
Appendix

6.1 Table of Notations

Table 1: Table of notations

Notation Meaning
PDE
a ∈ A The input coefficient functions
u ∈ U The target solution functions
D ⊂ Rd The spatial domain for the PDE
x ∈ D The points in the the spatial domain
F : A → U The operator mapping the coefficients to the solutions
µ Thee probability measure where aj sampled from.
Graph Kernel Networks
K The kernel integration operator
κ : R2(d+1) → Rn×n The kernel maps (x, y, a(x), a(y)) to a n× n matrix
φ The parameters of the kernel network κ
r The radius of the kernel integration
σ The activation function
t = 0, . . . , T The time steps
v(x) ∈ Rn The neural network representation of u(x)
W The linear operator
P : u(0) 7→ v(0) The projection from the initialization to the representation
Q : u(T ) 7→ u(T ) The projection from the representation to the solution
Multi-graph
n Total number of nodes in the graph
m The number of sampled nodes (for the sampling method)
l ∈ [1, . . . , L] The level, l = 1 is the finest level and l = L the coarsest.
r The radius of the ball for the kernel integration
K The kernel matrix.
Kl,l The kernel matrix for level-l subgraph.
Kl+1,l The transition matrix Kl+1,l : vl 7→ vl+1.
Kl,l+1 The transition matrix Kl,l+1 : vl+1 7→ vl.
v̌ The representation v in the downward pass.
v̂ The representation v in the up pass.
Hyperparameters
N The number of training pairs
s The underlying resolution of training points
s′ The underlying resolution of testing points

6.2 Experimental Details

Data generation. The steady-state Darcy flow equation used in Section 4.1 takes the form

−∇ · (a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2.
(16)

The coefficients a are generated according to a ∼ µ where µ = ψ#N (0, (−∆ + 9I)−2) with a
Neumann boundry condition on the operator −∆ + 9I . The mapping ψ : R→ R takes the value 12
on the positive part of the real line and 3 on the negative. Such constructions are prototypical models
for many physical systems such as permeability in sub-surface flows and material microstructures in
elasticity. Solutions u are obtained by using a second-order finite difference scheme on 241× 241
and 421× 421 grids. Different resolutions are downsampled from this dataset.

The viscous Burgers’ equation used in Section 4.2 takes the form

∂tu(x, t) + ∂x(u2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 2π), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 2π)
(17)

13



with periodic boundary conditions. We consider mapping the initial condition to the solution
at time one u0 7→ u(·, 1). The initial condition is generated according to u0 ∼ µ where µ =
N (0, 625(−∆ + 25I)−2) with periodic boundary conditions. We set the viscosity to ν = 0.1 and
solve the equation using a split step method where the heat equation part is solved exactly in Fourier
space then the non-linear part is advanced, again in Fourier space, using a very fine forward Euler
method. We solve on a spatial mesh with resolution 213 = 8192 and use this dataset to subsample
other resolutions.

Linear complexity and comparison with GKN. The first two block-rows in table 2 correspond
to results of MGKN on the Darcy flow problem when using a different number of subgraphs with
their respective number of nodes given by the vector m. For example m = [400, 100, 25] means a
multi-graph of three levels with nodes 400, 100, 25 respectively for each level. The third and fourth
block-rows correspond to GKN, where, in the third block, we fix the domain of integration to be a ball
with radius r = 0.1, and, in the fourth block, a ball with radius r = 0.2. The number m corresponds
to the number of nodes sampled in the Nyström approximation. All reported errors are relative L2

errors. The training time corresponds to 1 epoch using N = 100 data pairs, while the testing time
corresponds to evaluating the PDE for 100 new queries. The left and middle images of Figure 3 are
constructed from this data.

Table 2: Darcy flow experimental results.

training error testing error training time testing time
m = [25] 0.0181 0.1054 0.50s 0.21s
m = [100, 25] 0.0189 0.0781 1.59s 0.69s
m = [400, 100, 25] 0.0155 0.0669 5.24s 1.90s
m = [1600, 400, 100, 25] 0.0165 0.0568 19.75s 7.94s
m = [1600] 0.0679 0.0744 10.74s 4.28s
m = [1600, 400] 0.0359 0.0624 17.78s 7.04s
m = [1600, 400, 100] 0.0184 0.0578 19.50s 7.70s
m = [1600, 400, 100, 25] 0.0165 0.0568 19.75s 7.94s
m = 25, r = 0.1 0.0994 0.1139 0.45s 0.16s
m = 100, r = 0.1 0.0824 0.1067 0.44s 0.16s
m = 400, r = 0.1 0.0514 0.0769 1.76s 0.64s
m = 1600, r = 0.1 0.0470 0.0588 24.81s 8.96s
m = 25, r = 0.2 0.0728 0.1169 0.45s 0.16s
m = 100, r = 0.2 0.0508 0.0803 0.59s 0.19s
m = 200, r = 0.2 0.0438 0.0668 1.53s 0.55s
m = 400, r = 0.2 0.0462 0.0601 5.56s 2.13s
m = 800, r = 0.2 0.0397 0.0519 22.31s 7.86s

Mesh invariance. As shown in table 3, MGKN can be trained on data with resolution s and
be evaluated on with data with resolution s′. We train a MGKN model for each of the choices
s = 31, 41, 61, 121, 241. The table demonstrates that we achieve consistently low error on any pair
of train-test resolutions hence we learn an infinite-dimensional mapping that is resolution invariant.
The right image in Figure 3 was generated using this data.

Table 3: Generalization of resolutions on sampled Grids

Resolutions s′ = 61 s′ = 121 s′ = 241
s = 31 0.0643 0.0594 0.0634
s = 41 0.0630 0.0606 0.0609
s = 61 0.0579 0.0590 0.0589
s = 121 0.0650 0.0628 0.0664
s = 241 0.0630 0.0680 0.0665

14



Comparison with benchmarks. Table 4 and 5 show the performance of different methods on
Darcy flow and Burgers’ equation respectively. The training size N = 1000; the testing size
N = 100.

• NN is a simple point-wise feedforward neural network. It is mesh-free, but performs badly
due to lack of neighbor information. NN represents the baseline of a local map.

• GCN, the graph convolution network, follows the architecture in [4], with naive nearest
neighbor connection. Such nearest-neighbor graph structure has acceptable error for very
coarse grid (s = 16). For common resolution s = 64, nearest-neighbor graph can only
capture a near-local map, similar to NN. It shows simple nearest-neighbor graph structures
are insufficient.

• FCN is the state of the art neural network method based on Fully Convolution Network
[49]. It has a good performance for small grids s = 61. But fully convolution networks are
mesh-dependent and therefore their error grows when moving to a larger grid.

• PCA+NN is an instantiation of the methodology proposed in [10]: using PCA as an
autoencoder on both the input and output data and interpolating the latent spaces with
a neural network. The method provably obtains mesh-independent error and can learn purely
from data, however the solution can only be evaluated on the same mesh as the training data.
Furthermore the method uses linear spaces, justifying its strong performance on diffusion
dominated problems such as Darcy flow. This is further discussed below.

• RBM is the reduced basis method [15], a classical reduced order modeling technique that
is ubiquitous in applications [37] . It approximates the solution operator within an linear
class of basis functions, requiring data as well as the variational form the problem. Since
the solution manifold of (14) exhibits fast decay of its Kolgomorov n-width, linear spaces
are near optimal hence it is not surprising that RBM is the best performing method [12].
Compared to deep learning approaches, RMB is significantly slower as it requires numerical
integration to form and then invert a linear system for every new parameter.

• GKN stands for graph kernel network with r = 0.25 and m = 300. It enjoys competitive
performance against all other methods while being able to generalize to different mesh
geometries. The drawback is its quadratic complexity, constrain GKN from a large radius.
Therefore GKN has higher error rates on the Burgers equation where long-range correlation
is not negligible.

• MKGN is our new proposed method. MKGN has slight higher error on Darcy flow where
linear spaces are near-optimal. but for the harder Burger’s equation, MGKN is the best
performing method. This is a very encouraging result since many challenging applied
problem are not well approximated by linear spaces and can therefore greatly benefit from
non-linear approximation methods such as MGKN.

Table 4: Error of different methods on Darcy Flow

Networks s = 85 s = 141 s = 211 s = 421
NN 0.1716 0.1716 0.1716 0.1716
GCN 0.1356 0.1414 0.1482 0.1579
FCN 0.0253 0.0493 0.0727 0.1097
PCA+NN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
GKN 0.0346 0.0332 0.0342 0.0369
MGKN 0.0416 0.0428 0.0428 0.0420

15



Table 5: Error of different methods on Burgers’ equation

Networks s = 64 s = 128 s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192
NN 0.4677 0.4447 0.4714 0.4561 0.4803 0.4645 0.4779 0.4452
GCN 0.3135 0.3612 0.3999 0.4138 0.4176 0.4157 0.4191 0.4198
FCN 0.0802 0.0853 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCA+NN 0.0397 0.0389 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
GKN 0.0367 0.0316 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
MGKN 0.0174 0.0211 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364

16


