
A.1 Appendix
A.1.1 Inference

To evaluate the inference ability of EBMs, we generate a new MuJoCo Scene dataset for training
and testing. Each scene has varying lighting conditions with one object, either sphere or cube, at all
possible positions and some sizes. We build several different test datasets to evaluate generalization
if models. The easiest one is “Test” which has the same data distribution with the training dataset.
The “Size” test dataset contains objects twice the size of training objects. “Color” dataset has object
colors never been seen during training. “Light” is a test dataset with different light sources and “Type”
dataset consists of cylinder images while the training images are only spheres or cubes.

We evaluate inference on an EBM trained on object position, which takes an image and an object
position (x,y in 2D) as input and outputs an energy. We iterate densely over all positions (20 by 20
grid of positions) and select the position with the minimal energy as our inference result. We evaluate
this result by computing the Mean Absolute Error between the predicted position and ground truth
object position.

We compare EBMs with two baseline models, ResNet model (He et al., 2016) (with the same
architecture as EBM) and PixelCNN (Oord et al., 2016). Table 1 shows the comparison results using
different number of Langevin Dynamics sampling steps (k in Equation 3 in the main text). We find
that inference in EBMs is able to generalize well to different out of distribution datasets such as
Color, Light, Size and Type. A large number of Langevin sampling steps also improves performance,
with a large number of steps of training exhibiting both better training accuracy and generalization
performance.

Table 1: Position error on different test datasets. “Test” has the same data distribution with training set. Other
datasets change one environmental parameter, e.g. color, size, type, and light, which are unseen in the training
set. “Avg” is the average error of “Color”, “Light”, “Size”, and “Type”. “Steps”indicates the number of sampling
steps used to train the EBMs. EBMs are able to generalize better on unseen datasets. Larger number of sampling
steps significantly decrease overall EBM error.

Model Steps Color Light Size Type Avg Test
EBM 200 10.899 6.307 8.431 6.304 7.985 3.903
EBM 400 4.084 4.033 6.853 3.694 4.666 2.917

Resnet - 20.002 5.881 10.378 6.310 10.643 3.635
PixelCNN - 60.607 58.589 33.889 48.138 50.306 43.460

A.1.2 Partition Function

We estimate the magnitude of the partition function of an EBM by evaluating the energy it assigns
to all data points it is trained on, and plot the resultant histogram of energies. Figure A1 shows that
the EBMs we train have similar histograms due to a combination of L2 normalization and spectral
normalization. The EBMs we evaluated have different architectures but similar histograms.

Figure A1: Energy histograms of models trained on CelebA smiling (left), CelebA attractive (middle) and
pretrained CIFAR-10 model from (Du & Mordatch, 2019) (right). Each EBM we evaluate have different
architectures but still have similar histograms.

Specifically, in Figure A1, we compare the energy histogram of a CelebA model trained on either
smiling or attractive histograms as well as the CIFAR-10 model from (Du & Mordatch, 2019). We
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find that all energy histograms are similar, exhibiting minimum and maximum energies between -0.01
and 0.01. This is true even for the CIFAR-10 model which uses a significantly different dataset and
architecture.

A.1.3 Analysis of Mismatch of Partition Function on Disjunction
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Figure A2: Hybrid combinations
of frog and truck EBMs.

In scenarios where partition functions are different, our defined
disjunction operator does not fail drastically. If two un-normalized
probability distributions have partition function values of w1 and
w2 then models will be sampled with proportion w1

w1+w2
and w2

w1+w2
,

which is not a dramatic failure in disjunction.

A.1.4 Disjoint Compositionality Results

We further evaluate compositionality when conditioned factors are
mutually disjoint from each other. In particular, we train EBM
models on frog and truck image classes in CIFAR-10. In Figure A2,
we illustrate resulting generations. We find that when conditioning
on both classes, our resultant generations exhibit characteristics of
each individual class.

A.1.5 Discussion on Other Generative Models

To sample from the conjunction/disjunction/negation of seperate probability distributions, MCMC
must be run. Other generative models, such as autoregressive models, can also support MCMC, but
we find that in practice other generative models do not sample well under gradient based MCMC.

(a) Samples Generated from Langevin Sampling on
PixelCNN++ model from (Salimans et al., 2017).

(b) Samples Generated from Autoregressive Sam-
pling on PixelCNN++ model from (Salimans et al.,
2017).

Figure A3: Comparison on samples generated from different sampling scenes on PixelCNN++ model
from (Salimans et al., 2017). We note that Langevin sampling, while not making realistic samples,
generate higher likelihood samples than those from autoregressive sampling.

We considered Langevin based sampling on the pretrained CIFAR-10 unconditional PixelCNN++
model (Salimans et al., 2017) in Figure A3. While both sampling schemes generate images with
similar likelihoods (with Langevin sampling creating higher likelihood samples), we find images
generated from Langevin sampling are significantly worse than those generated from autoregressive
sampling. We speculate that EBMs fit the MCMC sampling procedure better than other models since
EBMs are trained with MCMC inference, and are thus less susceptible to adversarial modes.
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A.1.6 Models
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(a) The model architecture of
EBM used on the Mujoco
Scenes Dataset.
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(b) The model architecture of
baseline model for joint gener-
ation (section A.1.2).
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(c) The model architecture of
EBM used on the CelebA
Dataset.

Figure A4: Architecture of models on different datasets.

We detail the EBM architectures used for the Mujoco Scenes images in Figure A4a and for the
Celeba 128x128 images in Figure A4c. The baseline model used for comparisons in section 3.4 is in
Figure A4b.

A.1.7 Training Details/Hyperparameters/Source Code

Models trained on Mujoco Scenes and CelebA datasets use the Adam optimizer with the learning
rate 3e-4, first order moment 0.0, and second order moment 0.999. The batch size is 128. The replay
buffer size is 50000 with a 5% replacement rate. Spectral normalization is applied to models with
a step size of 100 for each Langevin dynamics step. We use 60 steps of Langevin sampling per
training iteration for the CelebA dataset and 80 steps of Langevin sampling per training iteration
for the Mujoco Scenes dataset. We use the Swish activation to train our models (as noted in (Du &
Mordatch, 2019)), and find that it greatly stabilizes and speeds up training of models.
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