv) A goal:
signifying whether we want to find a feasible solution that either minimizes or maximizes the cost function.

In this subsection, we will typically refer to problems using the letter II, where instances of that optimization problem are =z,
and feasible solutions are y, and the cost of y is m(y). We will refer to the cost of the optimal solution to instance x € II as
OPT(x). Optimization problems then typically have 3 formulations, listed in order of decreasing difficulty:

e Search Problem: Given an instance z of optimization problem I, find y such that m(y) = OPT(x).
o Computational Problem: Given an instance x of optimization problem II, find O PT(z)

¢ Decision Problem: Given an instance x of optimization problem II, and a number %, decide whether or not OPT () >
k.

Certainly an efficient algorithm to do one of these implies an efficient algorithm to do the next one. Also note that by a
binary search procedure, the computational problem is polynomially-time reducible to the decision problem. As complexity
theory is typically couched in discussion about membership in a language, it is slightly awkward to discuss hardness
of combinatorial optimization problems. Since, every computational flavor of an optimization problem has a poly-time
equivalent decision problem, we will simply claim that an optimization problem is NP-hard if its decision problem is
NP-hard.

While many interesting optimization problems are hard to solve exactly, for many of these interesting problems there exist
efficient approximation algorithms that can provide a guarantee about the cost of the optimal solution.

Definition C.2. For a maximization problem 11, an approximation algorithm with approximation ratio « is a polynomial-time
algorithm that, for every instance x € 11, produces a feasible solution, y, such that m(y) > OPT (x)/c.

Noting that o > 1 can either be a constant or a function parameterized by |z|, length of the binary encoding of instance .
We also note that this definition frames approximation algorithms as a “search problem”.

A very powerful tool in showing the hardness of approximation problems is the notion of a c-gap problem. This is a form of
promise problem, and proofs of hardness here are slightly stronger than what we actually desire.

Definition C.3. Given an instance of an maximization problem x € Il and a number k, the c-gap problem aims to
distinguish between the following two cases:

e YES: OPT(x) >k
e NO: OPT(z) < k/c

where there is no requirement on what the output should be, should O PT (x) fall somewhere in [k/c, k). For minimization
problems, YES cases imply OPT(z) < k, and NO cases imply OPT (x) > k - c.

Again we note that ¢ may be a function that takes the length of x as an input. We now recall how a c-approximation
algorithm may be used to solve the c-gap problem, implying the c-gap problem is at least as hard as the c-approximation.

Proposition C.1. If the c-gap problem is hard for a maximization problem 11, then the c-approximation problem is hard for
1L
Proof. Suppose we have an efficient c-approximation algorithm for II, implying that for any instance x € II, we can

output a feasible solution y such that OPT'(x)/c < m(y) < OPT(x). Then we let A, be an algorithm that retuns YES if

11

Appendices

m(y) > k/c, and NO otherwise, where y is the solution returned by the approximation algorithm Then for the gap-problem,
if OPT'(x) > k, we have that m(y) > k/c so the Aj, will output YES. On the other hand, if OPT (z) < k/c, then A, will
output NO. Hence, Ay, is an efficient algorithm to decide the c-gap problem. O

While hardness of approximation results arise from various forms, most notably the PCP theorem, we can black-box the
heavy machinery and prove our desired results using only strict reductions, which we define as follows.

Definition C.4. A strict reduction from problem 11 to problem 11, is a functions f, such that f : II — II' maps problem
instances of 11 to problem instances of I'. [must satisfy the following properties that for all x € 11

;LG

|]

< «, where « is a fixed constant
2. OPTyu(x) = OPTw (f(x))

For which we can now state and prove the following useful proposition:

Proposition C.2. If f, g are a strict reduction from optimization problem 11 to optimization problem I1', and the c-gap
problem is hard for T1, where c is polynomial in the size of |x|, then the ¢’-gap problem is hard for I, where ¢’ € ©(c).

Proof. Suppose both IT and II’ are maximization problems, and the c-gap problem is hard for II. We consider the case
where ¢ is a function that takes as input the encoding size of instances of II. We can define the function ¢/(n) := ¢(n/«) for
all n. Hence ¢(|z|) = ¢(|f(x)]) for all z € II by point 1 of the definition of strict reduction. Then for all k¥ and all € II,
the following two implications hold

OPTw(f(x)) > k = OPTu(x) > k
k k

OPTw (@) < Gz = OFTn() < ;s

Where both implications hold because OPTyi(x) = OPTy (f(x)). If the ¢’-gap problem were efficiently decidable for IT',
then the ¢’-gap problem would be efficiently decidable for II.

If IT is a maximization problem and IT’ is a minimization problem, then the following two implications hold:
OPTu/(f(z)) <k = OPTu(z) <K

OPTw (f(x)) > K - d(|f(2)]) = OPTu(x) > k- c(|x|)

Then letting k& = k' - ¢(]x|) we have that solving the ¢’-gap problem for II" would solve the ¢-gap problem for II. The proofs
for IT, IT" both being minimization problems, or IT being a minimization and II’ being a maximization hold using similar
strategies. O

C.2. Proof of Theorem 4

Now we return to ReLU networks and prove novel results about the inapproximability of computing the local Lipschitz
constant of a ReLU network. Recall that we have defined ReLU networks as compositions of functions of the form :

f(x)=c"o(Zag(x)) Zi(x) = Wio (Z;—1(x)) + by, (41)

where Zy(x) = x and o is the elementwise ReLU operator. In this section, we only consider scalar-valued general position
ReLU networks, f : R — R. Towards the end of the proof we see that we show that the general position assumption is not
needed for our construction. We can formulate the chain rule as follows:

Proposition C.3. If x is contained in the interior of some linear region of a general position ReLU network f, then the
chain rule provides the correct gradient of f at x, where the it" coordinate of V f(x) is given by:

viwi= > (I w)

I'ePaths(i) w;€el

where Paths(i) is the set of paths from the i*" input, x;, to the output in the computation graph, where the ReLU at each
vertex is on, and w; is the weight of the jt" edge along the path.

12

Appendices

We define the following optimization problems:

Definition C.5. MAX-GRAD is an optimization problem, where the set of valid instances is the set of scalar-valued ReLU
networks. The feasible solutions are the set of differentiable points x € X, which have cost ||V f(x)||1. The goal is to
maximize this gradient norm.

Definition C.6. MIN-LIP is an optimization problem where the set of valid instances is the set of piecewise linear neural
nets. The feasible solutions are the set of constants L such that L > L(f). The cost is the identity function, and our goal is
to minimize L.

Of course, each of these problems have decision-problem variants, denoted by MAX-GRAD 4. and MIN-LIP4... We also
remark that by Theorem A.1, and proposition C.2, the trivial strict reduction implies that it is at least as hard to approximate
MIN-LIP as it is to approximate MAX—-GRAD. For the rest of this section, we will only strive to prove hardness and
inapproximability results for MAX—-GRAD.

To do this, we recall the definition of the maximum independent set problem:

Definition C.7. MIS is an optimization problem, where valid instances are undirected graphs G = (V, E), and feasible
solutions are U C V such that for any v;,v; € U, (v;,v;) € E. The cost is the size of U, and the goal is to maximize this
cost.

Classically, it has been shown that MI S is NP-hard to optimize, but also is one of the hardest problems to approximate and
does not admit a deterministic polynomial time algorithm to solve the O(|V'|1~¢)-gap problem (Zuckerman, 2007).

For ease of exposition, we rephrase instances of MIS into instances of an equivalent problem which aims to maximize the
size of consistent collections of locally independent sets. Given graph G = (V| E), for any vertex v; € V, we let N(v;)
refer to the set of vertices adjacent to V; in G. We sometimes will abuse notation and refer to variables by their indices, e.g.,
N (i). We also refer to the degree of vertex 4 as d(v;) or d(i).

Definition C.8. A locally indpendent set centered at v; is a {—1, +1}-labelling of the vertices {v;} U N (v;) such that the
label of v; is +1 and the label of v; € N(v;) is —1. Two locally independent sets are said to be consistent if, for every v,
appearing in both locally independent sets, the label is the same in both locally independent sets. A consistent collection of
locally independent sets is a set of locally independent sets that is pairwise consistent.

Then we can define an optimization problem:

Definition C.9. LIS is an optimization problem, where valid instances are undirected graphs G = (V, E), and feasible
solutions are consistent collections of locally indpendent sets. The cost is the size of the collection, and the goal is to
maximize this cost.

It is obvious to see that there is a trivial strict reduction between MIS and LIS. Indeed, any independent set defines the
centers of a consistent collection of locally independent sets, and vice versa. As we will see, this is a more natural problem
to encode with neural networks than MIS.

Now we can state our first theorem about the inapproximability of MAX—-GRAD.

Theorem C.1. Let f be a scalar-valued ReLU network, not necessarily in general position, taking inputs in R®. Then
assuming the exponential time hypothesis, there does not exist a polynomial-time approximation algorithm with ratio
Q(d'=¢) for computing L>°(f, X) and L*(f, X) for any constant ¢ > 0.

Proof. We will prove this first for L°(f, X') and then slightly modify the construction to prove this for L!(f, X). We
will throughout take X' := R?. The key idea of the proof is to, given a graph G = (V, E) with |[V'| =: n, encode a neural
network h with n inputs, each representing the labeling value. We then build a neuron for each possible locally independent
set, where the neuron is "on’ if and only if the labelling is close to a locally independent set. And then we also ensure that
each locally independent set contributes +1 to the norm of the gradient of f.

A critical gadget we will use is a function ¢ (x) : R — R defined as follows:

which is implementable with affine layers and ReLU’s as: ¢(z) = o(x + 1) — o(x — 1) — 1. We are now ready to construct
our neural net. For every vertex v; in V, we construct an input to the neural net, hence f : R” — R. We denote the i** input
to f as x;. The first order of business is to map each z; through ¢ (-), which can be done by two affine layers and one ReLU
layer. e.g., we can define ¥(x;) = Aq(ReLU (Ag(x;)) where

13

Appendices

A
v
=
5
S~—
Il
8
8
m
T
l—‘
=

(42)

1

o= -]

Ai(z):=[1|-1]z-1

Next we define the second layer of ReLU’s, which has width n, and each neuron represents the status of a locally indpendent
set. We define the input to the 7*" ReLU in this layer as I; with

L) =) — Y Pla;) = (d+1—¢) (43)
JEN (i)
for some fixed-value € to be chosen later. Finally, we conclude our construction with a final affine layer to our neural net as

n

g I1 X
hiz) =) M (44)

i=1
Let Z(x) denote the set of indices of ReLU’s that are ‘on’ in the second-hidden layer of h: Z(z) := {¢ | I;(x) > 0}. Now
we make the following claims about the structure of h.
Claim C.1. Foreveryi, ifi € Z(z) thenx; > 1 —eand x; < —1+ € for all j € N(i). In addition, Z(x) denotes the

centers of a consistent collection of locally independent sets.

Proof. Indeed, if I;(x) > 0, then the sum of (d(¢) + 1) ¢)-terms is greater than 1 — €. As each t-term is in the range [—1, 1],
each t-term must individually be at least 1 — e. And ¢(x;) > 1 — e implies z; > 1 — e. Similarly, —¢(x;) > 1 — € implies
that z; < —1 + e. Now consider any i1, i in Z(«). Then the pair of locally independent sets centered at v;, and v, is
certainly consistent. O

L
'!V(x)? ; 1i(x) » hix)

—

/

Ll

N

Figure 2. Complete construction of a neural network h that is the reduction from LIS, such that the supremal gradient of i corresponds to
the maximum locally indendent set. The first step is to map each x; to ¥ (x;), then to construct I;(x). Finally, we route each o (I;(x)) to
the output.

Appendices

Claim C.2. For any x such that h is differentiable at x, Vh(x); - ©; > 0.

Proof. We split into cases based on the value of z; and rely on Claim C.1. Suppose z; € (—1 + ¢€,1 — €), then we have
I; < 0forany jin {i} U N(7) and hence Vh(z); = 0. If z; > 1 — ¢, then every j € N(4) has I; < 0 and hence by
Proposition C.3, the only contributions to the VA (z); can be from paths that route from z; to the output through I;. Hence

_ o il

Vh(l‘)l (45)

where both terms are nonnegative and hence so is Vh(z),. Finally, if z; < —1 + ¢, then the only contributions to Vh(z);
come from paths that route through I; for j € N (%), hence

Sh I

Vhiz): = oL, bz,
)

JEN(i

(46)

where the first term is nonnegative and the second term is always nonpositive. We remark that because we have assumed A
to be differentiable at x, the chain rule provides correct answers, by Rademacher’s theorem. O

Claim C.3. Forany x, let I(x) be defined as above, Z(x) := {i | I;(x) > 0}. Then ||Vh(z)||1 < |Z(x)| and for every x.
In addition, for every x, there exists a y with ||Vh(y)||1 > |Z(z)|.

Proof. To show the first part, observe that

o Li(x) I;(x) N VIi(z)
h(z) = ; di+1 Z_GIX(;) a1 o V)= Z_GIZ(;) d(i) + 1 @7
hence
- 1
[[Vh(z)|[1 < Z WHVL(@”I (48)
i€Z(x)
and
Li(z) = (z:) — Y ¢(x;) — (d+1-€ = Vi) =Vo(z:)— Y V() (49)
JEN(3) JEN ()
hence
VL (2)[ln < V()| + Z V()| < d(i) +1 (50)
JEN(3)

where the final inequality follows because ||V (z;)||1 < 1 everywhere it is defined. Combining equations 48 and 50 yields
that || Vh(x)|]1 < |Z(z)|.

On the other hand, suppose Z(x) is given. Then we can construct y such that Z(y) = Z(z) and ||Vh(y)||1 = |Z(x)|. To do
this, set y; = 1 — 5~ if i € Z(x) and y; = —1 + 5 otherwise. Then note that Z(x) = Z(y) and for every i € Z(y)

+1 k=1
sz(y)k =4 -1 ke N(Z)
0 otherwise

and hence by Claim 2, we can replace the inequalities in equations 48 and 50 we have that
1

IVl = ¥ 5

i€Z(x)

IVL(y)[h = [Z(2)]

as desired.

15

Appendices

To demonstrate that this is indeed a strict reduction, we need to define functions f and g, where f maps instances of LIS
to instances of MAX—-GRAD, and g maps feasible solutions of MAX—-GRAD back to LIS. Clearly the construction we have
defined above is f. The function g can be attained by reading off the indices in Z(x).

To demonstrate that the size of this construction does not blow up by more than a constant factor, observe that by representing
weights as sparse matrices, the number of nonzero weights is a constant factor times the number of edges in GG. Indeed,
encoding each 1 in the first layer takes O(1) parameters for each vertex in G. Encoding I;(x) requires only O(d(z))
parameters for each ¢, and hence 2| E'| parameters total. Assuming a RAM model where numbers can be represented by
single atomic units, and € is chosen to be (n + 2) ™1, this is only a constant factor expansion.

The crux of this argument is to demonstrate that O PTyax_crap(f(¢)) = OPTr1s(q). It suffices to show that for every
locally independent set L, there exists an « such that || VA (x)||1 > k, and for every y, there exists a locally independent set
L’ such that [L'| > [|VA(y)||1.

Suppose L is a consistent collection of locally independent sets, with |[L| = k. Any consistent collection of locally
independent sets equivalently defines a labelling of each vertex of G, where [; denotes the label of vertex v;: [; := +1 if the
locally independent set centered at v; is contained in the collection, and /; := —1 otherwise. Then one can construct an x

such that ||[VA(x)|[1 > k. Indeed, for every v; with label [;, set z; = I;(1 —). By Claim C.1, under this z, Z;(x) > 0 for
every 4 such that [; = +1, I;(x) > 0. Then |Z(z)| = k and by Claim C.3 there exists a y such that ||Vh(y)||1 > k.

On the other hand, suppose the maximum gradient of & is k. Then there exists an x that attains this and by Claim C.3,
|Z(z)| > k. By Claim C.1, we have that Z(z) denotes the centers of a consistent collection of locally independent sets.

Approximating the maximum /., norm: We only slightly modify our construction of the reduction for MAX-GRAD to
show inapproximability of L*(f, X'). Namely, we add a new input so h : R**! — R, called z,, ;. Then we map z,, 11
through ¢ like all the other indices, but instead redefine

Li(w) = () + (d() + Dp(@nga) — Y w(xy) —2(d(i) +1—¢)

JEN(4)
_ o(Li@)
Hz) = ; 2(d(i) + 1)

The rest of this contsruction is nearly identical to the preceding construction, with the exception being that ||V h(z)||; can
oh(x)

5mn+1

be replaced by throughout as an indicator to count the size of Z(z).

About General Position: Finally we note that this proof is valid even when you do not assume the network be in general
position. Observe that the optimal value of the gradient norm is attained at a point in the strict interior of some linear
region. Next observe that a network not being in general position may only increase the optimal objective value over what is
reported by the Jacobians of the linear regions of f, but this cannot happen by claim C.3. Thus general position-ness has no
bearing on this construction.

O

As an aside, we note that the strict reduction demonstrates that MAX-GRAD .. is NP-complete, which implies that
MIN-LIP 4. is CoONP-complete.

16

Appendices

D. LipMIP Construction

In this appendix we will describe in detail the necessary steps for LipMIP construction. In particular, we will present how
to formulate the gradient norm ||V f||, for scalar-valued, general position ReLU network f as a composition of affine,
conditional and switch operators. Then we will present the proofs of MIP-encodability of each of these operators. Finally,
we will describe how the global upper and lower bounds are obtained using abstract interpretation.

D.1. MIP-encodable components of ReL.U networks

Our aim in this section is to demonstrate how ||V# f||. may be written as a composition of affine, conditional, and switch
operators. For completeness, we redefine these operators here:

Affine operators A : R” — R™ are defined as
A(z) =Wax + b, 51

for some fixed matrix W and vector b.

The conditional operator C' : R — P ({0, 1}) is defined as

{1} ifz >0
C(z) = < {0} ifz <0 (52)
0,1} ifz=0
The switch operator S : R x {0,1} — R is defined as
S(z,a) =z a. (53)

We will often abuse notation, and let conditional and switch operators apply to vectors, where the operator is applied
elementwise. Now we recover Lemma 1 from section 5 of the main paper.

Lemma D.1. Let f be a scalar-valued general position ReLU network. Then f(x), V# f(x), || - ||1, and || - || oo may all be
written as a composition of affine, conditional and switch operators.
Proof. We recall that f is defined recursively like:

f(x) =clo(Z4(x)) Zi(x) =Wio (Zi—1(x)) + b; Zo(z) == (54)

It amounts to demonstrate how Z;(x) may be computed as a composition of affine, conditional and switch operator. Since
o(z) = S(x,C(x)), one can write, Z; (x) = W;S(z, C(x)) + b;. Letting A;(z) := C(Z;(x)) and A;(z) := Wi(x) + by,
one can write Z;(x) = A; o S (Z;(z), Ai(z))). Since f(x) is an affine operator applied to Zy(x), f(x) can certainly be
encoded using only affine, switch, and conditional operators.

To demonstrate that V f () may also be written as such a composition, we require the same definition to compute Z;(x) as
above. Then by the chain rule, we have that

V#f(x) =WiYi(z) Yi(e) = Wl Diag(As(2))Yipa(z) Yau(z)=c (55)

As the V# f(x) is an affine operator applied to Y; (), and Y41 () is constant, we only need to show that Y;(z) may be
written as a composition of affine, conditional, and switch operators. This follows from the fact that

Diag(Ai(z))Yit1(z) = S(Yit1(2), Ai(2)) (56)
Then letting A7 (z) := W'z we have that Y;(z) = AT o (S (Yit1(x), Ai(z)). Hence V# f(z) may be encoded as a
composition of affine, conditional, and switch operators.

All that is left is to show that || - ||1,]| - || may be encoded likewise. For each of these, we require | - | which can
equivalently be written |z| = o(z) + o(—x), and hence |z| = S(z,C(x)) + S(—z,C(—=x)). ||z||1 then is encoded
as the sum of the elementwise sum over |z;|. || - || requires the max(...) operator. To encode this, we see that
max(z1,...) = max(xy, max(...)) and max(z,y) =z + oy —z) =+ S(y — z,C(y — x)). O

17

Appendices

D.2. MIP-encodability of Affine, Conditional, Switch:

Here we will explain the MIP-encodability each of the affine, conditional, and switch operators. For completeness, we copy
the definition of MIP-encodability:

Definition D.1. We say that a function g is MIP-encodable if, for every mixed-integer polytope M, the image of M mapped
through g is itself a mixed-integer polytope.

We now prove Lemma 2 from the main paper:

Lemma D.2. Let g be a composition of affine, conditional, and switch operators, where global lower and upper bounds are
known for each input to each element of the composition. Then g is a MIP-encodable function.

Proof. 1t suffices to show that each of the primitive operators are MIP-encodable. This amounts to, for each operator g, to
define a system of linear inequalities I'(x, «’) which is satisfied if and only if g(z) = z’ (or 2’ € g(x) for set valued g),
provided z lies in the global lower and upper bounds, x € [I, u].

Affine Operators: The affine operator is trivially attainable by letting I'(x, 2’) be the equality constraint

¥ =Wz+b (57)

Conditional Operators: To encode C(x) as a system of linear constraints, we introduce the integer variable ¢ and wish
to encode a = C'(x), or equivalently, « = 1 < x > 0. We assume that we know values [, u such that | < z < u. Then the
implication a = 1 = x > 0 is encoded by the constraint:

z>(a—1)-u (58)

Since if < 0, then @ = 1 yields a contradiction in that 0 > 2 > (1 — 1) - « = 0. The implication x > 0 = a = 1 is
encoded by the constraint
z<a-(1-0)-1 (59)

Since if « > 0, then a = 0 yields a contradiction in that 0 < 2 < (0) - (1 —1) — 1 = —1. Hence a = 1 < x > 0. We note
that if [> 0 or u < 0, then the value of a is fixed and can be encoded with one equality constraint.

Switch Operators: Encoding S(z, a) as a system of linear inequalities requires the introduction of continuous variable
y. As we assume we know [, u such that I < 2 < w. Denote [:= min(/,0) and & := max(u, 0). The system of linear
inequalities T'(a, x, y) is defined as the conjunction of:

y>zr—u-(1—a) y>l-a 60)
y<z-—1-(1-a) y<u-a

We wish to show that y = S(z,a) < T'(a, z,y). Suppose that T'(a, x, y) is satisfied. Then if @ = 1, 2 must equal g, since it
is implied by left-column constraints of equation 60. The right-column constraints are satisfied by assumption. Alternatively,
if @ = 0 then y must equal 0: it is implied by the right-column constraints of equation 60. The left columns are satisfied
with a = 0 and y = 1 since I < = < u by assumption. On the other hand, suppose y = S(z,a). If a = 1, then y = x by
definition and we have already shown that I'(1, x, x) satisfied for all « € [I, u]. Similarly, if a = 0, then y = 0 and we have
shown that I"(0, z, 0) is satisfied for all = € [I, u].

Finally we note that if one can guarantee that a = 0 or a = 1 always, then only the equality constraint y = x or y = 0 is

needed. O

More efficient encodings: Finally we’ll remark that while the above are valid encodings of affine, conditional and switch
operators, encodings with fewer constraints for compositions of these primitives do exist. For example, suppose we instead
wish to encode a continuous piecewise linear function with one breakpoint over one variable

JA(x) ifr >z
R(x)_{Ag(x) ifr <z (1)

18

Appendices

for affine funtcions A, As : R — R, with A (2) = As(z). Certainly we could use affine, conditional and switch operators,
as

R(z) = A1(z) + S (A1(x) — Az(2),C(z — x)) (62)

Where which requires 12 linear inequalities. Instead we can encode this function using only 4 linear inequalities. Supposing
we know [, u such that | < z < u, then R(x) can be encoded by introducing an auxiliary integer variable a and four
constraints. Letting

¢ = m[}n] Ay () — Az(x) (63)
z€|l,u

¢t = m[?X] Ai(z) — As(x) (64)
xe(l,u

then the constraints I'(a, x, y) are

y>Ai(z) —aCt y > As(a)+(L—a)C”

y< (@) -l y< Ag(z)+ (1—a)ct (©3)

This formulation admits a more efficient encoding for functions like o(-), and | - |.

D.3. Abstract Interpretations for Bound Propagation

Here we discuss techniques to compute the lower and upper bounds needed for the MIP encoding of affine, conditional and
switch operators. We will only need to show that for each of our primitive operators, we can map sound input bounds to
sound output bounds.

For this, we turn to the notion of abstract interpretation. Classically used in static program analysis and control theory,
abstract interpretation develops machinery to generate sound approximations for passing sets through functions. This has
been used to great success to develop certifiable robustness techniques for neural networks (Singh et al., 2019). Formally,
this requires an abstract domain, abstraction and concretization operators, and a pushforward operator for every function
we wish to model. An abstract domain 4" is a family of abstract mathematical objects, each of which represent a set over
R™. An abstraction operator o™ : P(R™) — .A™ maps subsets of R into abstract elements, and a concretization operator
¥+ A" — P(R)™ maps abstract elements back into subsets of R™. A pushforward operator for function f : R™ — R™, is
denoted as f# : A" — A™, and is called sound, if for all X C R",

{f(z) | € X} Ty (f#(a"(X))) (66)

D.3.1. HYPERBOXES AND BOOLEAN HYPERBOXES

The simplest abstract domains are the hyperbox and boolean hyperbox domains. The hyperbox abstract domain over R is
denoted as H". For each X C R™ such that H = «a(X), H is parameterized by two vectors [, u such that

oSz)
_ _ l+ _ 7[.
and y"(H) = {x | | <2 < u}. An equivalent parameterization is by vectors c, 7 such that ¢ = “5* and r = “5=. We will

sometimes use this parameterization when it is convenient.

Similarly, the boolean hyperbox abstract domain B™ represents sets over {0,1}". For each X, C {0,1}" such that
B = a(X}), B is parameterized by a vector v € {0, 1, 7}" such that
1 ifz;, =1 Vxed
vi=40 ifz;=0 VredX, (68)
? otherwise

And
V'(B) =A{x | (i =wvi) V(0 =7)} (69)
Finally, we can compose these two domains to represent subsets of R™ x {0,1}™. For any set X C R™ x {0, 1}, we

let A refer to the restriction of X' to R™ and let &}, refer to the restriction of X to {0, 1}™. Then a(X') := (H, B) where
H = a(AR), B = a(X}). The concretization operator is defined v(H, B) := ~v(H) x v(B).

19

Appendices

D.3.2. PUSHFORWARDS FOR AFFINE, CONDITIONAL, SWITCH

We will now define pushforward operators for each of our primitives.

Affine Pushforward Operators Provided with bounded set X C R", with H = «(X") parameterized by c, r, and affine
operator A(z) = Wz + b, the pushforward A* is defined A% (H) = H’, where H' is parameterized by ¢/, r’ with

d=We+b r'=|Wi|r (70)

where || is the elementwise absolute value of W. To see that this is sound, it suffices to show that for every x € X,
ci — 1l < A(w;) < ¢ + 7). Fixan z € X and consider A(z); = w! x + b; where w; is the i*" row of W. Note that
x = ¢ + e for some vector e with |e|] < r elementwise. Then

wlx +b; = w] c+wl e+ b wlx +b; =wl c+wle+b
> wl'c— |wle| + b <w!e+ |wle| + b
> wi'c— w]le] + bi Swic |wf el +bi
>wle—|w!|r+b; <wle+ |wl|r+ b

as desired.

Conditional Pushforward Operators Provided with bounded set X C R™ with H = o™ (X) parameterized by [, u, the
elementwise conditional operator is defined C# (H) = B where B is parameterized by v with

0 ifu; <0
vi=<{1 ifl;>0 71
7 otherwise

Soundness follows trivially: for any z € X, if [; > 0, then z; > 0 and C'(z); = 1. If u; < 0, then 2; < 0 and C(z); = 0.
Otherwise, v; =7, which is always a sound approximation as C'(z); € {0,1}.

Switch Pushforward Operators Provided with X C R™ x {0,1}", we define Ag := {z | (z,a) € X} and &, :=
{a] (z,a) € X}. We've defined a(X) := (a(AR), a(Ap)). Then if H := a(XR) parameterized by [, u, and B := a(X})
parameterized by v, we define the pushforward operator for switch S# (H, B) = H' where H' is parameterized by I’, u’
with

l; ifo; =1

;=20 ifv,=0 (72)
min(l;,0) otherwise
U, ifv, =1

u; =40 ifv, =0 (73)

max(u;,0) otherwise

Soundness follows: letting (x,a) € X, if v; = 0, then a; = 0, and S(z,a); = 0, hence I, v, = 0 is sound. If v; = 1, then

a; = 1and S(x,a); = x; and hence I, = l;, u; = w; is sound by the soundness of H over Xx. Finally, if v; =7, thena; = 0
ora; =1,and S(z,a); € {0} U[l;, u;] C [min(l;, 0), max(u;,0)].

D.3.3. ABSTRACT INTERPRETATION AND OPTIMIZATION

We make some remarks about the applications of abstract interpretation as a technique for optimization. Recall that, for any
set X and functions g, f,if ¥ = {f(z) | € X} we have that

max g(f(x)) = maxg(y) 74

Instead if Z is such that {f(z) | z € X} C Z, then

max g(f(2)) < maxg(2) (75)

20

Appendices

In particular, suppose f is a nasty function, but g has properties that make it amenable to optimization. Optimization
frameworks may not be able to solve max,cx g(f(z)). On the other hand, it might be the case that the RHS of equation 75
is solvable. In particular, if g is concave and Z is a convex set obtained by Z := (f#(a(X))), then by soundness we have
Z O Y. In fact, this is the formal definition of a convex relaxation.

Under this lens, one can use the abstract domains and pushforward operators previously defined to recover FastLip (Weng
et al., 2018a), though the algorithm was not presented using abstract interpretations. Indeed, using the hyperbox and boolean
hyperbox domains, over a set X', one can recover a hyperbox Z D {V f(z) | z € X}. Then we have that

<
IJgggggIIVf(ﬂv)II < I;ﬂgngIZH (76)

where it is easy to optimize £,-norms over hyperboxes. In addition, many convex-relaxation approaches towards certifiable
robustness may be recovered by this framework (Singh et al., 2019; Zico Kolter and Wong, 2017; Raghunathan et al., 2018;
Zhang et al., 2018).

21

Appendices

E. Extensions of LipMIP

This section will provide more details regarding how we extend LipMIP to be applicable to vector-valued functions and to
other norms. We will present an example of a nonstandard norm by detailing an application towards untargeted classification
robustness.

E.1. Extension of LipMIP to Vector-Valued Networks

Letting f : R™ — R™ be a vector-valued ReLU network in general position, suppose || - || is a norm over R™ and || - || is
a norm over R™. Further, suppose X is some open subset of R™. Then Theorem 1 states that

) —
L(omﬂ)(f,‘)() = sup M: sup ||GT|a.s- (77
TAYEX ||"1j - yHa Gedf(X)
And noting that
|G ||as:= sup sup |2GTy| (78)

Hylla<a l12]]g= <1

one can substitute Equation 78 into Equation 77 to yield

L(f,X)= sup sup sup [2GTyl (79)
Gedp(X) |lylla<1||2]lpx <1

The key idea is that we can define function g, : R™ — R as

9:(z) = (2, f()) (30)

Where
Sg.(2)" ={Gz | G € 6;(x)} (81)

The plan is to make LipMIP optimize over x and z simultaneously and maximize the gradient norm of ¢, (x). To be more
explicit, we note that the scalar-valued LipMIP solves::

sup |[V#f(2)"|la) = sup [[Glla- = sup sup |[V¥f(z)"yl (82)
zEX GeV#fx zeV# f(X) [lylla<1
where we have shown that V f(x) is MIP-encodable and the supremum over y can be encoded for || - ||1, || - ||cc, because
there exist nice closed form representations of || - [[1, || - [|oc. The extension, then, only comes from the sup;, | . <; term.

We can explicitly define f as

f(x) = Wd+10' (Zd(x)) Zl(x) = WiO' (Zi_l(l‘)) + bi Zo(it) =X (83)
such that
g-(x) = 2T Wai10 (Zg(z)) Zi(x) = Wio (Z;—1(x)) + b; Zo(z) == (84)

And the recursion for V#g, () is defined as

V#g.(e) = WIYi(2) Yilw) = W Diag(Ai(@)Yisr(2) Yari(2) = W,z (85)

Thus we notice the only change occurs in the definition of Y;11(z). In the scalar-valued f case, Yy 11(x) is always the
constant vector, c. In the vector-valued case, we can let Y11 (x) be the output of an affine operator. Thus as long as the dual
ball {z | [[2]|;} is representable as a mixed-integer polytope, we may solve the optimization problem of Equation 79.

Definition E.1. We say that a norm || - || is a linear norm over R if the set of points such that ||z|| g~ < 1 is representable
as a mixed-integer polytope.

22

Appendices

Certainly the /1, {, norms are linear norms, but we will demonstrate another linear norm in the next subsection.

Corollary E.1. In the same setting as Theorem 5, if || - ||a is || - ||1 or || - ||so» and || - || g is a linear norm, then LipMIP
applied to f and X yields the answer

L) (f,x) (86)

where the parameters of LipMIP have been adjusted to reflect the norms of interest.

Proof. The proof ideas are identical to that for Theorem 5. The only difference is that the norm || - || s has been replaced
from | - | to an arbitrary linear norm. The argument for correctness in this case is presented in the paragraphs preceding the
corollary statement. O

E.2. Application to Untargeted Classification Robustness

Now we turn our attention towards untargeted classification robustness. In the binary classification setting, we let f : R — R
be a scalar-valued ReLU network. Then the label that classifier f assigns to point z is sign(f(z)). In this case, it is known
that for any open set X, any norm || - ||, any z,y € X,

ol < s = sien(£(0) = sien(() (57)

Indeed, this follows from the definition of the Lipschitz constant as

104,) = sup LD IO

(88)
ey |12 = Ylla

Then, by the contrapositive of implication 87 , if sign(f (z)) # sign(f(y)) then | f(z) — f(y)| > |f(x)| and forall z,y € X,

o > LB =S)

Rearranging, we have

[f(x) = f)l o _1f(=)]
Le(f, &) = Lo(f, &)

|z = ylla > (90)

arriving at the desired contrapositive implication.

In the multiclass classification setting, we introduce the similar lemma.
Lemma E.1. f : R” — R™ assigns the label as the index of the maximum logit. We will define the hard classifier
F:R"™ — [m] as F(x) = argmax; f(z);. We claim that for any X, and norm || - ||, if F(x) = i, then forall y € X,

Ix—y|la<mjinm = F(y) =1 (C2))

where we’'ve defined f”(l’) = (e; — ej)Tf($)~

Proof. To see this, suppose F'(y) = j for some j # 4. Then | f;;(z) — fi;(y)| > |fij(x)], as by definition f;;(z) > 0 and
fij(y) < 0. Then by the definition of Lipschitz constant :

Lo(fi, X) > [fis (@) = iy)] o 1fis(@)])
DT e =ylla T e —ylla

arriving at the desired contrapositive LHS. We only note that we need to take min over all j so that f;;(y) > 0 forall j. [

Now we present our main Theorem regarding multiclassification robustness:

23

Appendices

Theorem E.1. Let f be a vector-valued ReLU network, and let || - || x be a norm over R™, such that for any x in any open
set X, with F'(z) = 1,
|fij (@) | fij(2)]

in — < U
L) = L () .

Then for x,y € X with F(x) =1,

|fij ()]

|z —ylla < mjin

In addition, if || - ||« is a linear norm, and f is in general position, then L(a’x)(f, X) is computable by LipMIP.
Proof. Certainly equation 94 follows directly from Lemma E.1 and equation 93. O

What remains to be shown is a || - || x such that equation 93 holds. To this end, we present a lemma describing convenient
formulations for norms:

Lemma E.2. Let C C R" be a set that contains an open set. Then

[|z]lc := sup |y x| (95)
yeC

is a norm.
Proof. Nonnegativity and absolute homogeneity are trivial. To see the triangle inequality holds for || - ||¢, we see that, for
any I’ y7

|z +ylle == sup |27 (z +y)| < sup|z"a| + sup [z"Ty| < |z[lc + |lylle (96)

zeC zeC z'eC

And point separation follows because C contains an open set and if x # 0, then there exists at least one y in C such that
lyTz| > 0. O
Now we can define our norm || - ||« that satisfies equation 93:

Definition E.2. Let e;; := e; — e; where each e; is the elementary basis vector in R™. Then let £ be the convex hull of all

such e;; and all e;, € := Conv({e; | i € [m]} U{e;; | i # j € [m]}). We define the cross-norm, || - ||« as
[lzlx = sup |y" | 97
yee

We note that by Lemma E.2 and since £ contains the positive simplex, £ contains an open set and hence the cross-norm is
certainly a norm. Indeed, because the convex hull of a finite point-set is a polytope, the cross-norm is a linear norm. Further,
we note that the polytope £ has an efficient H-description.

Proposition E.1. The set £ C R™, is equivalent to the polytope P defined as
r=xt -z~
xt >0
x>0 ;

szj >

> af <1
Sor, <1 o

SES
IAINA

Proof. As € is the convex hull of e;; and e, for all i # j € [m]. Certainly each of these points is feasible in PP, and since P
is convex, by the definition of a convex hull, £ C P. In the other direction, consider some x € P. Decompose x into z T,
and —z~, by only considering the positive and negative components of x. The goal is to write = as a convex combination of
{eij, e;}. Further decompose 2 into y, 2" such that 2™ = y* + 27, y* >0, 2" > 0,and }°, y;" = >, z; . Then we
can write ¥ — x; as a convex combination of ¢/ ;S andz;" is a convex combination of €}s and 0, where we note that 0 € £
because e;;, €;; are in €. O]

Now we desire to show equation 93 holds for the cross-norm.

24

Appendices

Proposition E.2. For any open set X, the Lipschitz constant with respect to the cross norm, %, and any norm || - |

forx € X with F(x) =, then
[fij ()] [fij ()]

@l)]
L) S L () .

(%]

To see this, notice

ma L (fi5, X) = To(fig, X) (100)

s0 it amounts to show that L(®>)(f, X') > max; L*(f;;, X). By the definition of the Lipschitz constant:

[(ei —¢j, f(z) = f(y))]

max L*(f;;, X) = max sup (101)
J J o xAyeX |z — ylla
By switching the sup and max above, and observing that, for all z,
mjax|<ei —ej,2)] < |2« (102)
we can bound
maXLa(fij,X) < ||f(a|j) — f|(|y)||>< < L(a’x)(f, X) (103)
J T = Ylla

as desired.

25

Appendices

F. Experiments

In this section we describe details about the experimental section of the main paper and present additional experimental
results.

F.1. Experimental Setup

Computing environment: All experiments were run on a desktop with an Intel Core i7-9700K 3.6 GHz 8-Core Processor
and 64GB of RAM. All experiments involving mixed-integer or linear programming were optimized using Gurobi, using
two threads maximum (Gurobi Optimization, 2020).

Synthetic Datasets: The main synthetic dataset used in our experiments is generated procedurally with the following
parameters:

{dim, num_points, min_separation, num.classes, num_leaders}

The procedure is as follows: randomly sample num_points from the unit hypercube in dim dimensions. Points are
sampled sequentially, and a sample is replaced if it is within min_separat ion of another, previously sampled point. Next,
num_leaders points are selected uniformly randomly from the set of points and uniformly randomly assigned a label
from 1 to num_classes. The remaining points are labeled according to the label of their closest ‘leader’. An example
dataset and classifier learned to classify it are presented in Figure 3.

Randomly Generated Data Points Meural Network Decision Boundaries
. . . o . - =

.
10 . . e . L]
e L.t . ¢ P * o . . .
. . ™ - L] e ® %o
W L X
. s ~ « ® . . . o
- . ™ e * . . . - * e,
. ° . .. c "e®*s o
. . L]
. . L . .
0.8 L ¢, * . . 08 . . * « °*
. e L, v = « * * . A . . . o . .
. . A . . . ® .
] L] L4 .
. . * . °, « °* o . o ® o e ® " %o
L] L] L] L] » . L - L] - ..
e®. o e o l.-. . e "« . * . - ... P
. | .
06 e o ® eo%e * * . 06 L * e, e * ., .
. . o . L . L]
s e . ® ®
0 [] .-.... .. LI A . o . |
. .0 « ® . * . . 5 . P . o ®
se e . A . o . .
04 oo [] T . ® U ee" . *° * * ® e o °
«* °* s L, * . . 04 e ® ° I
L I s ® 4 ¢« , s ® ¢ e L., *) .. ~ s o .
. . Cole ¢t . . * - * *e v " e ‘5
. - . .
. . ® . . e (e . e °*°* e
02 . . * . ’ . . .
. . ® - « * « * . * «* . s o,
.. s " * o . * 4 A 02 g . e o « * o .
. - .
o« o « ° T . ° R ® s .
.
*et .'o.'.‘ = o. . o ° . * .
00 L . e o ® . e, " . . .
* . . . : - *
0.0 -
0.0 0z 0.4 0.6 0.8 10 0.0 02 0.4 06 0.8 10

Figure 3. (Left): Synthetic dataset used for evaluating effect of training on Lipschitz Estimation. (Right): Decision boundaries of a neural
network trained using only CrossEntropy loss for 1000 epochs on the synthetic dataset.

Estimation Techniques: Here we will outline the hyperparameters and computing environment for each estimation
technique compared against.

e RandomLB: We randomly sample 1000 points in the domain of interest. At each point, we evaluate the appropriate

gradient norm that lower-bounds the Lipschitz constant. We report the maximum amongst these sampled gradient
norms.

e CLEVER: We randomly sample 500 batches of size 1024 each and compute the appropriate gradient norm for each,
for a total of 512,000 random gradient norm evaluations. The hyperparameters used to estimate the best-fitting Reverse
Weibull distribution are left to their defaults from the CLEVER Github Repository: https://github.com/IBM/
CLEVER-Robustness—-Score, (Weng et al., 2018b).

26

https://github.com/IBM/CLEVER-Robustness-Score
https://github.com/IBM/CLEVER-Robustness-Score

Appendices

e LipMIP: LipMIP is evaluated exactly without any early stopping or timeout parameters, using 2 threads and the
Gurobi optimizer.

e LipSDP: We use the LipSDP-Network formulation outlined in Fazlyab et al. (2019), which is the slowest but tightest
formulation. We note that since this only provides an upper bound of the />-norm of the gradient. We scale by a factor
of \/n for {1, estimates over domains that are subsets of R".

e SeqLip: SeqLip bounds are attained by splitting each network into subproblems, with one subproblem per layer. The
|| - ||2,2 norm of the Jacobian of each layer is estimated using the Greedy SeqLip heuristic (Virmaux and Scaman, 2018).
We scale the resulting output by a factor of v/d. We remark that a cheap way to make this technique local would be
to use interval analysis over a local domain to determine which neurons are fixed to be on or off, and do not include
decision variables for these neurons in the optimization step.

e FastLip: We use a custom implementation of FastLip that more deeply represents the abstract interpretation view of
this technique. As we have noted several times throughout this paper, this is equivalent to the FastLip formulation of
Weng et al. (2018a).

e NaiveUB: This naive upper bound is generated by multiplying the operator norm of each affine layer’s Jacobian matrix
and scaling by v/d.

F.2. Experimental Details

Here we present more details about each experiment presented in the main paper.

Accuracy vs. Efficiency Experiments In the random dataset example, we evaluated 20 randomly generated neural
networks with layer sizes [16, 16, 16, 2]. Parameters were initialized according to He initialization (He et al., 2015).

In the synthetic dataset example, a random dataset with 2000 points over R0, 20 leaders 2 classes, were used to train 20
networks, each of layer sizes [10, 20, 30, 30, 2] and was trained for 500 epochs using CrossEntropy loss with the Adam
optimizer with learning rate 0.001 and no weight decay (Kingma and Ba, 2014).

In the MNIST example, only MNIST 1’s and 7’s were selected for our dataset. We trained 20 random networks of size
[784,20, 20, 20, 2]. We trained for 10 epochs using the Adam optimizer, with a learning rate of 0.001, where the loss was
the CrossEntropy loss and an ¢; weight decay regularization term with value 1 - 1075, For each of these networks, 20
randomly centered /., balls of radius 0.1 were evaluated.

For each experiment, we presented only the results for compute time and standard deviations, as well as mean relative error
with respect to the answer returned by LipMIP.

Effect of Training on Lipschitz Constant When demonstrating the effect of different regularization schemes we train
a 2-dimensional network with layer sizes [2, 20, 40, 20, 2] over a synthetic dataset generated using 256 points over R2,
2 classes and 20 leaders. All training losses were optimized for 1000 epochs using the Adam optimizer with a learning
rate of 0.001, and no implicit weight decay. Snapshots were taken every 25 epochs and LipMIP was evaluated over the
[0,1]* domain. All loss functions incorporated the CrossEntropy loss with a scalar value of 1.0. The FGSM training
scheme replaced all clean examples with adversarial examples generated via FGSM and a step size of 0.1. The ¢;-weight
regularization scheme had a penalization weight of 1 - 10~* and the /»-weight regularization scheme had a penalization
weight of 1 - 1073, Weights for £, weight penalties were chosen to not affect training accuracy and were determined by a
line search.

The same setup was used to evaluate the accuracy of various estimators during training. The network that was considered in
this case was the one trained only using CrossEntropy loss.

Random Networks and Lipschitz Constants For the random network experiment, 5000 neural networks with size
[10, 10, 10, 1] were initialized using He initialization. LipMIP evaluated the maximal #; norm of the gradient over an
origin-centered ¢, ball of radius 1000.

27

Appendices

Lipschitz Constants Under Changing Width Lipschitz Constants Under Changing Depth
PP . LipMip : g . LipMIP I
FastLip . .] FastLip T
1000 . > q
s LipLP N 15.0 + Seqlip .
E « Seqlip ° 5 e LipSDP 4
’>: 800 + LipSDP . 2125 + NaiveUB -
Z 3 .
2 o0 . 8 100 =
3 . [. . 8
" . . L] . £ . 3
E 400 S . H = 1.5 . T . -
H ' % .] . s ., a U g 9 9 o
' . . . % 5.0 . [.
200 L . - T 2] ’
: [] ° - 25 (]
0
b 50 75 100 125 150 175 200 2 4 6 . 8 . 10 12 14
Width of Hidden Units # of Hidden Units

Figure 4. (Left): Evaluation of Lipschitz estimators over changing width. A fixed dataset and training scheme is picked, and multiple
networks with varying width are trained. Notice the small increase in Lipschitz constant returned by LipMIP, while the ever-increasing
absolute error between efficient estimation techniques. (Right): Evaluation of Lipschitz estimators over changing depth. A fixed dataset
and training scheme is picked, and multiple networks with varying depth are trained. Note that the y-axis is a log-scale, implying that
Lipschitz constants are much more sensitive to depth than width

F.3. Additional Experiments

Effect of Architecture on Lipschitz Estimation We investigate the effects of changing architecture on Lipschitz estima-
tion techniques. We generate a single synthetic dataset, train networks with varying depth and width, and evaluate each
Lipschitz Estimation technique on each network over the [0, 1]2 domain. The synthetic dataset used is over 2 dimensions,
with 300 random points, 10 leaders and 2 classes. Training for both the width and depth series is performed using 200
epochs of Adam with learning rate 0.001 over the CrossEntropy loss, with no regularization.

To investigate the effects of changing width, we train networks with size [2, C, C, C, 2] where C is the x-axis displayed in
Figure 4 (left).

To explore the effects under changing depth, we train networks with size [2] +[20] x C' +[2], where C is the x-axis displayed
in Figure 4 (right). Note that the y-axis is a log-scale: indicating that estimated Lipschitz constants rise exponentially with
depth.

Estimation of L' (f, X'): Experiments presented in the main paper evaluate L>°(f, X'), which is the maximal £; norm
of the gradient. We can present the same experiments over the /., norm of the gradient. Tables 1 and 2 display results
comparing estimation techniques for L' (f, X') under the same settings as the “Accuracy vs. Efficiency” experiments in the
main paper: that is, we estimate the maximal ||V f||o, over random networks, networks trained on synthetic datasets, and
MNIST networks. Figure 5 demonstrates the effects of training and regularization on Lipschitz estimators on L*(f, X).
Figure 6 plots a histogram of both L!(f) and L*°() over random networks.

Relaxed LipMIP In section 7 of the main paper, we described two relaxed forms of LipMIP: one that leverages early
stopping of mixed-integer programs that can be terminated at a desired integrality gap, and one that is a linear-programming
relaxation of LipMIP. Here we present results regarding the accuracy vs. efficiency tradeoff for these techniques. We
evaluate LipMIP with integrality gaps of at most {100%, 10%, 1%, 0%} and LipLP over the unit hypercube on the same
random networks and synthetic datasets used to generate the data in Table 1. These results are displayed in Table 3.

Cross-Lipschitz Evaluation We evaluate the || - ||x norm for applications in untargeted robustness verification. We
generate a synthetic dataset over 8 dimensions, with 2000 data points, 200 leaders, and 100 classes. We run 10 trials of the
following procedure: train a network with layer sizes [8, 40, 40, 40, 100] and pick 20 random data points to evaluate over an
{+ ball of radius 0.1. We train the network with CrossEntropy loss, ¢;-regularization with constant 5 - 10~# and train for
2000 epochs using Adam with a learning rate of 0.001 and no other weight-decay terms. Accuracy is at least 65% for each
trained network. We evaluate the time and reported Lipschitz value for the following metrics, for data points that have label

28

Appendices

| Random Network | Synthetic Dataset
Method | Time (s) | Relative Error | Time (s) | Relative Error
RandomLB | 0.238 + 0.004 —30.43% | 0.301 = 0.004 —29.27%
CLEVER | 1.4424+0.071 | —13.00% | 55.847 £ 79.212 | 0.00%
LipMIP | 18.825 + 19.244 | 0.00% | 1.873+£0.030 | 4.18%
FastLip | 0.001+0.000 | 167.55% | 0.028 £0.001 | 156.67%
LipLP | 0.018 £0.009 | 167.55% | 0.001 +0.000 | 156.67%
LipSDP | 2.624£0.026 | 559.97% | 2.705£0.030 | 432.47%
SeqLip | 0.007 +0.001 | 773.38% | 0.015+£0.002 | 674.84%
NaiveUB | 0.000 £ 0.000 | 3121.51% | 0.000 £0.000 | 11979.62%

Table 1. Accuracy vs. Efficiency tradeoffs for estimating L'(f, X) over the unit hypercube on random networks of layer sizes
[16, 16, 16, 2] and networks with layer sizes [10, 20, 30, 2] trained over a synthetic dataset.

| Radius 0.1 | Radius 0.2 |

Method | Time(s) | Relative Error | Time(s) | Relative Error
RandomLB | 0.330 £0.006 | —44.25% | 0.325£0.005 | —35.08%
CLEVER | 6.855+4.984 | —38.31% | 23.010 £0.612 | —27.24%
LipMIP | 4.550 £2.519 | 0.00% | 4.292+1.183 | 0.00%
FastLip | 0.001 +0.000 | +43.45% | 0.233£0.012 | +32.66%
LipLP | 0.229 +0.021 | +43.45% | 0.002 £ 0.001 | +32.66%
NaiveUB | 0.000£0.000 | 4961.31% | 0.000 + 0.000 | +891.10%
LipSDP | 18.184 +1.935 | +16147.15% | 20.161 £2.333 | +14526.92%
SeqLip | 0.013+0.004 | +16559.65% | 0.021£0.004 | +14917.94%

Table 2. Accuracy vs. Efficiency for estimating local L' (f) Lipschitz constants on a network with layer sizes [784, 20, 20, 20, 2] trained
to distinguish between MNIST 1’s and 7’s. We evaluate the local lipschitz constant where X’s are chosen to be ¢;-balls with specified
radius centered at random points in the unit hypercube.

Lipschitz Constants Under Regularization

@
=1
s

~
=]
a

@
3
S

w
&
S

&
&
S

300

Reported Lispchitz Value

w
<1
S

=
151
=}

0

xy
*¥¥ oo
wirttToeee

Lipschitz Estimators During Training

LipMIP (ours)
LipLP (ours)
LipSDP "
FastLip YTYY
¥
.
x
x
¥
¥Y
¥
¥
*
¥¥ L]
¥ -cc“"-'
¥¥ n“"‘

ee®

200 400 600 800
Training Epoch

o 200, Fasm |
175 I,-weight regularization ¥y T ¥
he
2 150 + I,-weight regularization TT*
K + No Regularization 7
> 125 E —t
hi o7
S 100 7
a oY
wi
'OjJ 75 =
h g
=)
£ 90 LTt
+
25 i
. .YY"“,,.gncoccﬂccac-acna-cv-c-co-c
0 awy¥EEE
0 200 400 600 800 1000

1000

Training Epoch

Figure 5. (Left) Effect of training on various Lipschitz estimators in the L' (f, X) setting. A network of layer sizes [2, 20, 40, 20, 2] was
trained using Adam to minimize CrossEntropy loss over a synthetic dataset. Notice how in this setting, even LipSDP does not provide a
tight bound. (Right) Effect of regularization scheme on L' (f, X).

29

Appendices

Lipschitz Constant of Random Networks

L*(f)
L=(f)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
True Lipschitz Value

Figure 6. Histograms for L' (f) and L°°(f) over random networks with layer sizes [10, 10, 10, 1]. Notice the much tighter concentration
for L*(f).

| Random Network | Synthetic Dataset |

Method | Time (s) | Value | Relative Error | Time (s) | Value | Relative Error
LipLP | 0.017 +0.003 | 5.508 | +462.26% | 0.032£0.003 | 2087.957 | +389.80%
LipMIP(100%) | 132.988 +119.857 | 1.937 | +91.98% | 14.690 +12.773 | 742.395 | +69.91%
LipMIP(10%) | 355.974 & 294.666 | 1.102 | +9.37% | 50.931 +53.403 | 484.550 | +8.75%
LipMIP(1%) | 357.620 & 287.511 | 1.015 | +0.72% | 59.969 & 63.484 | 448.872 | +0.57%
LipMIP | 362.533 4 304.685 | 1.009 | 0.00% | 60.123 £ 63.721 | 446.327 | 0.00%

Table 3. Performance vs. accuracy evaluations of various relaxations of LipMIP. LipLP is the linear programming relaxation, and
LipMIP(x%) refers to early stopping of LipMIP once an integrality gap of x% has been attained. It can be significantly more efficient to
attain reasonable upper bounds than it is to compute the Lipschitz constant exactly.

30

Appendices

Method | Time (s) | Value | Relative Error

Naive | 97.698 +104.281 | 72.083 | 0.00%
CrossLip(i) | 6.156 +-14.256 | 350.176 | +441.14%
MIPCrossLip(i) | 6.987 +14.704 | 350.176 | +441.14%

Table 4. Application to multiclass robustness verification. On networks trained on a synthetic dataset with 100 classes, we evaluate
untargeted robustness verification techniques across random datasets. The value column refers to the computed Lipschitz value, and
relative error is relative to the Naive value. Notice that a 15x speedup is attainable on average at the cost of providing a 4.5x looser bound
on robustness.

J
where we evaluate this naively (Naive), or with the search space of all e;; encoded directly with mixed-integer-programming
(MIPCrossLip(i)). We also evaluate the || - || ;) norm in lieu of || - || g, where || - || (;) is defined as
z|[x @) == sup |y =] (105)
yeP(i)
P(i) :=Conv ({e; —¢; | j € Im]}U{e; | i € [m]}) (106)

and we evaluate
L(OovH'Hx(i))(f’X) (107)

where we denote this technique (CrossLip(i)). Times and returned Lipschitz values are displayed in Table 4.

References

Juha Heinonen. Lectures on Lipschitz analysis. University of Jyvaskyld, 2005.
David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge university press, 2011.

Juraj Hromkovi€. Algorithmics for hard problems: introduction to combinatorial optimization, randomization, approxima-
tion, and heuristics. Springer Science & Business Media, 2013.

Erik Demaine. 6.892 algorithmic lower bounds: Fun with hardness proofs (spring *19). http://courses.csail.
mit.edu/6.892/springl19/,2014. Accessed: 2020-2-01.

David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of
Computing, 3(6):103-128, 2007.

Singh, Gehr, Piischel, and Vechev. An abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages, January 2019.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S Dhillon, and Luca Daniel.
Towards fast computation of certified robustness for ReLU networks. April 2018a.

J Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex outer adversarial polytope.
November 2017.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying robustness to adversarial
examples. November 2018.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network robustness certification
with general activation functions. November 2018.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.gurobi.com.

31

http://courses.csail.mit.edu/6.892/spring19/
http://courses.csail.mit.edu/6.892/spring19/
http://www.gurobi.com

Appendices

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Luca Daniel. Evaluating the robustness of neural networks: An
extreme value theory approach. January 2018b.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and accurate estimation
of lipschitz constants for deep neural networks. In H Wallach, H Larochelle, A Beygelzimer, F d Alche-Buc, E Fox, and
R Garnett, editors, Advances in Neural Information Processing Systems 32, pages 11423-11434. Curran Associates, Inc.,
2019.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient estimation. In
S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 3835-3844. Curran Associates, Inc., 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing Human-Level
performance on ImageNet classification. February 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. December 2014.

32

	Analytical proofs
	Definitions and Preliminaries
	Proof of Theorem 1

	Chain Rule and General Position proofs
	Preliminaries
	Proof of Theorem 2
	Proof of Theorem 3

	Complexity Results
	Complexity Theory Preliminaries
	Proof of Theorem 4

	LipMIP Construction
	MIP-encodable components of ReLU networks
	MIP-encodability of Affine, Conditional, Switch:
	Abstract Interpretations for Bound Propagation

	Extensions of LipMIP
	Extension of LipMIP to Vector-Valued Networks
	Application to Untargeted Classification Robustness

	Experiments
	Experimental Setup
	Experimental Details
	Additional Experiments

