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Background & Setting
1. Abstract

In this paper, we estimate and analyze the Lipschitz constant of neural
networks, key metric for safe and robust deep learning. First, we show that
even for two layer neural networks, exact computation is NP-hard.
Then, we provide two Lipschitz upper bounds: AutoLip, the first generic
algorithm for upper bounding the Lipschitz constant of any automatically
differentiable function, and SeqLip, an improved algorithm for MLPs.
Moreover, we provide an AutoGrad compliant power method algorithm,
allowing efficient computations even on large convolutions. Our experiments
show that SeqLip can significantly improve on the existing upper bounds.

2. Notations

1. A function f : Rn→ Rm is Lipschitz continuous if

∀x, y ∈ Rn, ‖f (x)− f (y)‖2 ≤ L ‖x− y‖2.

The smallest such L is the Lipschitz constant of f , denoted L(f ).

2. A K-layer Multi-Layer-Perceptron fMLP : Rn→ Rm is the function

fMLP (x) = TK ◦ ρK−1 ◦ · · · ◦ ρ1 ◦ T1(x),

where Tk(x) = Mkx + bk is affine and ρk(x) = (gk(xi))i∈J1,nkK non-linear.

3. Exact Lipschitz computation is NP-hard

Problem LIP-CST:

Input: Two matrices M1 ∈ Rl×n and M2 ∈ Rm×l, and a constant ` ≥ 0.

Question: Let f = M2 ◦ ρ ◦M1 where ρ(x) = max{0, x} is the ReLU
activation function.
Is the Lipschitz constant L(f ) ≤ ` ?

Theorem LIP-CST is NP-hard.
Reduction to maximizing a convex quadratic function on the hypercube.

4. Lipschitz constant of affine layers

Algorithm 1 AutoGrad compliant power method

Input: affine function f : Rn→ Rm, number of iteration N
Output: approximation of the Lipschitz constant L(f )

1: for k = 1 to N do
2: v ← ∇g(v) where g(x) = 1

2‖f (x)− f (0)‖2
2

3: λ← ‖v‖2

4: v ← v/λ
5: end for
6: return L(f ) = ‖f (v)− f (0)‖2

Other layers Most common other layers in neural networks including
activation functions, pooling, batch normalization have simple and explicit
Lipschitz constants.

Upper Bounds
5. AutoLip

For sequential networks, this upper bounds is simply the product of spectral
norms. Otherwise, we propagate the Lipschitz upper bound with Alg. 2.
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Figure: Example of a computation graph for fω(x) = ln(1 + ex/2) + |x/2− ω sin(x)|

Algorithm 2 AutoLip
Input: function f : Rn→ Rm and its computation graph (g1, ..., gK)
Output: upper bound on the Lipschitz constant: L̂AL ≥ L(f )

1: Z = {(z0, ..., zK) : ∀k ∈ J0, KK, θk is constant⇒ zk = θk(0)}
2: L0← 1
3: for k = 1 to K do

4: Lk ←
k−1∑
i=1

max
z∈Z
‖∂igk(z)‖2Li

5: end for
6: return L̂AL = Lk

6. SeqLip

Idea: Exploit the relationships between singular vectors of consecutive layers.

L(fMLP ) ≤ max
∀i, σi∈[0,1]ni

‖MK diag(σK−1) · · · diag(σ1)M1‖2 ,

≤ max
∀i, σi∈[0,1]ni

‖ΣKV
>
K diag(σK)UK−1ΣK−1V

>
K−1 diag(σK−1) · · · ‖2

≤ L̂SL =

K−1∏
i=1

max
σi∈[0,1]ni

∥∥∥Σ̃i+1V
>
i+1 diag(σi+1)Ui Σ̃i

∥∥∥
2

where Mi = UiΣiV
>
i , Σ̃i = Σi if i ∈ {1, K} and Σ̃i = Σ

1/2
i otherwise.

Theorem Let Mk be the matrix associated to the k-th linear layer, uk (resp.
vk) its first left (resp. right) singular vector, and rk = sk,2/sk,1 the ratio
between its second and first singular values. Then we have

L̂SL ≤ L̂AL

K−1∏
k=1

√
(1− rk − rk+1) max

σ∈[0,1]nk
〈σ · vk+1, uk〉2 + rk + rk+1 + rkrk+1 .

If the ratios rk are negligible, then

L̂SL ≤ L̂AL

K−1∏
k=1

max
σ∈[0,1]nk

|〈σ · vk+1, uk〉| and L̂SL ≈
L̂AL
πK−1

.

Experiments
7. Experiments
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Figure: SeqLip in the ideal scenario
Figure: Synthetic function to train MLPs

MLP

Upper bounds Lower bounds
# layers Frob. AutoLip SeqLip Greedy SL Data Annealing Grid Search

4 648.2 33.04 21.47 21.47 4.36 4.55 6.56
5 4283.1 134.4 72.87 72.87 6.77 5.8 7.1
7 22341 294.6 130.2 130.2 5.4 5.27 6.51
10 7343800 19248.2 2463.44 2463.36 10.04 5.77 17.1

Figure: AutoLip and SeqLip for MLPs of various size

CNN

Upper bounds Lower bounds
# layers AutoLip Greedy SeqLip Ratio Dataset Annealing

4 174 86 2 12.64 25.5
5 790.1 335 2.4 16.79 22.2
7 12141 3629 3.3 31.22 43.6
10 4.5 · 106 8.2 · 105 5.4 38.26 107.8

Figure: AutoLip and SeqLip for MNIST-CNNs of various size

AlexNet
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Figure: AutoLip and SeqLip for AlexNet

8. Conclusion and perspectives

SeqLip can improve by a large factor the upper-bound given by AutoLip (up
to a factor 8 in real scenarios). However, these bounds remain very large
for vision networks, and it is yet an open question to know how close
these bounds are to the real Lipschitz constant.
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