
We thank all reviewers for their helpful reviews. Please see our response below.1

Correctness of Theorem 1 proof Thank you R3 for pointing out the mistake in the current proof. The mistake is2

in the very last step of the proof, where we tried to show W1 −W�
2 = 0 (lines 593-594). Fortunately, we have the3

following fix that asserts the correctness of Theorem 1. We hope R3 will update their score based on this revised proof.4

From Lemma 2 (line 583), C = 1
n (I −W2W1)XX� ∈ Rm×m is positive semi-definite, and Λ2 = diag(λ1, . . . ,λk)5

is positive definite. Define A = W1 −W�
2 ∈ Rk×m. We prove below that A = 0 follows from line 592 which states6

∀v ∈ Rk, 0 = v�ACA�v + v�Λ2AA�v (1)

Proof. Since ACA� � 0, we have ∀v, v�ACA�v ≥ 0. Hence, from (1), ∀v, v�Λ2AA�v ≤ 0. Consider setting7

v = ei, the ith coordinate vector in Rk (ith entry is 1, and all others are 0). We must have e�i Λ
2AA�ei = λ2

i �Ai�22 ≤ 08

(Ai denotes the ith row of A). Since λi > 0, we have Ai = 0. Since this holds for all i = 1, . . . , k, we have A = 0.9

Figure 1: Optimal λ values.

How to choose the non-uniform regularization parameters (R4) This is a great10

question. It’s indeed difficult to choose an “optimal” set of λ values for the non-11

uniform �2 regularization (see below for justifications). However, note that our goal12

is the analysis, and that the difficulty in choosing the λ values a priori contributes13

to the argument of weak symmetry breaking by the non-uniform �2 regularization.14

As for why it is difficult to choose an “optimal” set of λ values, note that optimal15

values at global minima are not optimal in general. At global minima, the optimal λ16

values can be obtained by solving the minmax optimization in line 509 (an example17

of such optimized λ values for MNIST, k = 20 is shown in Figure 1). However, this18

set of λ values concentrate on the larger side, and significantly slow down learning19

(suboptimal away from the global minima). In our experiments, we first make a (rough) estimate of the kth largest data20

singular value, and linearly space the λ values from 0 to the estimated σk value (see Appendix G for details).21

Figure 2: Mini-batch experiment.

Practical utility of the analyzed algorithms (R1, R3) A big part of our mo-22

tivation was to understand the slowness of learning neural net representations,23

as opposed to reducing loss — a topic of immense practical importance, as24

evidenced by the recent flurry of interest on early training effects. Linear au-25

toencoders are one of the few examples where we can determine exactly what26

representation ought to be learned, which makes them a particularly useful27

model system for understanding convergence of representations.28

Probabilistic interpretations of the non-uniform �2 regularization and the29

nested dropout? As pointed out by R2, the probabilistic interpretation of non-30

uniform �2 regularization is a straightforward generalization of that studied31

in Kunin et al. In particular, we can assign a diagonal Gaussian prior to the32

weights whose precision parameters equal the λi value for the corresponding33

latent dimension. There is a well-known Bayesian interpretation of dropout34

[Gal and Ghahramani, 2016], and extending this to nested dropout is an interesting direction for future work.35

Relation to additional prior work Compared to Wager et al. [2013] (R1), which discusses the connection of36

dropout and adaptive �2 regularization in generalized linear models, we work with a different class of models (linear37

autoencoders) and study a different type of dropout (nested dropout in the latent units). Nevertheless, it is an interesting38

future direction to investigate the connection between the deterministic nested dropout and common types of regularizers.39

Concurrent work [Oftadeh et al., 2020] (pointed out by R3) addresses the identifiability issue in linear autoencoders by40

proposing a new loss function. The loss function proposed in Oftadeh et al. is a special case of deterministic nested41

dropout (section 5 of our paper) where the prior pB(·) is a uniform distribution. Oftadeh et al. show that the local42

minima correspond to ordered, axis-aligned representations, but do not analyze the speed of convergence under the new43

loss. Hence, our analysis provides additional insight into their method. We will include the above discussions, as well44

as the additional citations regarding the connections between linear VAEs and pPCA (R3) in the revised paper.45

Mini-batch training for the rotation augmented gradient? (R1) We did additional experiments on MNIST using46

the rotation augmented gradient, with various batch sizes and k = 20 (Figure 2). The results show that the rotation47

augmented gradient works well with mini-batches. Larger batches improve per-epoch convergence up to a point of48

diminishing returns, similarly to standard models and algorithms (e.g. Shallue et al., JMLR 2019).49

Writing & clarity We thank R2 and R4 for the writing & clarity suggestions, and will address them in the revised50

paper. Note that the preconditioning of the Adam optimizer is not compatible with the rotation augmented gradient, so51

only the SGD is relevant for this algorithm (see Appendix G for more experimental details).52


