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Abstract

Missing Not At Random (MNAR) values where the probability of having missing
data may depend on the missing value itself, are notoriously difficult to account
for in analyses, although very frequent in the data. One solution to handle MNAR
data is to specify a model for the missing data mechanism, which makes inference
or imputation tasks more complex. Furthermore, this implies a strong a priori
on the parametric form of the distribution. However, some works have obtained
guarantees on the estimation of parameters in the presence of MNAR data, without
specifying the distribution of missing data [18, 25]. This is very useful in practice,
but is limited to simple cases such as few self-masked MNAR variables in data
generated according to linear regression models. We continue this line of research,
but extend it to a more general MNAR mechanism, in a more general model of the
probabilistic principal component analysis (PPCA), i.e., a low-rank model with
random effects. We prove identifiability of the PPCA parameters. We then propose
an estimation of the loading coefficients, and a data imputation method. Both
are based on estimators of means, variances and covariances of missing variables,
for which consistency is discussed. These estimators have the great advantage of
being calculated using only the observed information, leveraging the underlying
low-rank structure of the data. We illustrate the relevance of the method with
numerical experiments on synthetic data and also on two datasets, one collected
from a medical register and the other one from a recommendation system.

1 Introduction

The problem of missing data is ubiquitous in the practice of data analysis. Theoretical guarantees
of estimation strategies or imputation methods rely on assumptions regarding the missing-data
mechanism, i.e. the cause of the lack of data. Rubin [22] introduced three missing-data mechanisms.
The data are said (i) Missing Completely At Random (MCAR) if the probability of being missing
does not depend on any values observed or missing, (ii) Missing At Random (MAR) if the probability
of being missing only depends on observed values, (iii) Missing Not At Random (MNAR) if the
unavailability of the data may depend on both observed and unobserved data such as its value itself.
We focus on this later case, which is frequent in practice, and theoretically challenging. A classic
example of MNAR data is surveys about salary for which rich people would be less willing to disclose
their income.

When the data is MCAR or MAR, statistical inference is carried out by ignoring the missing data
mechanism [10]. In the MNAR case, the observed data are no longer representative of the population,
which leads to selection bias in the sample, and therefore to bias in the parameters estimation when
using for instance complete case analysis. One solution to handle MNAR data, known as selection
model [10], is to model missing data distribution; most of the time, by logistic regression models
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[4, 19, 24]. This comes at the price of an important computational burden to perform inference and is
often restricted to a limited number of MNAR variables. In the recommender system community,
some authors [12, 3, 11, 28] suggest that not MCAR values can be handled using a joint modelling of
the data and mechanism distributions by matrix factorization; then they debiase existing methods for
MCAR data, for instance with inverse probability weighting approaches.

In addition, a key issue of MNAR data is to establish identifiability, which is not always guaranteed
[15]. The literature on this topic is abundant, both in the non-parametric [17, 16, 6, 23, 20], and
semi-parametric settings [27, 14]. For parametric models, in the case of multivariate regression,
Tang et al. [25] and Miao et al. [15] guarantee the identifiability of the coefficients of the conditional
distribution of Y |X , when Y is missing. Tang et al. [25] estimate them by calculating the coefficient
of the distributions of X and X|Y using only observations with no missing values. Besides, in a
linear model with self-masked missing mechanism, i.e., the lack depends only on the missing variable
itself, Mohan et al. [18] consider a related approach based on graphical models, adopting a causal
point of view. Despite the great advantage of not modeling the distribution of missing values, the
assumption of a self-masked MNAR mechanism and the restriction to a linear model are yet strong.

Contributions. We consider a framework where the data are generated according to a probabilistic
principal components analysis (PPCA) [26] model. Contrary to available works that handle only
MAR data in PPCA [5], we consider that the missing values mechanism can be MNAR (on several
variables) and we also consider the possibility of having different mechanisms in the same data
(MNAR and M(C)AR).

• We prove the identifiability of the PPCA model parameters in a self-masked MNAR values setting
encompassing a large set of self-masked mechanism distributions.

• For more general MNAR mechanism, we give a strategy to estimate the PPCA loading parameters
without any modeling of the missing-data mechanism and use it to impute missing values.
• The proposed method is based on estimators for the mean, the variance and the covariance of the

variables with MNAR values. We show that they can be consistently estimated. Two strategies
lead to the proposed estimators: (i) the first one uses algebraic arguments based on partial linear
models derived from the PPCA model; (ii) the second one is inspired by [18] and uses graphical
models and in particular the so-called missingness graph.

• We derive an algorithm implementing our proposal. We show that it outperforms the state-of-
the-art methods on synthetic data and on two real datasets, collected from a medical registry
(Traumabase R©) and from a joke recommender system (the Jester Online Joke Recommender
System [2]). The code to reproduce all the simulations and the numerical experiments is available
at https://github.com/AudeSportisse/PPCA_MNAR.

2 PPCA model with informative missing values: identifiability issues

Setting. The data matrix Y P Rnˆp is assumed to be generated under a fully-connected PPCA
model [26] (a.k.a. a low-rank model with random effects), i.e. by the factorization of the loading
matrix B P Rrˆp and r latent variables grouped in the matrix W P Rnˆr,

Y “ 1α`WB ` ε,with

$

’

&

’

%

W “ pW1.| . . . |Wn.q
T , with Wi. „ N p0r, Idrˆrq P Rr,

B of rank r ă mintn, pu,
α P Rp and 1 “ p1 . . . 1qT P Rn,
ε “ pε1.| . . . |εn.q

T , with εi. „ N p0p, σ2Idpˆpq P Rp,

(1)

for σ2 and r known. In the sequel, Y.j and Yi. respectively denote the column j and the row i of Y . The
rows of Y are identically distributed, @i P t1, . . . , nu, Yi. „ N pα,Σq, with Σ “ BTB ` σ2Idpˆp.
We denote Ω P t0, 1unˆp the missing-data pattern (or mask) defined as follows:

@i P t1, . . . , nu, @j P t1, . . . , pu, Ωij “

"

0 if Yij is missing,
1 otherwise.

(2)

Some variables Y.m1 , . . . , Y.md
, indexed by M :“ tm1, . . . ,mdu Ă t1, . . . , pu (with d ă p),

contain MNAR values. The other variables are considered to be observed (or M(C)AR see Appendix
B.5). We define a general MNAR mechanism where the probability to have missing values may
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depend on the d MNAR variables but also on p ´ d ´ r other variables that can be observed or
M(C)AR1. The remaining r variables are called pivot variables and can be observed or MCAR. More
precisely, we denote the complementary of a set A as sA :“ t1, . . . , puzA. The general MNAR
mechanism is defined as follows, with J Ă ĎM the set of indices of the r pivot variables (|J | “ r),

@m PM,@i P t1, . . . , nu, PpΩim “ 1|Yi.q “ PpΩim “ 1|pYikqkP sJ q. (3)
We also define a specific MNAR mechanism, called the self-masked MNAR mechanism as follows.
We assume that d variables are self-masked MNAR indexed byM and the p´ d other variables are
MCAR (or observed), indexed by ĎM , i.e, @i P t1, . . . , nu,

@m PM, PpΩim “ 1|Yi.q “ PpΩim “ 1|Yimq. (4)

Model identifiability. We prove the identifiability of the PPCA model (see Appendix A for the
complete proof), i.e. the joint distribution of Y can be uniquely determined from the available
information, in the self-masked missing values case. More particularly, assume the following

A01. d variables are self-masked MNAR as in (4) and the p ´ d other variables are MCAR
(or observed). The missing-data distributions pFmqmPM and pFjqjP ĎM are known strictly
monotone functions with a finite support, defined as follows, @i P t1, . . . , nu,

@m PM, PpΩim “ 1|Yi.q “ Fmpφ
0
m ` φ

1
mYimq,

@j P ĎM, PpΩij “ 1|Yi.q “ PpΩij “ 1q “ Fjpφjq,

with φj P R and φm “ pφ0
m, φ

1
mq P R2 the mechanism parameters.

A02. @pk, `q P t1, . . . , pu2, k ‰ `, Ω.k KK Ω.`|Y

Note that under Assumption A01., any function Fm,m P M can be considered, as a logistic
function while [15] presented many counterexamples when identification fails considering the logistic
distribution. A02. requires that the missing-data patterns are independent conditionally to the data.
Proposition 1. Under Assumptions A01. and A02., the parameters pα,Σq of the PPCA model (1)
and the mechanism parameters φ “ pφ`q`Pt1,...pu are identifiable. Assuming that the noise level σ2 is
known, the parameter B is identifiable up to a row permutation.

3 Estimators with theoretical guarantees

In this section, we provide estimators of the means, variances and covariances for the MNAR variables,
when data are generated under the PPCA model described in (1). These estimators are used to derive
an estimator of the loading matrix B in (1). This makes it possible to derive a new imputation method
with MNAR data as detailed in Algorithm 1.

We denote J´j :“ J ztju and assume

A1. @m PM, @j P J ,
`

B.m pB.j1qj1PJ´j

˘

is invertible,

A2. @m PM, @j P J , Y.j KK Ω.m|pY.kqkPĚtju.

Note that Assumption A1. implies that B has a full rank r and that any variable in Y is generated
by all the latent variables2 (named a "fully-connected" PPCA). Assumption A2. is implied by the
general MNAR mechanism in (3).

We start by illustrating the methodology and the assumptions using an example in small dimension,
before turning to the general case.

3.1 Estimation of the mean of a MNAR variable

Consider a toy dataset where p “ 3, r “ 2, in which only one variable is missing,M “ t1u and
there are two pivots variables J “ t2, 3u. Note that the MNAR mechanism is self-masked in such a
context, because Equation (3) leads to PpΩ.1 “ 1|Y.1, Y.2, Y.3q “ PpΩ.1 “ 1|Y.1q, but the method
can be extended to more general cases. Our aim is to estimate the mean of Y.1, without specifying
the distribution of the missing-data mechanism.

1Note that it implies that d ă p´ r.
2It does not require that the linear combination coefficients are non-zero.
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Using algebraic arguments. We proceed in three steps: (i) A1. allows to obtain linear link between
the pivot variables (Y.2, Y.3) and the MNAR variable Y.1. For instance,

Y.2 “ B2Ñ1,3r0s ` B2Ñ1,3r1sY.1 ` B2Ñ1,3r3sY.3 ` ζ, (5)

with ζ a noise term, B2Ñ1,3r0s, B2Ñ1,3r1s and B2Ñ1,3r3s the intercept and the coefficients in the
model (the arrow 2 Ñ 1, 3 indicates the regression model of Y.2 on Y.1 and Y.3, while the squared
bracket represents the coefficient, for instance 3 for the coefficient of Y.3) ; (ii) Assumption A2., i.e.
Y.2 KK Ω.1|Y.1, Y.3, is required to obtain identifiable and consistent parameters of the distribution of
Y.2 given Y.1, Y.3 in the complete-case when Ω.1 “ 1, denoted as Bc2Ñ1,3r0s, B

c
2Ñ1,3r1s and Bc2Ñ1,3r3s,

pY.2q|Ω.1“1 “ Bc2Ñ1,3r0s ` B
c
2Ñ1,3r1sY.1 ` B

c
2Ñ1,3r3sY.3 ` ζ

c, (6)

(note that the regression of Y.1 on pY.2, Y.3q is prohibited, as A2. does not hold); (iii) using again A2.,

E rY.2|Y.1, Y.3,Ω.1 “ 1s “ E
”

Bc2Ñ1,3r0s ` B
c
2Ñ1,3r1sY.1 ` B

c
2Ñ1,3r3sY.3|Y.1, Y.3

ı

,

and taking the expectation leads to

E rY.2s “ Bc2Ñ1,3r0s ` B
c
2Ñ1,3r1sE rY.1s ` B

c
2Ñ1,3r3sE rY.3s .

The latter expression can be reshuffled so that the expectation of Y.1 can be estimated: the means of
Y.2 and Y.3 are estimated by standard empirical estimators (it will be Assumption A4. in the sequel).

Using graphical arguments. The PPCA
model can be represented with structural causal
graphs [21], as illustrated in Figure 1. The top
left graph in which each variable is generated by
a combination of all latent variables, see Assump-
tion A1., can be represented as the top right one,
as Y.1 Ð W.1 Ñ Y.2 is equivalent to Y.1 Ø Y.2
(see [21, page 52]). Then, six reduced graphical
models can be derived from the top right graph
(two instances are represented in the bottom).
Indeed, a bidirected edge Y.1 Ø Y.2 can be in-
terchanged (see [21, rule 1, page 147]) with an
oriented edge Y.1 Ñ Y.2, if each neighbor of
Y.2 (i.e. Y.1 or Y.3) is inseparable of Y.1 (see
[21, page 17]). The bottom left graph can also
be represented by Equation (6), which gives a
connection between the algebraic and graphical
approaches.

Y.2 Y.1 Y.3

W.1 W.2

Ω.1

Y.2 Y.1 Y.3

Ω.1

Y.3 Y.1 Y.2

Ω.1

Y.2 Y.1 Y.3

Ω.1

Figure 1: Graphical models for the toy example
with one missing variable Y.1, p “ 3 and r “ 2.

3.2 Estimation of the mean, variance and covariances of the MNAR variables

In a general case, estimators of the mean, variance and covariances of the variables with MNAR
values can be computed one by one. We detail the results only for one variable Y.m,m PM, but the
results hold for several variables with MNAR values. In addition, the other variables are considered
to be observed for simplicity but they could contain MCAR and MAR values as well, as explained in
Appendix B.5. We adopt the algebraic strategy here to derive estimators (see Appendix B for proofs)
but graphical arguments can also be used to obtain similar results (see Appendix F). The starting
point is to exploit the linear links between variables, as described in the next lemma.
Lemma 2. Under the PPCA model (1) and Assumption A1., choose j P J . One has

Y.j “ BjÑm,J´jr0s `
ÿ

j1PJ´j

BjÑm,J´jrj1sY.j1 ` BjÑm,J´jrmsY.m ` ζ, (7)

where ζ “ ´
ř

j1PJ´j
BjÑm,J´jrj1sε.j1 ´ BjÑm,J´jrmsε.m ` ε.j . is a noise term.

BjÑm,J´jr0s, BjÑm,J´jrj1s and BjÑm,J´jrms are given in Appendix B.1 and depend on the coeffi-
cients of B given in (1).
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Then we define the regression coefficients of Y.j on Y.m and Y.k, for k P J´j in the complete case,
that will be used to express the mean of a variable with MNAR values.
Definition 3 (Coefficients in the complete case). For j P J and k P J´j , let BcjÑm,J´jr0s

,
BcjÑm,J´jrms

and BcjÑm,J´jrj1s
be respectively the intercept and the coefficients standing for the

effects of Y.j on pY.m, pY.j1qj1PJ´j
q in the complete case, i.e. when Ω.m “ 1:

pY.jq|Ω.m“1 :“ BcjÑm,J´jr0s
`

ÿ

j1PJ´j

BcjÑm,J´jrj1s
Y.j1 ` BcjÑm,J´jrms

Y.m ` ζ
c, (8)

with ζc “ ´
ř

j1PJ´j
BcjÑm,J´jrj1s

ε.j1 ´ BcjÑm,J´jrms
ε.m ` ε.j .

Then, we make the two following assumptions:

A3. For all j P J , for all m PM, the complete-case coefficients BcjÑm,J´jr0s
, BcjÑm,J´jrms

and BcjÑm,J´jrks
, k P J´j can be consistently estimated.

A4. The means pαjqjPJ , variances pVarpY.jqqjPJ and covariances pCovpY.j , Y.j1qqjPJ ,j1PJ´j

of the r pivot variables can be consistently estimated.

Note that Assumption A4. is met whether the r pivot variables are fully observed.
Proposition 4 (Mean estimator). Consider the PPCA model (1). Under Assumptions A1. and A2., an
estimator of the mean of a MNAR variable Y.m, for m PM, can be constructed as follows: choose
j P J , and compute

α̂m :“
α̂j ´ B̂cjÑm,J´jr0s

´
ř

j1PJ´j
B̂cjÑm,J´jrj1s

α̂j1

B̂cjÑm,J´jrms

, (9)

with pB̂cjÑm,J´jrks
qkPt0,muYJ´j

estimators of the coefficients obtained from Definition 3.

Under the additional Assumptions A3. and A4., this estimator is consistent.

The proof is given in Appendix B.2. Proposition 4 provides an estimator easily computable from all
observed cells. Furthermore, different choices of Y.j , j P J can be done in Equation (9) and all the
resulting estimators may be aggregated to stabilize the estimation of αm.
Proposition 5 (Variance and covariances estimators). Consider the PPCA model (1). Under As-
sumptions A1. and A2., an estimator of the variance of a MNAR variable Y.m, for m PM, and its
covariances with the pivot variables, can be constructed as follows: choose a pivot variable Y.j for
j P J and compute

`

yVarpY.mq yCovpY.m, pY.j1qj1PJ q
˘T

:“ pxMjq
´1

pPj , (10)

assuming that σ2 tends to zero, with xM´1
j P Rpr`1qˆpr`1q, pPj P Rr`1 detailed in Appendix

B.3. These quantities depend on pα̂j1qj1PJ , α̂m given in Proposition 4, on pyVarpY.j1qqj1PJ and on
complete-case coefficients such as pB̂cj1Ñm,J´j1 rks

qkPtmuYJ´j1
for j1 P J .

Under the additional Assumptions A3. and A4., the estimators of the variance of Y.m and its
covariances with the pivot variables given in (10) are consistent.

The proof is given in Appendix B.3. Note that to estimate the variance of a MNAR variable, only
r pivot variables are required to solve (10) and r tasks have to be performed for estimating the
coefficients of the effects of Y.k on pY.`q`PtmuYJ´k

for all k P J .

All the ingredients can be combined to form an estimator Σ̂ for the covariance matrix Σ. Define

Σ̂ :“
´

yCovpY.k, Y.`q
¯

k,`Pt1,...,pu
, (11)

• if Y.k and Y.` have both consistent mean/variance estimators, then yCovpY.k, Y.`q can be trivially
evaluated by standard empirical covariance estimators.
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• if Y.k is a MNAR variable and Y.` is a pivot variable, then yCovpY.k, Y.`q is given by (10),
• if Y.k is a MNAR variable and Y.` is not a pivot variable, i.e. ` P sJ ztku, a similar strategy as the

one above can be devised. Then yCovpY.k, Y.`q is given by (48) detailed in Appendix B.4 and for
which some additional assumptions similar as the ones above are required. This estimator relies on
the choice of r ´ 1 pivot variables indexed by j andH Ă J , and only necessitates to evaluate the
effects of Y.j on pY.j1qj1Ptk,`uYH in the complete case.

3.3 Performing PPCA with MNAR variables

With the estimator Σ̂ in (11) at hand, one can perform the estimation of the loading matrix B in (1).

Definition 6 (Estimation of the loading matrix). Given the estimator Σ̂ of the covariance ma-
trix in (11), let the orthogonal matrix Û “ pû1| . . . |ûpq P Rpˆp and the diagonal matrix
D̂ “ diagpd̂1, d̂2, . . . , d̂pq P Rpˆp with d̂1 ě d̂2 ě . . . ě d̂p ě 0 form the singular value de-
composition of the following matrix Σ̂´ σ2Idpˆp “: ÛD̂ÛT . An estimator B̂ of B can be defined
using the r first singular values and vectors, as follows

B̂ “ D̂
1{2
|r ÛT|r “ diagpd̂1, . . . , d̂rq

1{2pûT1 | . . . |û
T
r q
T (12)

The estimation of the loading matrix is used to impute the variables with missing values. More
precisely, a classical strategy to impute missing values is to estimate their conditional expectation
given the observed values. One can note that with Σ “ BTB ` σ2Idpˆp, the conditional expectation
of Y.m for m PM given pY.kqkP ĎM reads as follows

ErY.m|pY.kqkP ĎMs “ αm ` Σm, ĎMΣ´1
ĎM, ĎM

`

Y T. ĎM ´ α
ĎM
˘

,

with Σm, ĎM :“ pΣm,kq
T
kP ĎM, Σ

ĎM, ĎM :“ pΣk,k1qk,k1P ĎM, Y. ĎM :“ pY.kqkP ĎM, and α
ĎM :“ pαkqkP ĎM.

Definition 7 (Imputation of a MNAR variable). Set Γ̂ :“ B̂T B̂ ` σ2Idpˆp for B̂ given in Definition
6. The MNAR variable Y.m with m PM can be imputed as follows: for i such that Ωi,m “ 0,

Ŷim “ α̂m ` Γ̂m, ĎMΓ̂´1
ĎM, ĎM

´

Y Ti, ĎM ´ α̂
ĎM

¯

(13)

with Γ̂m, ĎM :“ pΓ̂m,kq
T
kP ĎM, Γ̂

ĎM, ĎM :“ pΓ̂k,k1qk,k1P ĎM, Y. ĎM :“ pY.kqkP ĎM and α̂
ĎM :“ pα̂kqkP ĎM.

3.4 Algorithm

The proposed imputation method described in Algorithm 1 can handle the different MNAR mech-
anisms, the self-masked MNAR case and the general MNAR cases where the probability to have
missing values on variables depends on both the underlying values and values of other variables
(observed or missing).

Algorithm 1 PPCA with MNAR variables.
Require: r (number of latent variables), σ2 (noise level), J (pivot variables indices), Ω (mask).

1: for each MNAR variable pY.mqmPM do
2: Evaluate α̂m the estimator of its mean

given in (9) using the r pivot variables in-
dexed by J .

3: Evaluate yVarpY.mq, and yCovpY.m, Y.`q for
` P J , using (10).

4: Evaluate yCovpY.m, Y.`q for ` P sJ ztmu
using Proposition 8.

5: end for

6: Form Σ̂, covariance matrix estimator in (11).
7: Compute the loading matrix estimator B̂

given in (12).
8: Compute Γ̂ “ B̂T B̂ ` σ2Idpˆp.
9: for each missing variable pY.jq do

10: for i such that Ωij “ 0 do
11: Ŷij Ð Impute Yij as in (13).
12: end for
13: end for

Algorithm 1 requires the set J , i.e. the selection of r pivot variables on which the regressions in
Propositions 4, 5 and 8 will be performed. If there are more than r variables that can be pivot,
we suggest selecting a bigger set (ą r) and computing the final estimator with the median of the
estimators over all possible combinations. The efficiency of this strategy is illustrated in Appendix C.
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The estimators associated to any missing variable in the steps 1 to 5 are computed in the complete
case, i.e. with the rows for which the missing variable is observed. When the pivot variables are
also missing, the complete case corresponds to discarding all rows where the pivot variables or the
MNAR one are missing and not all rows containing missing values. This could be problematic in the
high-dimensional setting, but here the low-rank assumption (r ă mintn, pu) ensures that the number
of pivot variables is small enough, so that the complete case analysis will not result in discarding
many rows of the dataset.

In order to estimate the coefficients in Definition 3, we use ordinary least squares despite that the
exogeneity assumption, i.e. the noise term is independent of the covariates, does not hold. It still leads
to accurate estimation in numerical experiments as shown in Section 4. Actually, the consistency
required by Assumption A3. holds as the variance of the noise tends to 0.

4 Numerical experiments

4.1 Synthetic data

We empirically compare Algorithm 1 (MNAR) to the state-of-the-art methods, including

(i) MAR: our method which has been adapted to handle MAR data (inspired by [18, Theorems
1, 2, 3] in linear models), see Appendix G for details;

(ii) EMMAR: which consists in an EM algorithm to perform PPCA with MAR values [5];
(iii) SoftMAR: a matrix completion method using an iterative soft-thresholding singular value

decomposition algorithm [13] relevant only for M(C)AR values;
(iv) MNARparam: a matrix completion technique modeling the MNAR mechanism with a

parametric logistic model [24].

Note that Method (ii) is specially designed to estimate the PPCA loading matrix and not to perform
imputation, but this is possible combining Method (ii) with steps 8 and 9 in Algorithm 1. This is the
other way around for completion Methods (iii) and (iv), but the loading matrix can be computed as in
(12). Note also that Methods (iii) and (iv) are developed in a context of low-rank models with fixed
effects. They require tuning a regularization parameter λ: we consider an oracle value minimizing
the true imputation error. We also use oracle values for the noise level and the rank in Algorithm 1.
These methods are compared with the imputation by the mean (Mean), which serves as a benchmark,
and the naive listwise deletion method (Del) which consists in estimating the parameters empirically
with the fully-observed data only. A comparison of the methods in terms of computational times is
given in Appendix D.

Measuring the performance. For the loading matrix, the RV coefficient [8], which is a measure
of relationship between two random vectors, is computed between the estimate B̂ and the true B. An
RV coefficient close to one means high correlation between the image spaces of B̂ and B. Denoting
the Frobenius norm as }.}F , the quality of imputation is measured with the normalized imputation
error given by }pŶ ´ Y q d p1´ Ωq}2F { }Y d p1´ Ωq}

2
F .

Setting. We generate a data matrix of size n “
1000 and p “ 10 from a PPCA model (1) with
two latent variables (r “ 2) and with a noise level
σ “ 0.1. Missing values are introduced on seven
variables pY.kqkPr1:7s according to a logistic self-
masked MNAR mechanism, leading to 35% of
missing values in total. Results are presented3

for one missing variable Y.1 (same results hold
for other missing variables). All the observed
variables pY.kqkPr8:10s are considered to be pivot.
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MAR 0.993
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SoftMAR 0.986
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Figure 2: Imputation error (left) and median of
the RV coefficients for the loading matrix (right).

3For a given set of PPCA parameters, the stochasticity comes from the process of drawing 20 times the latent
variables, the additive noise and the missing-data pattern.
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Figure 3 shows that Algorithms 1 is the only
one which always gives unbiased estimators of
the mean, variance and associated covariances of
Y.1. As expected, the listwise deletion method
provides biased estimates inasmuch as the ob-
served sample is not representative of the pop-
ulation with MNAR data. Method (ii), specifi-
cally designed for PPCA models but assuming
MAR missing values, provides biased estimators.
Method (iv) improves on the benchmark mean im-
putation and on Method (iii) as well as it explicitly
takes into account the MNAR mechanism, but it
still leads to biased estimates probably because
of the fixed effects model assumption. Figure 2
shows that Algorithm 1 gives the best estimate
of the loading matrix and the smallest imputation
error. Method (i), based on the same arguments
as Algorithm 1 but considering MAR data, may
be considered as a second choice for this low-
dimensional example as the biais is quite small
(yet not in higher dimension, see Appendix C).

Misspecification to the PPCA model. The
data matrix Y P Rnˆp of size n “ 200 and
p “ 10 is now generated under the fixed effects
model such that Y “ Θ ` ε, with Θ P Rnˆp
a low-rank matrix with r “ 2 and ε P Rnˆp a
Gaussian noise matrix with σ “ 0.1. Figure 4
shows that mean and variance estimators given
by Algorithm 1 have a larger variance than those
given by Method (iv) precisely dedicated to this
specific setting. But surprisingly, Algorithm 1
provides less biased estimates than Method (iv).
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Figure 3: Mean (top left) and variance (top right)
estimations of the missing variable and covari-
ances (bottom) estimations of CovpY.1, Y.2q (i.e.
covariance between two missing variables) and of
CovpY.1, Y.8q (i.e. between one missing variable
and one pivot variable). True values are indicated
by red lines.
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Figure 4: Mean (left) and variance (right) esti-
mations of Y.1 when data are generated under the
fixed effects model.

In Appendix C, we report further simulation results, where we vary the features dimension (p “ 50),
the rank (r “ 5), the missing values mechanism using probit self-masking and also multivariate
MNAR (when the probability to be missing for a variable depends on its underlying values and on
values of other variables that can be missing) and the percentage of missing values (10%, 50%).
We obtain similar results as before, and as expected, all the methods deteriorate with an increasing
percentage of missing values but our method remains stable.

In addition to the model misspecification experiment (assuming a fixed effect model), we assess
the robustness of the methods in terms of noise level and we evaluate the impact of under- or
overestimating the number r of latent variables. When the level of noise increases, our method is very
robust in terms of mean and variance estimations, and despite a bias for some covariances estimations
for large noise it outperforms competitors regarding the imputation error. It also turns out that the
procedure remains stable at a wrong specification of the number r of latent variables.

4.2 Application to recommendation system data

To show the extent and feasibility of our methodology on real data, we detail the methodology on the
Jester dataset [2] of 5000 users who rated 100 jokes, with 27% of missing values.

Discussion on the assumptions. First, considering MNAR and self-masking values is plausible
because users only rate jokes they like or dislike strongly or might be ashamed to assume their taste
for sexual jokes for instance. Then, Assumption A1., which can be viewed as a low-rank assumption
for the loading matrix, makes sense in the rating context: any variable (i.e. user preferences) can be
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expressed as a linear combination of r latent variables. In particular, the first latent variable opposes
individuals who like jokes about physics but dislike jokes about sexuality, and conversely. Finally,
Assumption A2. means that a user’s non-response for a sexual joke given all jokes may depend on
the scores of the sexual and physical jokes but not on the musical and computer jokes.

Selecting the number r of latent variables and estimating the noise variance. In practice, to
select r, one could use complete observations only but this is not possible when the number of
features is large. As an alternative, we use a cross-validation strategy assuming M(C)AR mechanism
as detailed in [7]. Algorithm 1 is robust to a misspecification of the rank (see Appendix C) and
thus a reasonable heuristic may already be enough. With r at hand, the noise variance is obtained
directly using weighted residual sum of squares as in [9]. Without further information on the missing
mechanisms, we select the r pivot variables with the lowest missing rate.

Imputation performances. To assess the quality of our
method, we introduce additional MNAR values using a logistic
self-masked mechanism in a chosen variable with an initial rate
of 33% and a final one of 65%. The other variables are consid-
ered M(C)AR. The process is repeated 10 times. We compare
our method to the EMMAR, SoftMAR and add an imputation
method based on deep generative models Deep [1]4. The para-
metric method MNARparam is not performed as it does not scale
on such large data. Figure 5 shows that Algorithm 1 outperforms
the competitors (mean imputation corresponds to an error of 1).
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Figure 5: Imputation error for the
Jester dataset.

4.3 Application to clinical data

We illustrate our method on the TraumaBase R© dataset containing the clinical measurements of 3159
patients with brain trauma injury (see Appendix E for more information). Nine quantitative variables,
selected by doctors, contain missing values (11% in the whole dataset). After discussion with doctors,
some variables can be considered to have MNAR values, such as the variable HR.ph, which denotes
the heart rate. Indeed, when the patient’s condition is too critical and therefore his heart rate is either
high or low, the heart rate may not be measured, as doctors prefer to provide emergency care.

As for the Jester dataset, we introduce additional MNAR values
in the variable HR.ph (which has an initial missing rate of 1%)
using a logistic self-masked mechanism leading to 50% missing
values. Both the rank and the noise level are estimated using
the complete-case analysis (1862 observations). The selection
of the pivot variables was discussed with experts (doctors) who
identified M(C)AR variables. In Figure 6, Algorithm 1 gives
significantly smaller imputation error than other methods. In
addition, a supervised learning task is also performed in Appendix
E for which Algorithm 1 also gives the smallest prediction error.
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Figure 6: Imputation error for the
TraumaBase dataset.

Conclusion

In this work, we propose a new estimation and imputation method to perform PPCA with MNAR data
(possibly coupled with M(C)AR data), without any need of modeling the missing mechanism. This
comes with strong theoretical guarantees as identifiability and consistency, but also with an efficient
algorithm. Estimating the rank in the PPCA setting with MNAR data remains non trivial. Once
the number of latent variables is estimated, the noise variance can be estimated. A cross-validation
strategy by additionally adding some MNAR values is a first solution, but this definitely requires
further research. Another ambitious prospect would be to extend work to the exponential family to
process count data, for example, which is prevalent in many application fields such as genomics.

4Note that this method requires to be trained on a complete dataset.
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Broader impact

Our goal is to provide a rigorous and consistent method for processing MNAR missing values, in
data with an underlying low-rank structure. The low-rank assumption has become widespread in
applications in recent years and it plays a key modeling role in many scientific and engineering tasks,
such as collaborative filtering, genome-wide studies, or even functional magnetic resonance imaging.

The problem of missing data is particularly evident for large data, possibly aggregated from multiple
sources, that is why we illustrate this work on a real dataset such as the medical register TraumaBase,
coming from different hospitals.

Managing informative missing data is a double challenge: on the one hand, because most of the
available data contains missing values, preventing the use of standard machine learning techniques;
and on the other hand, because the MNAR data can introduce large bias in the statistical analysis of
databases.

Because of the PPCA hypothesis and the processing of informative missing data, this work has a
wide range of applications.
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A Proof of Proposition 1

Proposition 1. Under Assumptions A01. and A02., the parameters pα,Σq of the PPCA model (1)
and the mechanism parameters φ “ pφ`q`Pt1,...pu are identifiable. Assuming that the noise level σ2 is
known, the parameter B is identifiable up to a row permutation.

For the sake of readability, we first present the proof of Proposition 1 in the case of the toy example
presented in Section 3.1 with p “ 3 and r “ 2. The proof in the general setting follows.
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A.1 Proof of Proposition 1 in the case of the toy example presented in Section 3.1

Consider the setting of the toy example presented in Section 3.1 with p “ 3 and r “ 2. The PPCA
model in (1) reads

"

Y “ pY1 Y2 Y3q “ pα1 α2 α3q ` pW1 W2qB ` ε,
Y „ N pα,Σq, Σ “ BTB ` σ2I.

Y2 and Y3 are assumed to be observed and Y1 is self-masked MNAR, i.e.

PpΩ1 “ 1|Y1, Y2, Y3;φ1q “ PpΩ1 “ 1|Y1;φ1q “ F1pφ
0
1 ` φ

1
1y1q, (14)

where F1 is strictly monotone with a positive finite support and where φ1 “ pφ
0
1, φ

1
1q.

Proof. Assume that pY,Ωq and pY 1,Ω1q have distributions respectively parameterized by pα,Σ, φ1q

and pα1,Σ1, φ11q. Assume that Y and Y 1 have the same observed distribution, i.e.

LpY1,Ω1 “ 1;α1,Σ11, φ1q “ LpY 11 ,Ω11 “ 1;α11,Σ
1
11, φ

1
1q (15)

LpY1, Yj ,Ω1 “ 1;α1, αj ,Σp1jq, φ1q “ LpY 11 , Y 1j ,Ω11 “ 1;α11, α
1
j ,Σ

1
p1jq, φ

1
1q j P t2, 3u, (16)

where Σp1jq is the covariance matrix
ˆ

Σ11 Σ1j

Σ1j Σjj

˙

. In order to show that parameters identifiability

holds, we need to show that (15) and (16) imply that α “ α1, Σ “ Σ1 and φ1 “ φ11. Then, under a
known noise level σ2, we prove that B and B1 are equal up to a row permutation.

As pY2, Y3q and pY 12 , Y
1
3q are fully observed, the parameters of the distributions LpY2q, LpY 12q, LpY3q,

LpY 13q, LpY2, Y3q and LpY 12 , Y 13q are identifiable. It trivially implies that α2 “ α12, Σ22 “ Σ122,
α3 “ α13, Σ33 “ Σ133 and Σ23 “ Σ123.

Identifiability of the MNAR variable variance. Equation (15) can be rewritten in terms of density
function as follows

fY1,Ω1“1py1;α1,Σ11, φ1q “ fY 11 ,Ω11“1py1;α11,Σ
1
11, φ

1
1q @y1 P R.

Given the missing mechanism in (14) and that Y.1 „ N pα1,Σ11q, [15, Theorem 1 a)] ensures that
Σ11 “ Σ111.

Identifiability of the Mean and the MNAR mechanism parameter. Using (15) and (16), the
previous computations entail that

LpY2|Y1,Ω1 “ 1;α1, α2,Σp12q, φ1q “ LpY 12 |Y 11 ,Ω11 “ 1;α11, α
1
2,Σ

1
p12q, φ

1
1q,

noting that

fY2|Y1“y1,Ω1“1py2;α1, α2,Σp12q, φ1q “
fY1,Y2,Ω1“1py1, y2;α1, α2,Σp12q, φ1q

fY1,Ω1“1py1;α1,Σ11, φ1q
@py1, y2q P R2

One obtains

PpΩ1 “ 1|Y1 “ y1, Y2 “ y2;φ1qfY2|Y1“y1py2;α1, α2,Σp12qq

PpΩ1 “ 1|Y1 “ y1;φ1q

“
PpΩ1.1 “ 1|Y 11 “ y1, Y

1
2 “ y2;φ11qfY 12 |Y 11“y1py2;α11, α

1
2,Σ

1
p12qq

PpΩ11 “ 1|Y1 “ y1;φ11q
@py1, y2q P R2

Yet,

PpΩ1 “ 1|Y1 “ y1, Y2 “ y2;φ1q “ ErEr1Ω1“1|Y1 “ y1, Y2 “ y2, Y3 “ y3;φ1s|Y1 “ y1, Y2 “ y2s

“ ErPpΩ1 “ 1|Y “ y;φ1q|Y1 “ y1, Y2 “ y2s

“ ErPpΩ1 “ 1|Y1 “ y1;φ1q|Y1 “ y1, Y2 “ y2s

“ PpΩ1 “ 1|Y “ y1;φ1q (17)
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by measurability. It implies for all y1 P R and y2 P R

fY2|Y1“y1py2;α1, α2,Σp12qq “ fY 12 |Y 11“y1py2;α11, α
1
2,Σ

1
p12qq

which leads to the equality of the conditional expectations and variances associated to the above
densities:

α2 ` Σ12Σ´1
11 pα1 ´ y1q “ α2 ` Σ112Σ´1

11 pα
1
1 ´ y1q @y1 P R

Σ22 ´ Σ2
12Σ´1

11 “ Σ22 ´ pΣ
1
12q

2Σ´1
11 .

It implies that

Σ2
12 “ pΣ

1
12q

2 ùñ |Σ12| “ |Σ
1
12| (18)

Σ21

Σ121

“
pα11 ´ y1q

pα1 ´ y1q
ùñ |α1 ´ y1| “ |α

1
1 ´ y1| @y1 P R (19)

Equation (19) implies that α1 “ α11, since for y1 “ α11, one has α1 ´ α
1
1 “ 0.

Using (16), one has

PpΩ1 “ 1|Y1 “ y1, Y2 “ y2;φ1qfpY1,Y2qpy1, y2;α1, α2,Σp12qq

“ PpΩ11 “ 1|Y 11 “ y1, Y
1
2 “ y2;φ11qfpY 11 ,Y 12qpy1, y2;α11, α

1
2,Σ

1
p12qq @py1, y2q P R2 (20)

Using (17),

exp

ˆ

´ 1
2 py1 ´ α1 y2 ´ α2qΣ´1

p12q

ˆ

y1 ´ α1

y2 ´ α2

˙˙

exp

ˆ

´ 1
2 py1 ´ α1 y2 ´ α2q pΣ1p12qq

´1

ˆ

y1 ´ α1

y2 ´ α2

˙˙

PpΩ1 “ 1|Y1 “ y1;φ1q

PpΩ11 “ 1|Y 11 “ y1;φ11q
“

b

detpΣp12qq
b

detpΣ1
p12qq

,

where detpΣp12qq denotes the determinant of the matrix Σp12q.

With (18), one has Σ11Σ22 ´ Σ2
12 “ Σ11Σ22 ´ pΣ

1
12q

2 and
?

detpΣp12qq?
detpΣ1

p12q
q
“ 1.

It leads to @py1, y2q P R2,

K ¨
PpΩ1 “ 1|Y1 “ y1;φ1q

PpΩ11 “ 1|Y 11 “ y1;φ11q
“ 1,

with

K :“
exp

´

´ 1
2detpΣp12qq

`

py1 ´ α1q
2Σ11 ` py2 ´ α2q

2Σ22 ´ 2py1 ´ α1qpy2 ´ α2qΣ12

˘

¯

exp
´

´ 1
2detpΣp12qq

ppy1 ´ α1q
2Σ11 ` py2 ´ α2q

2Σ22 ´ 2py1 ´ α11qpy2 ´ α2qΣ112q

¯ .

The quantity K is equal to one, because

py2 ´ α2q
`

py1 ´ α1qΣ12 ´ py1 ´ α
1
1qΣ

1
12

˘

“ 0

using (19). Thus,

PpΩ1 “ 1|Y1 “ y1;φ1q

PpΩ11 “ 1|Y 11 “ y1;φ11q
“ 1 ðñ F1pφ

0
1 ` φ

1
1y1q “ F1ppφ

1q01 ` pφ
1q11y1q @y1 P R

As F1 is strictly monotone, it is an injective function. Thus,

φ0
1`φ

1
1y1 “ pφ

1q01`pφ
1q11y1 @y1 P R ðñ pφ0

1´pφ
1q01q`ppφ

1q11´φ
1
1qy1 “ 0 @y1 P R

It implies φ1 “ φ11.
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Identifiability of the Covariances of the MNAR variable. Equation (20) thus leads to

fpY1,Y2qpy1, y2;α1, α2,Σp12qq “ fpY 11 ,Y 12qpy1, y2;α11, α
1
2,Σ

1
p12qq @py1, y2q P R2

One can conclude that Σ12 “ Σ112. The same reasoning may be done for the covariance between Y1

and Y3.

Identifiability of the loading matrix. One wants to prove B “ B1 up to row permutation. One
has

Σ “ Σ1 ô Σ´ σ2Ipˆp “ Σ1 ´ σ2Ipˆp

ô BTB “ pB1qTB1 (21)

As BTB is a positive symetric matrix of rank 2, one has the following singular value decomposition,

BTB “ pB1qTB1 “ UDUT ,

where U “ pu1|u2|u3q P R3ˆ3 the orthogonal matrix of singular vector and

D “

¨

˝

?
d1 0 0
0

?
d2 0

0 0 0

˛

‚P R3ˆ3

with d1 ě d2 ě 0. One can choose

B “

ˆ ?
d1u

T
1?

d2u
T
2

˙

noting that a row permutation of B would not change the product BTB. Therefore, B “ B1 up to a
row permutation.

A.2 Proof of Proposition 1 in the general case

We present the proof of Proposition 1 in the general case where d variables are self-masked MNAR
and p´ d variables are MCAR.

Proof. Assume that pY,Ωq and pY 1,Ω1q have distributions respectively parameterized by pα,Σ, φq
and pα1,Σ1, φ1q. Assume that Y and Y 1 have the same following observed distributions

LpYj ,Ωj “ 1;αj ,Σjj , φjq “ LpY 1j ,Ω1j “ 1;α1j ,Σ
1
jj , φ

1
jq @j P t1, . . . , pu, (22)

LpYj , Yk,Ωj “ 1,Ωk “ 1;αj , αk,Σpjkq, φj , φkq

“ LpY 1j , Y 1k,Ω1j “ 1,Ω1k “ 1;α1j , α
1
k,Σ

1
pjkq, φ

1
j , φ

1
kq @j ‰ k P t1, . . . , pu, (23)

where Σpjkq denotes the covariance matrix
ˆ

Σjj Σjk
Σjk Σkk

˙

.

In order to show that parameters identifiability holds, we need to show that (22) and (23) implies that
α “ α1, Σ “ Σ1 and φ “ φ1. Then, under a known noise level σ2, we will prove that B and B1 are
equal up to row permutations.

In what follows, fY.j or fpY.j ,Y.kq respectively denote the density function of Y.j , and of pY.j , Y.kq.

In the following, we will use the following tip, for any l P t1, . . . , pu and K Ă t1, . . . , puztlu such
that 0 ď |K| ď p´ 1,

PpΩl “ 1|Yl “ yl, YK “ yK;φlq “ ErEr1Ωl“1|Y ;φls|Yl “ yl, YK “ yKs

“ ErPpΩl “ 1|Y “ y;φlq|Yl “ yl, YK “ yKs

14



Thus, using the mechanisms in A01.,

PpΩl “ 1|Yl “ yl, YK “ yK;φlq

“

"

ErPpΩl “ 1|Yl “ yl;φlq|Yl “ yl, YK “ yKs if Yl is self-masked MNAR
ErPpΩl “ 1;φlq|Yl “ yl, YK “ yKs if Yl is MCAR

Thus,

PpΩl “ 1|Yl “ yl, YK “ yK;φlq “

"

PpΩl “ 1|Yl “ yl;φlq if Yl is self-masked MNAR
PpΩl “ 1;φlq if Yl is MCAR

(24)
(25)

by measurability if Yl is self-masked MNAR and by independence if Yl is MCAR.

Identifiability of the parameters for the not-MNAR variables pYjqjP ĎM.

Mechanism parameter, Mean and Variance of Yj , j P ĎM. Equation (22) leads to

PpΩj “ 1|Yj “ yj ;φjqfYj pyj ;αj ,Σjjq “ PpΩ1j “ 1|Y 1j “ yj ;φ
1
jqfY 1j pyj ;α

1
j ,Σ

1
jjq @yj P R.

Using (25), P pΩj “ 1q “ PpΩj “ 1|Yj “ yj ;φjq “ Fjpφjq. This distribution is identifiable since it
pertains to a conditional distribution of the observed data. As Fj is strictly monotone, it implies that

Fjpφjq “ Fjpφ
1
jq ðñ φj “ φ1j .

As φj “ φ1j , one obtains

fYj
pyj ;αj ,Σjjq “ fY 1j pyj ;α

1
j ,Σ

1
jjq @yj P R

which directly implies that αj “ α1j and Σjj “ Σ1jj , since Yj and Y 1j are Gaussian variables.

Covariance between two not MNAR variables Yj and Yk, j ‰ k P ĎM. Equation (23) gives that
for all pyj , ykq P R2

PpΩj “ 1,Ωk “ 1|Yj “ yj , Yk “ yk;φj , φkqfpYj ,Ykqpyj , yk;αj , αk,Σpj,kqq

“ PpΩ1j “ 1,Ω1k “ 1|Y 1j “ yj , Y
1
k “ yk;φ1j , φ

1
kqfpY 1j ,Y 1kqpyj , yk;α1j , α

1
k,Σ

1
pj,kqq, (26)

and one has as well that

PpΩj “ 1,Ωk “ 1|Yj “ yj , Yk “ yk;φj , φkq “ PpΩj “ 1|Yj “ yj ;φjqPpΩk “ 1|Yk “ yk;φkq,

using A02.. Likewise,

PpΩ1j “ 1,Ω1k “ 1|Y 1j “ yj , Y
1
k “ yk;φ1j , φ

1
kq “ PpΩ1j “ 1|Y 1j “ yj ;φ

1
jqPpΩ1k “ 1|Y 1k “ yk;φ1kq.

Given that φj “ φ1j and φk “ φ1k, one obtains

PpΩj “ 1,Ωk “ 1|Yj “ yj , Yk “ yk;φj , φkq “ PpΩ1j “ 1,Ω1k “ 1|Y 1j “ yj , Y
1
k “ yk;φj , φkq.

Thus, Equation (26) leads to, for all pyj , ykq P R2,

fpYj ,Ykqpyj , yk;αj , αk,Σpj,kqq “ fpY 1j ,Y 1kqpyj , yk;α1j , α
1
k,Σ

1
pj,kqq,

and Σjk “ Σ1jk.

Identifiability of the parameters for the MNAR variables.

Variance of Ym,m PM. Equation (22) gives that

fpYm,Ωm“1qpym;αm,Σmm, φmq “ fpY 1m,Ω1m“1qpym;α1m,Σ
1
mm, φ

1
mq @ym P R.

Given the self-masked missing mechanism in A01. and that Y.m „ N pαm,Σmmq, [15, Theorem 1
a)] ensures that Σmm “ Σ1mm.
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Mean and mechanism parameter of Ym,m PM. Let j P ĎM (a not MNAR variable). One has

LpYj ,Ωj “ 1|Ym,Ωm “ 1;αj , αm,Σpjmq, φj , φmq

“ LpY 1j ,Ω1j “ 1|Y 1m,Ω
1
m “ 1;α1j , α

1
m,Σ

1
pjmq, φ

1
j , φ

1
mq (27)

using (22) and (23) and noting that

fpYj ,Ωj“1q|Ym“ym,Ωm“1pyj ;αj , αm,Σpjmq, φj , φmq

“
fpYj ,Ωj“1,Ym,Ωm“1qpyj , ym;αj , αm,Σpjmq, φj , φmq

fpYm,Ωm“1qpym;αm,Σmm, φmq
@pyj , ymq P R2.

Equation (27) implies that @pyj , ymq P R2,

PpΩj “ 1|Yj “ yj , Ym “ ym,Ωm “ 1;φjq
PpΩm “ 1|Yj “ yj , Ym “ ym;φmqfYj |Ym“ym pyj ;αj , αm,Σpjmqq

PpΩm “ 1|Ym “ ym;φmq

“ PpΩ1j “ 1|Y
1
j “ yj , Y

1
m “ ym,Ω

1
m “ 1;φ

1
jq

PpΩ1m “ 1|Y 1j “ yj , Y
1
m “ ym;φ1mqfY 1

j
|Y 1m“ym

pyj ;α1j , α
1
m,Σ

1
pjmqq

PpΩ1m “ 1|Y 1m “ ym;φ1mq
(28)

One can note that

PpΩj “ 1|Yj “ yj , Ym “ ym,Ωm “ 1;φjq “ PpΩj “ 1|Yj “ yj ;φjq.

Indeed,

PpΩj “ 1|Yj “ yj , Ym “ ym,Ωm “ 1;φjq “
PpΩj “ 1X Ωm “ 1|Yj “ yj , Ym “ ym;φj , φmq

PpΩm “ 1|Yj “ yj , Ym “ ym;φmq

“
PpΩj “ 1|Yj “ yj ;φjqPpΩm “ 1|Ym “ ym;φmq

PpΩm “ 1|Yj “ yj , Ym “ ym;φmq

“ PpΩj “ 1|Yj “ yj ;φjq,

using A02. in the second step. Likewise,

PpΩ1j “ 1|Y 1j “ yj , Y
1
m “ ym,Ω

1
m “ 1;φ1jq “ PpΩ1j “ 1|Y 1j “ yj ;φ

1
jq.

Given that φj “ φ1j ,

PpΩj “ 1|Yj “ yj , Ym “ ym,Ωm “ 1;φjq “ PpΩ1j “ 1|Y 1j “ yj , Y
1
m “ ym,Ω

1
m “ 1;φ1jq

Thus, Equation (28) leads to

PpΩm “ 1|Yj “ yj , Ym “ ym;φmqfYj |Ym“ympyj ;αj , αm,Σpjmqq

PpΩm “ 1|Ym “ ym;φmq

“
PpΩ1m “ 1|Y 1j “ yj , Y

1
m “ ym;φ1mqfY 1j |Y 1m“ympyj ;α

1
j , α

1
m,Σ

1
pjmqq

PpΩ1m “ 1|Y 1m “ ym;φ1mq
@pyj , ymq P R2.

As PpΩm “ 1|Yj “ yj , Ym “ ym;φmq “ PpΩm “ 1|Ym “ ym;φmq by using (A.2), one obtains

fYj |Ym“ympyj ;αj , αm,Σpjmqq “ fY 1j |Y 1m“ympyj ;α
1
j , α

1
m,Σ

1
pjmqq @pyj , ymq P R2,

which leads to the equality of the conditional expectation and variance, as follows:

αj ` ΣmjΣ
´1
mmpαm ´ ymq “ α1j ` Σ1mjpΣ

1
mmq

´1pα1m ´ ymq @pyj , ymq P R2

Σjj ´ Σ2
mjΣ

´1
mm “ Σ1jj ´ pΣ

1
mjq

2pΣ1mmq
´1

As αj “ α1j and Σmm “ Σ1mm,

Σ2
mj “ pΣ

1
mjq

2 ùñ |Σmj | “ |Σ
1
mj | (29)

Σmj
Σ1mj

“
pα1m ´ ymq

pαm ´ ymq
ùñ |αm ´ ym| “ |α

1
m ´ ym| @ym P R (30)
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Equation (30) implies that αm “ α1m, since for ym “ α1m, one has αm ´ α1m “ 0.

In addition, using (23), one has for all pyj , ymq P R2,

PpΩj “ 1,Ωm “ 1|Yj “ yj , Ym “ ym;φj , φmqfpYj ,Ymqpyj , ym;αj , αm,Σpjmqq

“ PpΩ1j “ 1,Ω1m “ 1|Y 1j “ yj , Y
1
m “ ym;φ1j , φ

1
mqfpY 1j ,Y 1mqpyj , ym;α1j , α

1
m,Σ

1
pjmqq (31)

One can note that

PpΩj “ 1,Ωm “ 1|Yj “ yj , Ym “ ym;φj , φmq

“ PpΩj “ 1;φjqPpΩm “ 1|Ym “ ym;φmq,

using A02. and the tips given in and (25). The same equation holds for pY 1j , Y
1
m,Ω

1
j ,Ω

1
mq with the

parameters pφ1j , φ
1
mq. Using φj “ φ1j , Equation (31) leads to

PpΩm “ 1|Ym “ ym;φmqfpYj ,Ymqpyj , ym;αj , αm,Σpjmqq “

PpΩ1m “ 1|Y 1m “ ym;φ1mqfpY 1j ,Y 1mqpyj , ym;α1j , α
1
m,Σ

1
pjmqq @pyj , ymq P R2. (32)

It implies that, @pyj , ymq P R2,

exp

ˆ

´ 1
2

`

yj ´ αj ym ´ αm

˘

Σ´1
pjmq

ˆ

yj ´ αj

ym ´ αm

˙˙

exp

ˆ

´ 1
2

`

yj ´ α
1
j ym ´ α

1
m

˘

pΣ1
pjmqq

´1

ˆ

yj ´ α
1
j

ym ´ α
1
m

˙˙

PpΩm “ 1|Ym “ ym;φmq

PpΩ1m “ 1|Y 1m “ ym;φ1mq
“

a

detpΣpjmqq
b

detpΣ1
pjmqq

,

where detpΣpjmqq denotes the determinant of the covariance matrix Σpjmq.

With Σjj “ Σ1jj , Σmm “ Σ1mm and Equation (29), one has

ΣjjΣmm ´ Σ2
mj “ ΣjjΣmm ´ pΣ

1
mjq

2 ùñ

b

detpΣpjmqq
b

detpΣ1
pjmqq

“ 1.

Besides, using αj “ α1j , Σjj “ Σ1jj and Σmm “ Σ1mm, one obtains that for all pyj , ymq P R2,

K ¨
PpΩm “ 1|Ym “ ym;φmq

PpΩ1m “ 1|Y 1m “ ym;φ1mq
“ 1,

with

K :“
exp

´

´ 1
2detpΣpjmqq

`

pyj ´ αjq
2Σjj ` pym ´ αmq

2Σmm ´ 2pyj ´ αjqpym ´ αmqΣmj
˘

¯

exp
´

´ 1
2detpΣpjmqq

`

pyj ´ αjq2Σjj ` pym ´ αmq2Σmm ´ 2pyj ´ αjqpym ´ α1mqΣ
1
mj

˘

¯ .

The quantity K is equal to one, because

pyj ´ αjqppym ´ αmqΣmj ´ pym ´ α
1
mqΣ

1
mjq “ 0

using (30). Thus, for all ym P R,

PpΩm “ 1|Ym “ ym;φmq

PpΩ1m “ 1|Y 1m “ ym;φ1mq
“ 1 ðñ Fmpφ

0
m ` φ

1
mymq “ Fmppφ

1q0m ` pφ
1q1mymq.

As F is strictly monotone, it is an injective function. Thus,

φ0
m ` φ

1
mym “ pφ

1q0m ` pφ
1q1mym ô ppφ1q0m ´ φ

0
mq ` ppφ

1q1m ´ φ
1
mqym “ 0 @y1 P R

It implies that φm “ φ1m.

Covariance between Yj and Ym with j P ĎM,m PM. Using (32) and φm “ φ1m, one has

fpYj ,Ymqpyj , ym;αj , αm,Σpjmqq “ fpY 1j ,Y 1mqpyj , ym;α1j , α
1
m,Σ

1
pjmqq @pyj , ymq P R2

One can conclude that Σmj “ Σ1mj .
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Covariance between Y` and Ym with ` ‰ m PM. Using (23), one has for all py`, ymq P R2,

PpΩ` “ 1,Ωm “ 1|Yj “ yj , Ym “ ym;φ`, φmqfpY`,Ymqpy`, ym;α`, αm,Σp`mqq

“ PpΩ1` “ 1,Ω1m “ 1|Y 1` “ y`, Y
1
m “ ym;φ1`, φ

1
mqfpY 1` ,Y 1mqpy`, ym;α1`, α

1
m,Σ

1
p`mqq (33)

One can note that

PpΩ` “ 1,Ωm “ 1|Y` “ y`, Ym “ ym;φ`, φmq

“ PpΩ` “ 1|Y` “ y`;φ`qPpΩm “ 1|Ym “ ym;φmq,

using A02. and the tip given in (A.2). The same equation holds for pY 1` , Y
1
m,Ω

1
`,Ω

1
mq with the

parameters pφ1`, φ
1
mq. Yet φ` “ φ1` and φm “ φ1m, which gives, for all pyj , ymq P R2,

PpΩ` “ 1,Ωm “ 1|Y` “ y`, Ym “ ym;φ`, φmq “ PpΩ1` “ 1,Ω1m “ 1|Y 1` “ y`, Y
1
m “ ym;φ`, φ

1
mq.

Equation (33) leads to

fpY`,Ymqpy`, ym;α`, αm,Σp`mqq “ fpY 1` ,Y 1mqpy`, ym;α1`, α
1
m,Σ

1
p`mqq @py`, ymq P R2,

which implies that Σ`m “ Σ1`m.

Identifiability of the loading matrix. One wants to prove that B “ B1 up to a row permutation.
One has

Σ “ Σ1 ðñ Σ´ σ2Ipˆp “ Σ1 ´ σ2Ipˆp

ðñ BTB “ pB1qTB1 (34)

As BTB is a positive symetric matrix of rank r, its singular value decomposition reads

BTB “ pB1qTB1 “ UDUT ,

where U “ pu1| . . . |upq P Rpˆp is an orthogonal matrix containing the singular vectors and

D “

¨

˚

˚

˚

˚

˚

˚

˚

˝

?
d1

. . . 0?
dr

0 0
. . .

0

˛

‹

‹

‹

‹

‹

‹

‹

‚

P Rpˆp

with d1 ě ¨ ¨ ¨ ě dr ě 0. One can choose

B “

¨

˚

˝

?
d1u

T
1

...
?
dru

T
r

˛

‹

‚

A row permutation of B does not change the product BTB. Therefore, B “ B1 up to a row
permutation.

B Proof for Section 3

B.1 Proof of Lemma 2

Lemma 2. Under the PPCA model (1) and Assumption A1., choose j P J . Denote B´1 P Rrˆr the
inverse of

`

B.m pB.j1qj1PJ´j

˘

. One has

Y.j “ BjÑm,J´jr0s `
ÿ

j1PJ´j

BjÑm,J´jrj1sY.j1 ` BjÑm,J´jrmsY.m ` ζ

18



with:

BjÑm,J´jrj1s :“
ÿ

kPtmuYJ´j

B´1
kj1Bjk,@j

1 P J´j

BjÑm,J´jrms :“
ÿ

kPtmuYJ´j

B´1
kmBjk,

BjÑm,J´jr0s :“ 1αj ´
ÿ

j1PJ´j

BjÑm,J´jrj1s1αj1 ´ BjÑm,J´jrms1αm

ζ “ ´
ÿ

j1PJ´j

BjÑm,J´jrj1sε.j1 ´ BjÑm,J´jrmsε.m ` ε.j

Proof. Starting from the PPCA model written in (1) and recalled here

Y “ 1α`WB ` ε

and the matrix B P Rrˆp being of full rank r, solving this linear system is the same as solving the
following reduced system

`

Y.m pY.j1qj1PJ´j

˘

“ 1α|r ` pW.1 . . . W.rqB|r ` ε|r,

where B|r P Rrˆr denotes the reduced matrix
`

B.m pB.j1qj1PJ´j

˘

of B. Similarly, α|r P Rr and
ε|r P Rnˆr denote the reduced matrices of α and ε. With a slight abuse of notation, B´1 denotes the
inverse of the reduced matrix

`

B.m pB.j1qj1PJ´j

˘

which exists using A1..

Then, one can derive that

pW.1 . . . W.rq “
``

Y.m pY.j1qj1PJ´j

˘

´ 1α|r ´ ε|r
˘

B´1.

The expression of Y.j as a function of the latent variables is

Y.j “ 1αj ` pW.1 . . . W.rqBj. ` ε.j

“ 1αj `
``

Y.m pY.j1qj1PJ´j

˘

´ 1α|r ´ ε|r
˘

B´1Bj. ` ε.j ,

so that

Y.j “
ÿ

`PtmuYJ´j

¨

˝

ÿ

kPtmuYJ´j

B´1
k` Bjk

˛

‚Y.`

´
ÿ

`PtmuYJ´j

¨

˝

ÿ

kPtmuYJ´j

B´1
k` Bjk

˛

‚p1α` ` ε.`q ` ε.j ` 1αj .

which leads to the desired solution.

B.2 Proof of Proposition 4

Proposition 4 (Mean estimator). Consider the PPCA model (1). Under Assumptions A1. and A2., an
estimator of the mean of a MNAR variable Y.m, for m PM, can be constructed as follows: choose
j P J , and compute

α̂m :“
α̂j ´ B̂cjÑm,J´jr0s

´
ř

j1PJ´j
B̂cjÑm,J´jrj1s

α̂j1

B̂cjÑm,J´jrms

,

with the pB̂jÑm,J´jrksq’s estimators of the coefficients given in Definition 3 and assuming that the
coefficient BcjÑm,J´jrms

estimated by B̂cjÑm,J´jrms
is non zero.

Under the additional Assumptions A3. and A4., this estimator is consistent.

19



Proof. The main goal is to obtain a formula for α.m, i.e.

αm “
αj ´ BcjÑm,J´jr0s

´
ř

j1PJ´j
BcjÑm,J´jrj1s

αj1

BcjÑm,J´jrms

, (35)

from which an estimator can be deduced. The idea is to express αj from αm and pαj1qj1PJ´j
. Note

that ErY.js “ ErErY.j |pY.kqkPĚtjuss. Assumption A2. leads to

ErY.j |pY.kqkPĚtjus “ ErY.j |pY.kqkPĚtju,Ω.m “ 1s.

Then, by Definition 3 which gives pY.jq|Ω.m“1,

ErY.j |pY.kqkPĚtju,Ω.m “ 1s

“ E

»

–Bc
jÑm,J´j r0s `

ÿ

kPtmuYJ´j

Bc
jÑm,J´j rksY.k ` ζ

c

ˇ

ˇ

ˇ

ˇ

pY.kqkPĚtju

fi

fl

“ Bc
jÑm,J´j r0s `

ÿ

kPtmuYJ´j

Bc
jÑm,J´j rksY.k ` E

„

ζc
ˇ

ˇ

ˇ

ˇ

pY.kqkPĚtju



Thus, by taking the mean and given that Erε.ks “ 0,@k P tmu Y J´j , one has

αj “ BcjÑm,J´jr0s
`

ÿ

j1PJ´j

BcjÑm,J´jrj1s
αj1 ` BcjÑm,J´jrms

αm,

implying Equation (35), provided that BcjÑm,J´jrms
‰ 0.

From this formula for the mean αm, one define its estimator α̂m as in (9). It is trivially consistent as
the linear combination of consistent quantities under A3. and A4.

B.3 Proof of Proposition 5

Proposition 5 (Variance and covariances estimators). Consider the PPCA model (1). Under As-
sumptions A1. and A2., an estimator of the variance of a MNAR variable Y.m for m PM and its
covariances with the pivot variables, can be constructed as follows: choose j P J and compute

`

yVarpY.mq yCovpY.m, pY.kqkPJ q
˘T

:“ pxMjq
´1

pPj ,

assuming that σ2 tends to zero and the inverse of the matrix Mj estimated by pxMjq
´1 exists, with

xMj “
pB̂cjÑm,J´jrms

q2 0 2B̂cjÑm,J´jrms

´

B̂cjÑm,J´jrJ´js

¯T

´pB̂ckÑm,J´krms
qkPJ

»

—

—

–

fi

ffi

ffi

fl

pxMkqkPJ

P R

P Rr

P RrP R

Let us precise that xMj P Rpr`1qˆpr`1q. One has pB̂ckÑm,J´krms
qkPJ “

¨

˚

˚

˝

B̂cj1Ñm,J´j1 rms

...
B̂cjrÑm,J´jr rms

˛

‹

‹

‚

.

One details xMk for k “ j1 and the same definition is valid for all k P J .

xM j1 “

´

1 ´B̂cj1Ñm,J´j1
rj2s

. . . ´B̂cj1Ñm,J´j1
rjrs

¯

P Rr

pPj “
pyVarpY.jq ´Q

c ´ pB̂cjÑm,J´jrJ´js
qTyVarpYJ´j qB̂cjÑm,J´jrJ´js

´

ppB̂ckÑm,J´k
qT p1 α̂m pα̂`q`PJ´kq

T
´ α̂kqα̂m

¯

kPJ

»

—

—

–

fi

ffi

ffi

fl

P R

P Rr

P R
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Q̂c “
´

yVarpY.jq
ˇ

ˇΩ.m “ 1
¯

´

´

yCovppY.kqkPĚtju, Y.jq
yVarppY.kqkPĚtjuq

´1
yCovppY.kqkPĚtju, Y.jq

T
ˇ

ˇΩ.m “ 1
¯

.

Under the additional Assumptions A3. and A4., the estimators for the variance of Y.m and its
covariances with the pivot variables given in (11) are consistent.

Proof. As for the mean, to derive some estimator of the variance and the covariances, we want to
obtain a formula as

Mj pVarpY.mq CovpY.m, pY.kqkPJ qq
T
“
`

Pj ´Opσ2q
˘

, (36)

with

Mj “
pBcjÑm,J´jrms

q2 0 2BcjÑm,J´jrms

´

BcjÑm,J´jrJ´js

¯T

´pBckÑm,J´krms
qkPJ

»

—

–

fi

ffi

fl

pMkqkPJ

P R

P Rr

P RrP R

Let us precise that Mj P Rpr`1qˆpr`1q. One has pBckÑm,J´krms
qkPJ “

¨

˚

˝

Bcj1Ñm,J´j1 rms

...
BcjrÑm,J´jr rms

˛

‹

‚

.

One details Mk for k “ j1 and the same definition is valid for all k P J .

M j1 “

´

1 ´Bcj1Ñm,J´j1 rj2s
. . . ´Bcj1Ñm,J´j1 rjrs

¯

P Rr

Pj “
pVarpY.jq ´Q

c ´ pBcjÑm,J´jrJ´js
qTVarpYJ´j qBcjÑm,J´jrJ´js

´

ppBckÑm,J´k
qT p1 ErY.ms pErY.`sq`PJ´kq

T
´ ErY.ksqErY.ms

¯

kPJ

»

—

–

fi

ffi

fl

P R

P Rr

P R

Opσ2q “
ovarpσ

2q

´
`

ocov,kpσ
2q
˘

kPJ

»

–

fi

fl

P R
P Rr

P R

,

with ovarpσ
2q and ocov,kpσ

2q detailed in (42) and (45) respectively.

Qc “
`

VarpY.jq
ˇ

ˇΩ.m “ 1
˘

´

´

CovppY.kqkPĚtju, Y.jqVarppY.kqkPĚtjuq
´1CovppY.kqkPĚtju, Y.jq

T
ˇ

ˇΩ.m “ 1
¯

. (37)

The strategy is to prove each equality of the linear system in (36).

Deriving an equation for the variance. The idea is first to express VarpY.jq from VarpY.mq,
pVarpY.j1qqj1PJ´j

and pCovpY.k, Y.`qqk‰`PtmuYJ´j
. The law of total variance reads as

VarpY.jq “ ErVarpY.j |Zqs `VarpErY.j |Zsq, (38)

with Z “ pY.kqkPĚtju.
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For the first term in (38), using Assumption A2., one has

Y.j KK pΩ.m “ 1q|Z

which leads to
VarpY.j |Zq “ VarpY.j |Z,Ω.m “ 1q.

The conditional variance for a Gaussian vector gives

VarpY.j |Zq “ VarpY.jq ´ CovpZ, Y.jqVarpZq´1CovpZ, Y.jq
T ,

implying that

VarpY.j |Z,Ω.m “ 1q “
`

VarpY.jq ´ CovpZ, Y.jqVarpZq´1CovpZ, Y.jq
T
ˇ

ˇΩ.m “ 1
˘

and then, as deterministic quantity,

ErVarpY.j |Zqs “
`

VarpY.jq ´ CovpZ, Y.jqVarpZq´1CovpZ, Y.jq
T
ˇ

ˇΩ.m “ 1
˘

.

One has

CovpZ, Y.jqVarpZq´1CovpZ, Y.jq
T “

CovppY.kqkPĚtju, Y.jqVarppY.kqkPĚtjuq
´1CovppY.kqkPĚtju, Y.jq

T

leading to
ErVarpY.j |Zqs “ Qc, (39)

where Qc is defined in (37).

For the second term of (38), remark that A2. implies that

VarpErY.j |Zsq “ VarpErY.j |Z,Ω.m “ 1sq,

and

VarpErY.j |Z,Ω.m “ 1sq “ Var

¨

˝E

»

–BcjÑm,J´jr0s
`

ÿ

kPtmuYJ´j

BcjÑm,J´jrks
Y.k ` ζ

c

ˇ

ˇ

ˇ

ˇ

Z

fi

fl

˛

‚,

i.e.

VarpErY.j |Z,Ω.m “ 1sq

“ Var

¨

˝

ÿ

kPtmuYJ´j

Bc
jÑm,J´j rksY.k ´

ÿ

kPtmuYJ´j

Bc
jÑm,J´j rksErε.k|Zs ` Bc

jÑm,J´j r0s ` Erε.js

˛

‚

In the variance, the first term is obtained using that the variables pY.kqkPtmuYJ´j
are Z´measurable.

The two last terms use that BcjÑm,J´jr0s
is a constant and ε.j is independent of Z. To calculate the sec-

ond term, involving Erε.k|Zs, one first shows that the vector
`

pY.kqkPtmuYJ´j
pε.kqkPtmuYJ´j

˘T

is Gaussian. Indeed,

• pY.kqkPtmuYJ´j
is a Gaussian vector, using the model (1).

• pε.kqkPtmuYJ´j
is a Gaussian vector, because its components are independent Gaussian

variables.

• for k ‰ ` P tmu Y J´j , pWBk. ε.`q
T is a Gaussian vector, because Y.k KK ε.`.

• for k P tmu YJ´j , pY.k ε.kq
T is a Gaussian vector, given that Y.k is a linear combination

of pWBk. ε.kq
T which is Gaussian, as WBk. and ε.k are independent Gaussian variables.

Thus,

Erε.k|Zs “ Erε.ks ` Covpε.k, ZqVarpZq´1pZ ´ ErZsq
“ Covpε.k, Y.kqpVarpZq´1qk.pZ ´ ErZsq,
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using Covpε.k, Y.lq “ 0, for k ‰ l. ΓZ “ VarpZq´1 denotes the inverse of the covariance matrix of
Z and pΓZqk. is its k-th row. It leads to

Erε.k|Zs “ σ2pΓZqk.pZ ´ ErZsq. (40)
given that Covpε.k, Y.kq “ Covpε.k,WBk. ` ε.kq “ Varpε.kq.

Therefore,

VarpErY.j |Z,Ω.m “ 1sq “
ÿ

kPtmuYJ´j

pBcjÑm,J´jrks
q2VarpY.kq

`
ÿ

pkă`qPtmuYJ´j

2BcjÑm,J´jrks
BcjÑm,J´jr`s

CovpY.k, Y.`q ` ovarpσ
2q, (41)

where

ovarpσ
2
q “ ´2σ2

ÿ

pk,`qPtmuYJ´j

Bc
jÑm,J´j rksB

c
jÑm,J´j r`s

ÿ

`1PtmuYJ´j

pΓZq``1CovpY.k, Y.`1q

` σ4
ÿ

kPtmuYJ´j

pBc
jÑm,J´j rksq

2

¨

˝

ÿ

p`ă`1qPtmuYJ´j

pΓZq
2
k`VarpY.`q ´ 2pΓZqk`pΓZqk`1CovpY.`, Y.`1q

˛

‚

´ 2σ4
ÿ

pkă`qPtmuYJ´j

Bc
jÑm,J´j rksB

c
jÑm,J´j r`s

ÿ

pk1,`1qPtmuYJ´j

pΓZqkk1pΓZq``1CovpY.k1 , Y.`1q (42)

Combining (39) with (41), one get the following expression for the first line of the linear system

pBcjÑm,J´jrms
q2VarpY.mq `

ÿ

j1PJ´j

2BcjÑm,J´jrj1s
BcjÑm,J´jrms

CovpY.j1 , Y.mq

“ VarpY.jq ´Q
c ´ pBcjÑm,J´jrJ´js

qTVarpYJ´j
qBcjÑm,J´jrJ´js

´ ovarpσ
2q (43)

Deriving equations for the covariances. Let k be an element of J , our objective is to express
CovpY.m, Y.kq from VarpY.mq, αm, pαkqkPJ and pCovpY.m, Y.kqqkPtmuYJ .

CovpY.m, Y.kq “ ErY.mY.ks ´ ErY.msErYks
“ ErErY.mY.k|Zss ´ ErY.msErY.ks
“ ErY.mErY.k|Zss ´ ErY.msErY.ks, (44)

with Z “ pY.`q`PĚtku.

For the first term in (44), one has

ErY.mErY.k|Zss
piq
“ErY.mErY.k|Z,Ω.m “ 1ss

piiq
“ E

»

–Y.m

¨

˝BckÑm,J´kr0s
`

ÿ

`PtmuYJ´k

BckÑm,J´kr`s
Y.` ` Erζck|Zs

˛

‚

fi

fl

piiiq
“ BckÑm,J´kr0s

ErY.ms ` BckÑm,J´krms
ErY 2

.ms

`
ÿ

`PJ´k

BckÑm,J´kr`s
ErY.mY.`s ` ocov,kpσ

2q

with ζck “ ´
ř

`PJ´k
BckÑm,J´kr`s

ε.` ´ BckÑm,J´krms
ε.m ` ε.k.

Assumption A2. and Definition 3 are used for (i) and (ii) respectively. For (iii), using (40), one has

ErY.mErζck|Zss “ E

»

–Y.m

¨

˝´
ÿ

`PtmuYJ´k

BckÑm,J´kr`s
σ2pΓZq`.pZ ´ ErZsq

˛

‚

fi

fl ,

given that Erε.k|Zs “ Erε.ks “ 0 by independence.

ErY.mErζck|Zss

“ ´σ2E

»

–

ÿ

`PtmuYJ´k

BckÑm,J´kr`s
Y.m

ÿ

`1tmuYPJ´k

pΓZq``1pY.`1 ´ ErY.`1sq

fi

fl .
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In addition,

E

»

–

ÿ

`PtmuYJ´k

BckÑm,J´kr`s
Y.m

ÿ

`1PtmuYJ´k

pΓZq``1pY.`1 ´ ErY.`1sq

fi

fl

“
ÿ

`PtmuYJ´k

ÿ

`1PtmuYJ´k

pΓZq``1BckÑm,J´kr`s
pCov pY.m, Y.`1q ` ErY.msErpY.`1 ´ ErY.`1sqsq

“
ÿ

`PtmuYJ´k

ÿ

`1PtmuYJ´k

pΓZq``1BckÑm,J´kr`s
Cov pY.m, Y.`1q

It implies that, in (iii),

ocov,kpσ
2q “ ´σ2

ÿ

`PtmuYJ´k

ÿ

`1PtmuYJ´k

pΓZq``1BckÑm,J´kr`s
Cov pY.m, Y.`1q (45)

Equation (44) leads thus to

CovpY.m, Y.kq “ BckÑm,J´kr0s
ErY.ms ` BckÑm,J´krms

pVarpY.mq ` ErY.ms2q

`
ÿ

`PJ´k

BckÑm,J´kr`s
pCovpY.m, Y.`q ` ErY.msErY.`sq ´ ErY.msErY.ks ` ocov,kpσ

2q, (46)

which can be rewritten as

CovpY.m, Y.kq ´ BckÑm,J´krms
VarpY.mq ´

ÿ

`PJ´k

BckÑm,J´kr`s
CovpY.m, Y.`q

“ ppBckÑm,J´k
qT p1 ErY.ms pErY.`sq`PJ´kq

T
´ ErY.ksqErY.ms ` ocov,kpσ

2q, (47)

Combining Equations (43) and (47) forms the desired matrix system (36).

From these formulae for pVarpY.mq CovpY.m, pY.kqkPJ qq
T , assuming that Mj is invertible and

that σ2 tends to zero, one get their estimators
`

yVarpY.mq yCovpY.m, pY.kqkPJ q
˘T

defined in (10).

As for the consistency, α̂m is a consistent estimator for αm by using Proposition 4. The estimators in
(10) are consistent, under Assumption A3. and A4..

B.4 Proof of Proposition 8

For deriving the covariance between a MNAR variable and a MNAR or not pivot variable, we assume
the following

A5. @m PM, @` P sJ´m, for all setH Ă J´j such that |H| “ r´ 2, pB.m B.` pB.j1qj1PHq
is invertible,

A6. @k P sJ zM, @j P J , Y.j KK Ω.k|pY.`q`PĚtju.

A7. @k, ` P sJ , k ‰ l, Ω.k KK Ω.`|Y

A8. @j P J ,@m PM,@` P sJ´m, for all set H Ă J´j such that |H| “ r ´ 2, the complete-
case coefficients BcjÑm,`,Hr0s and BcjÑm,`,Hrks, k ‰ j, k P tm, `u YH can be consistently
estimated. (Here, note that the complete case is when Ω.m “ 1 and Ω.` “ 1.)

A9. For the variables neither MNAR nor pivot, their means pαkqkP sJ zM, variances
pVarpY.kqqkP sJ zM and covariances pCovpY.k, Y.k1qqk‰k1P sJ zM can be consistently estimated.
The covariances between these variables and the pivot variables pCovpY.j , Y.kqqjPJ ,kP sJ zM
are also consistent.

Proposition 8 (Covariance between a MNAR variable and a MNAR or not pivot variable). Consider
the PPCA model (1). Under Assumptions A2., A5., A6. and A7., an estimator of the covariance
between a MNAR variable Y.m, for m PM, and a variable Y.`, for ` P sJ ztmu, can be constructed
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as follows: choose j P J and r ´ 2 variable indexes in J´j and compute:

yCovpY.m, Y.`q “
1

K̂
yVarpY.jq ´ q̂

c ´
ÿ

kPtm,`uYH

pB̂cjÑm,`,Hrksq
2
yVarpY.kq

´
ÿ

kăk1,kPtm,`uYH,k1PH

2B̂cjÑm,`,HrksB̂
c
jÑm,`,Hrk1s

yCovpY.k, Y.k1q, (48)

assuming that σ2 tends to zero and with K̂ “ 2B̂cjÑm,`,HrmsB̂
c
jÑm,`,Hr`s and

q̂c “
´

yVarpY.jq
ˇ

ˇΩ.m “ 1,Ω.` “ 1
¯

´

´

yCovppY.kqkPĚtju, Y.jq
yVarppY.kqkPĚtjuq

´1
yCovppY.kqkPĚtju, Y.jq

T
ˇ

ˇΩ.m “ 1,Ω.` “ 1
¯

,

given that K estimated by K̂ is non zero.

Under the additional Assumptions A3., A8. and A9.. this estimator given in (48) is consistent.

Proof. LetH be the set of the r ´ 2 variable indexes. One hasH Ă J´j . We use the same strategy
as the proof for Proposition 5 (paragraph for deriving an equation for the variance).

To derive a formula for CovpY.m, Y.`q with m PM and ` P sJ´m, the idea is to express VarpY.jq
from pVarpY.kqqkPtm,`uYH and pCovpY.k, Y.k1qqk‰k1Ptm,`uYH.

The law of total variance reads as

VarpY.jq “ ErVarpY.j |Zqs `VarpErY.j |Zsq, (49)

with Z “ pY.kqkPĚtju.

For the first term in (49), one uses
Y.j KK Ω.m,Ω.`|Z.

If Y.m and Y.` are both MNAR variables, this conditional independance is obtained using Assumption
A2. and A7.. Otherwise, if Y.` is not a MNAR variable, Assumption A6. and A7. lead to the desired
result. It implies

VarpY.j |Zq “ VarpY.j |Z,Ω.m “ 1,Ω.` “ 1q.

The conditional variance for a Gaussian vector gives

VarpY.j |Zq “ VarpY.jq ´ CovpZ, Y.jqVarpZq´1CovpZ, Y.jq
T ,

implying that

VarpY.j |Z,Ω.m “ 1,Ω.` “ 1q

“
`

VarpY.jq ´ CovpZ, Y.jqVarpZq´1CovpZ, Y.jq
T
ˇ

ˇΩ.m “ 1,Ω.` “ 1
˘

and then, as deterministic quantity,

ErVarpY.j |Zqs “ qc (50)

with

qc “
`

VarpY.jq
ˇ

ˇΩ.m “ 1,Ω.` “ 1
˘

´

´

CovppY.kqkPĚtju, Y.jqVarppY.kqkPĚtjuq
´1CovppY.kqkPĚtju, Y.jq

T
ˇ

ˇΩ.m “ 1,Ω.` “ 1
¯

.

For the second term of (38), remark that A2., A6. and A7. implies that

VarpErY.j |Zsq “ VarpErY.j |Z,Ω.m “ 1,Ω.` “ 1sq,

and

VarpErY.j |Z,Ω.m “ 1,Ω.` “ 1sq

“ Var

¨

˝E

»

–BcjÑm,`,Hr0s `
ÿ

kPtm,`uYH

BcjÑm,`,HrksY.k ` ζ
c
j

ˇ

ˇ

ˇ

ˇ

Z

fi

fl

˛

‚,
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i.e.

VarpErY.j |Z,Ω.m “ 1,Ω.` “ 1sq

“ Var

¨

˝

ÿ

kPtm,`uYH

BcjÑm,`,HrksY.k ´
ÿ

kPtm,`uYH

BcjÑm,`,HrksErε.k|Zs ` B
c
jÑm,`,Hr0s ` Erε.js

˛

‚

One uses the same reasoning as in the proof of Proposition 5 (paragraph for deriving an equation for
the variance) to get

VarpErY.j |Z,Ω.m “ 1,Ω.` “ 1sq “
ÿ

kPtm,`uYH

pBcjÑm,`,Hrksq
2VarpY.kq

`
ÿ

kăk1Ptm,`uYH

2BcjÑm,`,HrksB
c
jÑm,`,Hrk1sCovpY.k, Y.k1q ` ocovmisspσ

2q, (51)

where

ocovmisspσ
2
q “ ´2σ2

ÿ

pk,k1qPtm,`uYH

Bc
jÑm,`,HrksBc

jÑm,`,Hrk1s

ÿ

`1Ptm,`uYH

pΓZqk1`1CovpY.k, Y.`1q

` σ4
ÿ

kPtm,`uYH

pBc
jÑm,`,Hrksq

2

¨

˝

ÿ

pk1ă`1qPtm,`uYH

pΓZq
2
kk1VarpY.k1q ´ 2pΓZqkk1pΓZqk`1CovpY.k1 , Y.`1q

˛

‚

´ 2σ4
ÿ

pkăk1qPtm,`uYH

Bc
jÑm,`,HrksBc

jÑm,`,Hrk1s

ÿ

pk2,`1qPtm,`uYH

pΓZqkk2pΓZqk1`1CovpY.k2 , Y.`1q (52)

Combining (49), (50) and (51), one get the following formula for CovpY.m, Y.`q,

2BcjÑm,`,HrmsB
c
jÑm,Hr`sCovpY.m, Y.`q “ VarpY.jq ´ q

c ´
ÿ

kPtm,`uYH

pBcjÑm,`,Hrksq
2VarpY.kq

´
ÿ

kăk1,kPtm,`uYH,k1PH

2BcjÑm,`,HrksB
c
jÑm,`,Hrk1sCovpY.k, Y.k1q ´ ocovmisspσ

2q

An estimator of CovpY.m, Y.`q is then derived as in (48), given that σ2 tends to zero and K “

BcjÑm,`,HrmsB
c
jÑm,`,Hr`s is non zero.

We use the consistent estimators defined in Proposition 5 for estimating VarpY.mq and
CovpY.m, Y.kqkPH. If Y.` is also a MNAR variable, Proposition 5 is applied for estimating VarpY.`q
and CovpY.`, Y.kqkPH. Otherwise, if Y.` is not a MNAR variable, we use A9..

Eventually, A3. and A8. lead to the consistency of yCovpY.m, Y.`q.

B.5 Extension to more general mechanisms for the not MNAR variables

The results of Proposition 4, 5 and 8 can be extended to a more general setting than the one presented
in Section 2. The pivot variables may be assumed to be MCAR (or observed). The variables which
are neither MNAR nor pivot may be observed or satisfying

@` P sJ zM,@i P t1, . . . , nu, PpΩi` “ 1|Yi.q “ PpΩi` “ 1|pYikqkP sJ zt`uYMq, (53)

i.e. they are MCAR or MAR but their missing-data mechanisms may not depend on the pivot
variables.

The proofs are similar and not presented here for the sake of brevity.

Note that the main difference is that the complete case has to be extended. For instance, for j P J
and k P J´j , the coefficients standing respectively for the intercept and the effects of Y.j on
pY.m, pY.j1qj1PJ´j

q in the complete case, i.e. when Ω.m “ 1, pΩj “ 1qjPJ are in this general setting
defined as follows

pY.jq|Ω.m“1,pΩj“1qjPJ
:“ BcjÑm,J´jr0s

`
ÿ

j1PJ´j

BcjÑm,J´jrj1s
Y.j1 ` BcjÑm,J´jrms

Y.m ` ζ
c,

with ζc “ ´
ř

j1PJ´j
BcjÑm,J´jrj1s

ε.j1 ´ BcjÑm,J´jrms
ε.m ` ε.j .
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C Other numerical experiments

Robustness to noise. Considering the same setting as in Section 4.1 (n “ 1000, p “ 10, r “ 2
and seven self-masked MNAR variables), the methods are tried for different noise levels σ2 P

t0.1, 0.3, 0.5, 0.7, 1u. The results are presented for one missing variable and for all the other ones,
the results are similar. In Figure 7, Algorithm 1 is the only method that does not give a biased
estimate of the mean and the variance regardless of the noise level. In Figure 8, despite a larger bias
in the estimation of the covariance between a missing variable and a pivot one as the noise level
increases, Algorithm 1 outperforms all the other methods, regarding the estimation of the covariance
between two missing variables. Note that the formula for the estimate of the covariance between
two missing variables relies on the one for the estimate of the variance, but both differ from the
one used for the covarance estimation between a missing variable and a pivot one. As expected, in
Figure 9, estimation deteriorates as the data gets noisier and then the loading matrix estimation and
the imputation error get closer to the results of mean imputation. In term of imputation error, the
proposed method yet remains competitive in regards of the approaches (ii) and (iii). Overall, when
the noise level increases, the exogeneity will be worse and that ignoring it in practice can be made to
the detriment of performance.
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Figure 7: Mean estimation (left graphic) and variance estimation (right graphic) of one missing
variable for different values of the level of noise when r “ 2, n “ 1000, p “ 10 and seven variables
are MNAR. True values to be estimated are indicated by red lines.
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Figure 8: Covariance estimation beetween a missing variable and a pivot one (left graphic) and two
missing variables (right graphic) for different values of the level of noise when r “ 2, n “ 1000,
p “ 10 and seven variables are MNAR. True values to be estimated are indicated by red lines.
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Figure 9: RV coefficients for the loading matrix (left graphic) and imputation error (right graphic) for
different values of the level of noise when r “ 2, n “ 1000, p “ 10 and seven variables are MNAR.
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Varying the percentage of missing values. Considering the same setting as in Section 4.1 (n “
1000, p “ 10, r “ 2, σ “ 0.1 and seven self-masked MNAR variables), the methods are tried for
different percentages of missing values (10%, 30%, 50%). The results are presented in Figure 10. As
expected, all the methods deteriorate with an increasing percentage of missing values but our method
is stable.
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Figure 10: Mean estimation (left graphic), variance estimation (middle graphic) and imputation error
(right graphic) for different percentages of missing values when r “ 2, n “ 1000, p “ 10 and seven
variables are MNAR.

Misspecification to the rank. The misspecification to the parameter r has been evaluated: under a
model generated with r “ 3 latent variables (n “ 1000, p “ 20, σ “ 0.8 and ten MNAR self-masked
variables), the rank is either underestimated, well estimated or overestimated by giving to Algorithm
1 the information that r “ 2, r “ 3 or r “ 4. Both estimation of the loading matrix and imputation
error are shown in Figure 11. The results for an underestimated (r “ 2) or overestimated (r “ 4)
rank are comparable to the case where the accurate rank is considered instead (r “ 3), showing a
stability of Algorithm 1 to rank misspecification.
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Figure 11: RV coefficients for the loading matrix (left) and imputation error (right) when r “ 3,
n “ 1000, p “ 20 and ten variables are MNAR for different cases where the rank is either
underestimated, well estimated or overestimated.

General MNAR mechanism. We consider the setting n “ 1000, p “ 20, r “ 3 and σ “ 0.8.
Here, missing values are introduced on ten variables pY.kqkPr1:10s using a more general MNAR
mechanism (see (3)) than the self-masked one. In particular, the MNAR mechanism we consider is
defined as follows,

@m P r1 : 10s,@i P t1, . . . , nu, PpΩim “ 1|Yi.q “ PpΩim “ 1|Yim, Yik, Yi`q, (54)
where k and ` are indexes of MNAR variables randomly chosen such that k ‰ ` P r1 : 10sztmu. In
Figure 12, Algorithm 1 provides the best estimators of the mean and the variance (in term of bias)
and the smallest imputation error.

Higher dimension and variation of the rank. The performance of the different methods for
higher dimension is assessed. A data matrix of size n “ 1000 and p “ 50 is generated from two
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Figure 12: Mean estimation (left), variance estimation (middle) of one missing variable and imputa-
tion error (right) when r “ 3, n “ 1000, p “ 20 and ten variables are MNAR as in (54). True values
are indicated in red lines.
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Figure 13: Mean estimation (left) and variance estimation (right) of one missing variable when
r “ 2, n “ 1000, p “ 50 and twenty variables are MNAR. True values to be estimated are indicated
by red lines.

latent variables (r “ 2) and with a noise level σ “ 1. Missing values are introduced on twenty
variables according to a self-masked MNAR mechanism, leading to 20% of missing values in total.
Without loss of generality, the results are presented for one missing variable. Method (iv) has been
discarded, as its computational time is too high for this setting.

In Figure 13, as for the estimated mean and variance, Methods (i), (ii) and (iii) suffer from a large
bias, while Algorithm 1 gives unbiased estimators. The same comment can be done for the estimation
of the covariance between two missing values in Figure 14. As for the covariance estimation between
a missing variable and a pivot one Figure 14, Algorithm 1 suffers from a variability, which can be due
to the fact that in this higher dimension setting, not all the possible combinations of pivot variables
are considered. Indeed, instead of taking the set of pivot variables of all the not MNAR variables
i.e. J “ ĎM, we choose J Ă ĎM such that |J | “ 10. For the mean, 270 combinations of the pivot
variables are aggregated over 870 possible combinations if J “ ĎM.
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Figure 14: Covariance estimation beetween two missing variable (left) and a missing variable and a
pivot one (right) when r “ 2, n “ 200, p “ 10 and seven variables are MNAR. True values to be
estimated are indicated by red lines.
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Figure 15: RV coefficients for the loading matrix (left) and imputation error (right) when r “ 2,
n “ 1000, p “ 50 and twenty variables are MNAR.

Despite this dispersed estimator of the covariance between a MNAR variable and a pivot one,
Algorithm 1 gives in Figure 15 a high RV coefficient, by improving Methods (i), (iii) and (ii).
Concerning the imputation performance, Algorithm 1 strongly improves Methods (ii) and (iii).

For the same dimension setting (n “ 1000, p “ 50) and the same noise level (σ “ 1), we vary the
rank to r “ 5. Similarly as before, missing values are introduced on twenty variables according to a
self-masked MNAR mechanism, leading to 20% of missing values in total. In Figure 16, for the mean
and the variable estimations, Algorithm 1 gives unbiased estimators. In Figure 17, the covariance
between a missing variable and a pivot one estimated by Algorithm 1 is biased but still less than the
other methods. In addition, the covariance between two missing variables is unbiased but suffers
from a high variability. Note that once again we have chosen J ĂM such that |J | “ 10. For the
mean, 1260 combinations of the pivot variables are aggregated over 712530 possible combinations if
J “ ĎM. In Figure 18, despite such results for the covariance estimators, Algorithm 1 gives a similar
RV coefficient than Methods (ii) and (iii) but strongly improves all the methods in term of imputation
error.
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Figure 16: Mean estimation (left) and variance estimation (right) of one missing variable when
r “ 5, n “ 1000, p “ 50 and twenty variables are MNAR. True values to be estimated are indicated
by red lines.
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Figure 17: Covariance estimation beetween two missing variable (left) and a missing variable and a
pivot one (right) when r “ 5, n “ 1000, p “ 50 and twenty variables are MNAR. True values to be
estimated are indicated by red lines.
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Figure 18: RV coefficients for the loading matrix (left) and imputation error (right) when r “ 5,
n “ 1000, p “ 50 and twenty variables are MNAR.

Efficiency of the aggregation approach in the selection of the pivot variables. As described in
Section 3.4, Algorithm 1 requires the selection of r pivot variables (considered M(C)AR) on which
the regressions will be performed. To reduce the error committed by the selection pivot variables, we
propose to select a bigger set of pivot variables (with a cardinal superior to r) and the final estimator
will be computed with the median of the estimators over all possible combinations of r pivot variables
(this is called the aggregation approach). In Figure 19, we consider the same setting as in Section
4.1 (n “ 1000, p “ 10, r “ 2 and seven self-masked MNAR variables) and we perform Algorithm
1 by using the aggregation (MNARagg) method or not (MNARnoagg). By discarding outliers, this
aggregation approach is more robust than selecting only r pivot variables.
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Figure 19: Mean (left) and variance (middle left) estimations of Y.1 and covariances estimations
of CovpY.1, Y.2q (between two missing variables) (middle right) and of CovpY.1, Y.8q (between one
missing variable and one pivot variable) (right). True values are indicated in red lines.

D Computation time

Table 1 gathers computation times of the different methods, for both settings considered in Sections 4
and C.

Method
r “ 2, p “ 10, n “ 1000
35% MNAR values
in 7 variables

r “ 5, p “ 50, n “ 1000
20% MNAR values
in 20 variables

MNAR algebraic 0,1 s 11 min 48 s (1260 aggregations)
SoftMAR 5,5 s 28 s
EMMAR 50,8 s 2 min 9 s
Param 5 h 15 min not evaluated

Table 1: Computation time for simulations in Sections 4 and Appendix C. The process time is
obtained for a computer with a processor Intel Core i5 of 2,3 GHz.

31



E Additional information on the TraumaBase R© dataset

E.1 Description of the variables

A description of the variables which are used in Section 4.2 is given. The indications given in
parentheses ph (pre-hospital) and h (hospital) mean that the measures have been taken before the
arrival at the hospital and at the hospital.

• SBP.ph, DBP.ph, HR.ph: systolic and diastolic arterial pressure and heart rate during pre-
hospital phase. (ph)

• HemoCue.init: prehospital capillary hemoglobin concentration. (ph)

• SpO2.min: peripheral oxygen saturation, measured by pulse oxymetry, to estimate oxygen
content in the blood. (ph)

• Cristalloid.volume: total amount of prehospital administered cristalloid fluid resuscitation
(volume expansion). (ph)

• Shock.index.ph: ratio of heart rate and systolic arterial pressure during pre-hospital phase.
(ph)

• Delta.shock.index: Difference of shock index between arrival at the hospital and arrival on
the scene. (h)

• Delta.hemoCue: Difference of hemoglobin level between arrival at the hospital and arrival
on the scene. (h)

The percentage of missing values in each variable is given in Figure 20.
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Figure 20: Percentage of missing values in each variable for the TraumaBase data.

E.2 Supervised learning task

To predict the administration or not of the tranexomic acid (binary variable), we impute explanatory
variables before proceeding to the classification task. In Table 2, Algorithm 1 gives the smallest
prediction error.

MNAR 5.06%
EMMAR 5.82%
SoftMAR 5.45%
MNARparam 5.39%
Mean 5.27%

Table 2: Mean of prediction error over 10 repetitions.
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F Graphical approach

F.1 Preliminaries

Lemmas of Mohan et al. [18] are used to construct some estimators of the mean, variance and
covariances for a MNAR variable based on a graphical approach.

Lemma 9 (Lemma 2 [18]). Let us consider the m-graph G. The coefficient of the linear regression of
Y.j on Y.k, k ‰ j, denoted as βjÑk,k‰j is recoverable (i.e. they are consistent in the complete-case
analysis) if Y.j KK Ω|Y.k, k ‰ j and one has

βjÑk,k‰j “ βcjÑk,k‰j .

Lemma 10 (Lemma 1). [18]](Graphical approach for computing the covariance) Let G be a m-
graph with k unblocked paths p1, . . . , pk between two variables Y.τ and Y.δ . Let Api be the ancestor
of all nodes on path pi. Let the number of nodes on pi be npi . One can derive that

CovpY.τ , Y.δq “
k
ÿ

i“1

VarpApiq

npi
´1

ź

j“1

αpij ,

where
śnpi

´1

j“1 αpij is the product of all causal parameters on path pi.

In addition, let us recall the basic formula,

βYÑX “
CovpX,Y q

VarpXq
, (55)

where Y and X are two variables of a linear model.

F.2 Estimation of the mean, variance and covariances of the MNAR variables

The graphical approach to construct an estimator of α1 is based on the transformation illustrated in
Figure 1 of the graphical model of PPCA as structural causal graphs, whose context is introduced in
[21]. This latter framework allows to directly apply the results of Mohan et al. [18] who consider the
associated (linear) structural causal equations under the exogeneity assumption with MNAR missing
values for one variable.

For the sake of brevity, the results are presented for the toy example in Section 3.1 where p “ 3,
r “ 2, Y.1 is self-masked MNAR and the other variables are observed.

Then, one can associate to Figure 1 (bottom right graph) the structural equation model detailled in
the following lemma.

Lemma 11. Assuming Erε.2|Y.1, Y.3s “ 0, the structural equation model associated with the bottom
right graph in Figure 1 is

Y.2 “ β2Ñ1,3r0s ` β2Ñ1,3r1sY.1 ` β2Ñ1,3r3sY.3 ` ε.2, (56)

where β2Ñ1,3r0s, β2Ñ1,3r1s and β2Ñ1,3r3s are the intercept and the coefficients of the linear regression
of Y.2 on Y.1 and Y.3.

Using Equation (56) and Lemma 9, we apply the results of Mohan et al. [18] to get an estimator for
the mean of the MNAR variable.

Proposition 12 (Mean estimator for the graphical approach). Under Equation (56), assuming A1.
and βc2Ñ1,3r1s ‰ 0, one can construct an estimator of the mean α1 of the MNAR variable Y.1 as
follows

α̂1 :“
α̂2 ´ β̂

c
2Ñ1,3r0s ´ β̂

c
2Ñ1,3r3sα̂3

β̂c2Ñ1,3r1s

, (57)

where β̂c2Ñ1,3r0s, β̂
c
2Ñ1,3r1s and β̂c2Ñ1,3r3s denote some estimators of βc2Ñ1,3r0s, β

c
2Ñ1,3r1s and

βc2Ñ1,3r3s given in Lemma 11. This estimator is consistent under additional Assumption A4..
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Proof. To derive some estimator of the mean, we want to obtain the following formula

α1 “
α2 ´ β

c
2Ñ1,3r0s ´ β

c
2Ñ1,3r3sα3

βc2Ñ1,3r1s

. (58)

Indeed, one has:

ErY.2s “ ErErY.2|Y.1, Y.3s
“ ErErY.2|Y.1, Y.3,Ω.1 “ 1ss (by using A1.)
“ ErErβc2Ñ1,3r0s ` β

c
2Ñ1,3r1sY.1 ` β

c
2Ñ3,1r3sY.3 ` ε.2|Y.1, Y.3ss

“ βc2Ñ1,3r0s ` β
c
2Ñ1,3r1sErY.1s ` β

c
2Ñ3,1r3sErY.3s,

which leads to the desired Equation (58), provided that βc2Ñ1,3r1s ‰ 0. A natural estimator fo α1 is
then given by (57). It is consistent given that all the quantities involved are consistent, by using A4.
(for the consistency of α̂2 and α̂3) and Lemma 9 (for the consistency of the coefficients β̂c2Ñ1,3r0s,

β̂c2Ñ1,3r1s and β̂c2Ñ1,3r3s).

Remark 13 (Mean estimation: algebraic vs. graphical approach). In both approaches, the PPCA
model is translated into a linear model. However, both estimators in Equations (9) and (57) theo-
retically differ. The exogeneity assumption and approximation is not made at the same step. In the
algebraic approach, the results are first derived without using any approximation. It gives linear
models that do not comply with the standard exogeneity assumption. Consequently, an approximation
is done at the estimation step since the parameters B̂c2Ñ1,3r0s, B̂

c
2Ñ1,3r1s and B̂c2Ñ1,3r3s are estimated

with the standard linear regression coefficients. In the graphical approach, an approximation is made
at the first step when a structural equation model is associated with the graphical model by assuming
the exogeneity, i.e. Erε.2|Y.1, Y.3s “ 0. In practice, for both approaches, the same coefficients are
naturally computed, i.e. β̂cjÑk,` “ B̂cjÑk,`, which leads to the same computed estimators for the
mean of Y.1.

While only one simplified graphical model between Y.1, Y.2 and Y.3, displayed in the bottom right
graph of Figure 1, was required to construct an estimator of the mean of Y.1, the variance and
covariance estimations rely on Equation (56) and the following one (associating to the bottom left
graph of Figure 1),

Y.3 “ β3Ñ1,2r0s ` β3Ñ1,2r1sY.1 ` β3Ñ1,2r2sY.2 ` ε.3, (59)

assuming Erε.3|Y.1, Y.2s “ 0 and where β3Ñ1,2r0s, β3Ñ1,2r1s and β3Ñ1,2r2s are the intercept and the
coefficients of the linear regression of Y.3 on Y.1 and Y.2.

Using Equations (56) and (59) and Lemmas 9, 10, one can derive some estimators for the variance
and the covariances of Y1.
Proposition 14 (Variance and covariances formulae resulting from the graphical approach when
p “ 3 and r “ 2). Under the two equations (56) and (59), assuming A1. and also βc3Ñ1 ‰ 0,
βc2Ñ1,3r1s ‰ 0 and VarpY.3q ‰ 0, one can construct an estimator of the variance of the MNAR
variable Y.1 and its covariances as follows

yVarpY.1q :“
yVarpY.3q

β̂c3Ñ1

1

β̂c2Ñ1,3r1s

˜

yCovpY.2, Y.3q

yVarpY.3q
´ β̂c2Ñ1,3r3s

¸

, (60)

yCovpY.1, Y.2q :“
1

β̂c3Ñ1,2r1s

˜

yCovpY.2, Y.3q

yVarpY.2q
´ β̂c3Ñ1,2r2s

¸

yVarpY.2q, (61)

yCovpY.1, Y.3q :“
1

β̂c2Ñ1,3r1s

˜

yCovpY.2, Y.3q

yVarpY.3q
´ β̂c2Ñ1,3r3s

¸

yVarpY.3q, (62)

where β̂c3Ñ1,2r1s, β̂
c
3Ñ1,2r2s and β̂c3Ñ1 are some estimators of βc3Ñ1,2r1s, β

c
3Ñ1,2r2s and βc3Ñ1 given in

(59).

These estimators are consistent under additional Assumption A4..
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Proof. To derive some estimators of the variance and covariances of the MNAR variable Y.1, one
want to obtain the following formulae:

VarpY.1q “
VarpY.3q

βc3Ñ1

1

βc2Ñ1,3r1s

ˆ

CovpY.2, Y.3q

VarpY.3q
´ βc2Ñ1,3r3s

˙

, (63)

CovpY.1, Y.2q “
1

βc3Ñ1,2r1s

ˆ

CovpY.2, Y.3q

VarpY.2q
´ βc3Ñ1,2r2s

˙

VarpY.2q, (64)

CovpY.1, Y.3q “
1

βc2Ñ1,3r1s

ˆ

CovpY.2, Y.3q

VarpY.3q
´ βc2Ñ1,3r3s

˙

VarpY.3q. (65)

Using Equation (55), one has

CovpY.1, Y.3q “ VarpY.1qβ3Ñ1,

CovpY.3, Y.1q “ VarpY.3qβ1Ñ3,

so

VarpY.1q “
VarpY.3qβ1Ñ3

β3Ñ1
.

Considering the graphical model in the bottom left graph of Figure 1,

CovpY.2, Y.3q “ β2Ñ1,3r1sβ1Ñ3VarpY.3q ` β2Ñ1,3r3sVarpY.3q (by Lemma 10)

ñ β1Ñ3 “
1

β2Ñ1,3r1s

ˆ

CovpY.2, Y.3q
VarpY.3q

´ β2Ñ1,3r3s

˙

ñ β1Ñ3 “
1

βc2Ñ1,3r1s

ˆ

CovpY.2, Y.3q
VarpY.3q

´ βc2Ñ1,3r3s

˙

(66)

where the last implication is given by Lemma 9 and Assumption A1., giving also

β3Ñ1 “ βc3Ñ1,

which leads to Equation (63).

By (55), the covariances can be expressed in two different ways,

CovpY.1, Y.2q “ β2Ñ1VarpY.1q and CovpY.1, Y.3q “ β3Ñ1VarpY.1q, (67)
CovpY.1, Y.2q “ β1Ñ2VarpY.2q and CovpY.1, Y.3q “ β1Ñ3VarpY.3q. (68)

In (67), the coefficients β2Ñ1 and β3Ñ1 can be estimated on the complete case using Lemma 9, but
the variance of Y.1 has still to be taken care of. Instead of potentially propagate error from (63), we
propose to favor the expressions given in (68) to evaluate the covariances.

Focusing on (68), the coefficient β1Ñ3 is given in (66) and β1Ñ2 can be obtained using the same
method, based on the reduced graphical model in the bottom right graph of Figure 1 (by Assumption
A1.), so that

β1Ñ2 “
1

βc3Ñ1,2r1s

ˆ

CovpY.2, Y.3q
VarpY.2q

´ βc3Ñ1,2r2s

˙

.

Therefore, by plugging it in (68), Equations (64) and (65) are obtained.

The natural estimators for VarpY.1q, CovpY.1, Y.2q and CovpY.1, Y.3q are then given by (60), (61)
and (62). They are consistent given that all the quantites involved are consistent, by using A4.
(for the consistency of yVarpY.2q, yVarpY.3q and yCovpY.2, Y.3q) and Lemma 9 (for the consistency of
β̂cjÑk,`).

Remark 15 (Var-covariance estimation: algebraic vs. graphical approach). As for the mean, the
exogeneity assumption is required in the last step of the algebraic approach to estimate coefficients
and in the first step of the graphical approach to obtain structural equation models. However,
contrary to the estimator suggested for the mean, the estimators in both graphical and algebraic
approaches here differ (compare (10) with (60), (61) and (62)). Indeed, the algebraic approach is
based on the use of conditionality, while the graphical one relies on graphical results standing for
the linear models when exogeneity holds.
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G PPCA with MAR data

The following proposition is an adaptation of our method to handle MAR data, called MAR in
Section 4.1, inspired by [18, Theorems 1, 2, 3]. In this case, the missing variables are assumed to be
MAR indexed byM. We assume the following:

A1MAR. pB.j1qj1PJ is invertible.
A2MAR. @m PM, Y.m KK Ω.m|pYkqkPĘtmu

A3MAR. @m PM, the complete-case coefficients BcmÑJ r0s and BcmÑJ rks, k P J can be consistently
estimated.

A5MAR. @` P sJ , for all setH Ă J´j such that |H| “ r ´ 1, pB.` pB.j1qj1PHq is invertible,

A6MAR. @m PM,@` P sJ zM, @j P J , Y.m KK Ω.`|pY.kqkPĘtmu.

A8MAR. @m P M,@` P ĚtmuzJ , for all set H Ă J such that |H| “ r ´ 1, the complete-case
coefficients BcmÑ`,Hr0s and BcmÑ`,Hrks, k P t`u YH can be consistently estimated.

Proposition 16 (Expectation, variance and covariances formulae for a MAR variable when p “ 3 and
r “ 2). Consider the PPCA model (1). Under Assumptions A1MAR. and A2MAR., one can construct
the estimators of the mean, the variance and the covariances with a pivot variable for any MAR
variable Y.m,m PM, as follows

– the mean of the missing variable

α̂m “ B̂cmÑJ r0s `
ÿ

jPJ
B̂cmÑJ rjsα̂j ,

with J the pivot variables set,

– the variance of the missing variable

yVarpY.mq “ pQcMAR `
ÿ

jPJ
pB̂cmÑJ rjsq

2
yVarpY.jq

` 2
ÿ

pjăkqPJ

B̂cmÑJ rjsB̂
c
mÑJ rks

yCovpY.j , Y.kq,

with

pQcMAR “

´

yVarpY.mq
ˇ

ˇΩ.m “ 1
¯

´

´

yCovppY.jqjPĘtmu, Y.mq
yVarppY.jqjPĘtmuq

´1
yCovppY.jqjPĘtmu, Y.mq

T
ˇ

ˇΩ.m “ 1
¯

.

– the covariances between the missing variable and a pivot variable, for all ` P J ,

yCovpY.m, Y.`q “ B̂cmÑJ r0sα̂` ` B̂
c
mÑJ r`sp

yVarpY.`q ` α̂
2
` q

`
ÿ

kPJ´`

B̂cmÑJ rksp
yCovpY.`, Y.kq ` α̂`α̂kq ´ α̂mα̂`

Under Assumption A3MAR. and A4., these estimators are consistent.

In addition, under Assumption A5MAR., A6MAR. and A7., one can construct the estimator of the
covariance between a MAR variable Y.m for m PM and any not pivot variable as follows

– the covariances between the missing variable and any not pivot variable, for all ` P ĚtmuzJ ,
choose r ´ 1 variable indexes in J to form the setHY J such that |H| “ r ´ 1

yCovpY.m, Y.`q “ BcmÑ`,Hr0sα̂` ` B̂
c
mÑ`,Hr`sp

yVarpY.`q ` α̂
2
` q

`
ÿ

kPH
B̂cmÑ`,HrkspyCovpY.`, Y.kq ` α̂`α̂kq ´ α̂mα̂`
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Under the additional Assumptions A8MAR. and A9. this estimator is consistent.

Proof. The proof follows exactly the same direction than in Proposition 4, 5 and 8. The only
difference is that the regressions used are not the same.

For the sake of clarity, consider the same toy example as in Section 3.1 where p “ 3, r “ 2, in which
only one variable can be missing (at random), and fixM “ t1u and J “ t2, 3u. Note that here the
MAR mechanism leads to PpΩ.1 “ 0|Y.1, Y.2, Y.3q “ PpΩ.1 “ 0|Y.2, Y.3q.. The goal is to estimate
the mean of Y.1, without specifying the distribution of the missing-data mechanism and using only
the observed data.

Assumption A1MAR. allows to obtain linear link between the MAR variable Y.1 and the pivot variables
(Y.2, Y.3). In particular, one has

Y.1 “ β1Ñ2,3r0s ` β1Ñ2,3r2sY.2 ` β1Ñ2,3r3sY.3 ` ζ,

with β1Ñ2,3r0s, β1Ñ2,3r2s and β1Ñ2,3r3s the intercept and coefficients standing for the effects of Y.1
on Y.2 and Y.3, and with

ζ “ ´B1Ñ2,3r2sε.2 ´ B1Ñ2,3r3sε.3 ` ε.1

Assumption A2MAR., i.e. Y.1 KK Ω.1|Y.2, Y.3, is required to obtain identifiable and consistent parame-
ters of the distribution of Y.1 given Y.2, Y.3 in the complete-case when Ω.1 “ 1, denoted as βc1Ñ2,3r0s,
βc1Ñ2,3r2s and βc1Ñ2,3r3s,

pY.1q|Ω.1“1 “ βc1Ñ2,3r0s ` β
c
1Ñ2,3r2sY.2 ` β

c
1Ñ2,3r3sY.3 ` ζ

c,

with
ζc “ ´Bc1Ñ2,3r2sε.2 ´´B

c
1Ñ2,3r3sε.3 ` ε.1

(In the MNAR case, the regression of Y.1 on pY.2, Y.3q is prohibited, as A2MAR. does not hold. That
is why we used the regression of Y.2 on Y.1 and Y.3.);

Using again A2MAR., one has

E rY.1|Y.2, Y.3,Ω.1 “ 1s “ E
”

βc1Ñ2,3r0s ` β
c
1Ñ2,3r2sY.2 ` β

c
1Ñ2,3r3sY.3|Y.2, Y.3

ı

` Erζc|Y.2, Y.3s,

and taking the expectation leads to

E rY.1s “ βc1Ñ2,3r0s ` β
c
1Ñ2,3r2sE rY.2s ` β

c
1Ñ2,3r3sE rY.3s ,

given that Erε.ks “ 0, @k P t1, 2, 3u.

One obtains
α1 “ βc1Ñ2,3r0s ` β

c
1Ñ2,3r2sα2 ` β

c
1Ñ2,3r3sα3

A natural estimator for α1 is

α̂1 “ β̂c1Ñ2,3r0s ` β̂
c
1Ñ2,3r2sα̂2 ` β̂

c
1Ñ2,3r3sα̂3,

which is consistent using Assumption A3MAR. and A4..
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