
A AMPI with m = 1

Recall the approximate modified policy iteration (AMPI) algorithmic scheme (4) with m = 1{
πt+1 ∈ Gε

′
t+1(Vt)

Vt+1 = T πt+1Vt + εt+1,

where εt, ε′t ∈ RS are respectively the evaluation step and the policy improvement step error vectors
(one component per state) and π ∈ Gε′(V ) ⇐⇒ ∀π′ T π′V ≤ T πV + ε′.

Next, we establish the error propagation bound for the above scheme, that we will use to obtain the
one for the smooth AMPI.

A.1 Error propagation

Lemma 3 (AMPI error propagation). For any initial value function V0, consider the AMPI scheme (4)
with m = 1. Then, one has

‖V πN − V ∗‖∞ ≤
2

1− γ
(
EN + γN‖V0 − V ∗‖∞

)
, (24)

where EN :=
∑N−1
t=1 γN−t(‖εt‖∞ + ‖ε′t‖∞).

Proof. By triangular inequality and γ-contraction property of Bellman operators, one has

‖V ∗ − VN‖∞ = ‖T V ∗ − T πNVN−1 − εN‖∞
= ‖T V ∗ − T VN−1 + T VN−1 − T πNVN−1 − εN‖∞
≤ γ‖V ∗ − VN−1‖∞ + ‖εN‖∞ + ‖ε′N‖∞

=

N∑
t=1

γN−t(‖εt‖∞ + ‖ε′t‖∞) + γN‖V ∗ − V0‖∞,

where the last inequality is due to the definition of the greedy operator ∀π′ T π′VN−1 ≤ T πNVN−1 +
ε′N , including π′ = arg maxπ T πVN−1.

The claim follows from the fact that ‖V ∗ − V πN ‖∞ ≤ 2γ
1−γ ‖V

∗ − VN−1‖∞. Indeed, by triangular
inequality and γ-contraction property of Bellman operators

‖V ∗ − V πN ‖∞ = ‖T V ∗ − T πNVN−1 + T πNVN−1 − T πNV πN ‖∞
≤ ‖T V ∗ − T VN−1‖∞ + γ‖VN−1 − V πN ‖∞
≤ γ‖V ∗ − VN−1‖∞ + γ(‖VN−1 − V ∗‖∞ + ‖V ∗ − V πN ‖∞)

≤ 2γ

∞∑
t=0

γt‖V ∗ − VN−1‖∞

=
2γ

1− γ
‖V ∗ − VN−1‖∞.

B Smooth AMPI with m = 1

We prove properties of the smooth Bellman operators in Section B.1. We obtain the error bound on
the smooth AMPI with m = 1 in Section B.2.

B.1 Smooth Bellman operators

Proposition 3. Denote γ̃ := βγ + (1 − β). The smooth Bellman operators T πβ , Tβ defined by (1)
satisfy the following properties:
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1. Monotonicity: for V1, V2 ∈ RS such that V1 ≥ V2, one has

T πβ V1 ≥ T πβ V2, TβV1 ≥ TβV2.

2. Distributivity: for c ∈ R and V ∈ RS , one has

T πβ (V + c1) = T πβ V + γ̃c1, Tβ(V + c1) = TβV + γ̃c1.

3. Contraction in sup-norm with coefficient γ̃: for V1, V2 ∈ RS , one has

‖T πβ V1 − T πβ V2‖∞ ≤ γ̃‖V1 − V2‖∞, ‖TβV1 − TβV2‖∞ ≤ γ̃‖V1 − V2‖∞.

Proof. We first prove the claimed properties for the smooth Bellman operator T πβ .

1. Monotonicity. Follows from monotonicity of the standard Bellman operator and the monotonisity
of the identity function.

2. Distributivity. By distributivity of the standard Bellman operator T π(V + c1) = T πV + γc1, one
has

T πβ (V + c1) = βT π(V + c1) + (1− β)(V + c1)

= β(T πV + γc1) + (1− β)V + (1− β)c1

= T πβ V + γ̃c1.

3. Contraction. By contraction of the standard Bellman operator ‖T πV1−T πV2‖∞ ≤ γ‖V1−V2‖∞,
one has

‖T πβ V1 − T πβ V2‖∞ = ‖βT πV1 + (1− β)V1 − βT πV2 − (1− β)V2‖∞
≤ β‖TπV1 − TπV2‖∞ + (1− β)‖V1 − V2‖∞
≤ βγ‖V1 − V2‖∞ + (1− β)‖V1 − V2‖∞
≤ γ̃‖V1 − V2‖∞.

For the optimal smooth Bellman operator Tβ , the proof is the same as above by considering properties
of the optimal Bellman operator T .

B.2 Error propagation

Proposition 4 (Smooth AMPI error propagation). For any initial value function V0, consider the
smooth AMPI scheme (8) with smoothing coefficient β ∈ (0, 1]. Let γ̃ := βγ + (1− β). Then

‖V πN − V ∗‖∞ ≤
2

1− γ̃
(
βEN + γ̃N‖V0 − V ∗‖∞

)
, (25)

where EN :=
∑N−1
t=1 γ̃N−t(‖εt‖∞ + ‖ε′t‖∞) and εt, ε′t ∈ RS are the error vectors of approximate

policy evaluation and policy improvement step defined by (5).

Proof. The result follows from Lemma 3 with contraction coefficient γ̃ and β-rescaled errors.

C Regularized AVI

In the following, we consider a regularization function given by the (per-state) negative entropy of a
policy

Ω(π) := (−αH(π(·|s)))s∈S ,
and the time-varying regularization function given a sequence of positive weights (αt)t > 0

Ωt(π) := αtΩ(π).

In addition, we focus on the value iteration instance of the AMPI.
We first prove an auxiliary result that describes the difference between the regularized and the standard
optimal Bellman operators.
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Lemma 4 (Regularization gap). For any value function V ∈ RS , the regularization gap

Ω∗(AV (s, ·)) := [TΩV ](s)− [T V ](s)

satisfies for all s ∈ S

0 ≤ Ω∗(AV (s, ·)) := α log
∑
a∈A

exp(A(s, a)/α) ≤ αH(πBV (·|s)),

where πBV is a Boltzmann policy induced by the value function V as defined by (11).

Proof. By definition of the regularization gap and properties of smooth maximum, one has

Ω∗(AV (s, ·)) = [TΩV ](s)− [T V ](s)

= Ω∗(QV (s, ·))−maxQV (s, ·)
= Ω∗(QV (s, ·)−maxQV (s, ·))

= α log
∑
a∈A

exp(A(s, a)/α).

The lower bound is obtained using boundness of smooth maximum

0 ≤ TΩV − T V ⇐⇒ 0 ≤ T GΩV − T GV + αH(πBV ).

From here, the upper bound follows due to the maximizing property of the greedy policy

−αH(πBV ) ≤ T GΩV − T GV ≤ 0 ⇐⇒ 0 ≤ T GΩ

Ω V − T GV ≤ αH(πBV ).

C.1 Regularized value function

The regularization changes the original RL problem. The next lemma relates the regularized value
function to the optimal value function in the original problem.

Lemma 5 (Regularized value function). Consider time-varying regularization function Ωt(π) :=
αtΩ(π) for αt > 0. Denote the regularized value function after N iterations VN :=
TΩN (TΩN−1

(. . . (TΩ1
V0))). Then, VN satisfies

‖VN − V ∗‖∞ ≤
N∑
t=1

γN−t‖Ω∗t (AVt−1)‖∞ + γN‖V0 − V ∗‖∞. (26)

Proof. By putting V := V0, we first prove that

T NV ≤ VN ≤ T NV +

N∑
t=1

γN−t‖Ω∗t (AVt−1
)‖∞1.

To do so, note that TΩ ≥ T since TΩtV = T V + Ω∗t (AV ) from Lemma 4. Then, the lower bound
follows by induction from

TΩ2
(TΩ1

V ) ≥ TΩ2
(T V ) ≥ T (T V ) = T 2V ⇒ VN ≥ T NV.

Similarly, the upper bound follows from

TΩ2(TΩ1V ) = TΩ2(T V + Ω∗t (AV ))

= T (T V + Ω∗t (AV )) + Ω∗t (AV1
)

≤ T (T V + ‖Ω∗t (AV )‖∞1) + Ω∗t (AV1
)

≤ T 2V + γ‖Ω∗t (AV )‖∞1 + Ω∗t (AV1
)

⇒ VN ≤ T NV +

N∑
t=1

γN−t‖Ω∗t (AVt−1)‖∞1.
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The claimed result is obtained by noticing that

V ∗ − γN‖V ∗ − V ‖∞1 ≤ T NV ≤ V ∗.

Indeed, the right hand side is due to the maximizing property of optimal value function. The left hand
side follows from standard computations

V ∗(s)− [T V ](s) = [T V ∗](s)− [T V ](s)

= max
a

(r(s, a) + γP (·|s, a)TV ∗)−max
a

(r(s, a) + γP (·|s, a)TV )

≤ γmax
a
|P (·|s, a)T (V ∗ − V )|

≤ γmax
a
‖P (·|s, a)‖1‖V ∗ − V ‖∞

≤ γ‖V ∗ − V ‖∞.

C.2 Overestimation errors

Consider the approximate value iteration scheme (AVI) with overestimation errors [14]

(AVI) Vt+1 = T Vt + εt+1,

where εt ∈ RS is a vector of overestimation errors defined as a difference between applications of
optimal Bellman operator to noisy and exact values

εt+1 := T V̂t − T Vt.

The above scheme with regularization results in the regularized approximate value iteration scheme
(reg-AVI) with overestimation errors

(reg-AVI) Vt+1 = TΩtVt + ε̄t+1,

where ε̄t ∈ RS is a vector of overestimation errors defined as a difference between applications of
optimal regularized Bellman operator to noisy and exact values

ε̄t+1 := TΩt V̂t − TΩtVt.

C.3 Error propagation

In the next lemma we extend the Lemma 5 to include errors ε̄t at computation of the regularized
Bellman operator. The final bound in Proposition 2 is obtained by noticing that

ε̄t+1 := Vt+1 − TΩtVt = Vt+1 − TΩtVt + (T Vt − T Vt) = Vt+1 − T Vt − Ω∗t (AVt) = εt+1 − Ω∗t (AVt).
(27)

Lemma 6 (Approximate regularized value function). Consider the reg-AVI scheme with time-varying
regularization function Ωt(π) := αtΩ(π), αt > 0, and per-iteration error vector ε̄t ∈ RS . Denote
the approximate regularized value function after N iterations VN := TΩN (TΩN−1

(. . . (TΩ1
V0 +

ε̄1) . . . ) + ε̄N−1) + ε̄N . Then, VN satisfies

‖VN − V ∗‖∞ ≤
N∑
t=1

γN−t(‖ε̄t‖∞ + ‖Ω∗t (AVt−1)‖∞) + γN‖V0 − V ∗‖∞.

Proof. The proof closely follows Lemma 5 with additional error vector.

Proposition 2 (reg-AVI error propagation). For any initial value function V0, consider the entropy-
based reg-AVI scheme (15) with time-varying regularization parameter (αt)t > 0. Then, it holds that

‖VN − V ∗‖∞ ≤ EN +AN + γN‖V0 − V ∗‖∞, (17)

where EN :=
∑N
t=1 γ

N−t‖εt − Ω∗t (AVt−1
)‖∞, AN :=

∑N
t=1 γ

N−t‖Ω∗t (AVt−1
)‖∞, the regulariza-

tion gap Ω∗(AV ) := TΩV − T V and the approximation errors of value update εt := Vt − T Vt−1.
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Proof. It is sufficient to invoke Lemma 6 with the error vector given by (27)

ε̄t = εt − Ω∗t (AVt−1).

D Smooth regularized AVI

By combining smoothing with regularization, we obtain a smooth regularized Bellman operator.
Similar to previous Section C, we first establish the distance between the smooth regularized value
function to the optimal value function in Lemma 7.

D.1 Smooth regularized value function

Lemma 7 (Smooth regularized value function). Consider the smooth reg-VI scheme with smooth-
ing parameter β ∈ [0, 1), time-varying regularization function Ωt(π) := αtΩ(π), αt > 0.
Let γ̃ := βγ + (1 − β). Denote the smooth regularized value function after N iterations
VN := TΩN ,β(TΩN−1,β(. . . (TΩ1,βV0))). Then, VN satisfies

‖VN − V ∗‖∞ ≤ β
N∑
t=1

γ̃N−t‖Ω∗t (AVt−1
)‖∞ + γ̃N‖V0 − V ∗‖∞.

Proof. Notice that Lemma 5 can be extended to the smooth regularized Bellman operators

TΩ,βV = β(T V + Ω∗t (AV )) + (1− β)V = TβV + βΩ∗t (AV ).

Similar to Lemma 5 and exchanging the optimal Bellman operator T to the smooth optimal Bellman
optimal Tβ , it can be shown that

(TβV )N ≤ VN ≤ (TβV )N +

N∑
t=1

γ̃N−t‖βΩ∗t (AVt−1
)‖∞1.

Using the same arguments as in Lemma 5, one has

V ∗ − γ̃N‖V ∗ − V ‖∞1 ≤ (TβV )N ≤ V ∗.

By combining the above bounds, one obtains the desired result.

D.2 Error propagation of smooth regularized AVI

Consider the smooth reg-AVI scheme

Vt+1 ← TΩt,βVt + βε̄t,

where ε̄t ∈ RS is the reg-AVI error vector. Following the structure of Section C.3, we provide the
distance between the smooth regularized approximate value function and the optimal value function
in Lemma 8. The final bound is obtained in Theorem 1 by taking the reg-AVI error vector (27).
Lemma 8 (Smooth regularized approximate value function). Consider the approximate smooth
reg-AVI scheme with smoothing parameter β ∈ [0, 1), time-varying regularization function Ωt(π) :=
αtΩ(π), αt > 0 and per-iteration error vector ε̄t ∈ RS . Let γ̃ := βγ + (1− β). Denote the smooth
regularized approximate value function after N iterations VN := TΩN ,β(TΩN−1,β(. . . (TΩ1,βV0 +
βε̄1) . . . ) + βε̄N−1) + βε̄N . Then, VN satisfies

‖VN − V ∗‖∞ ≤ βẼN + βÃN + γ̃N‖V0 − V ∗‖∞,

where ẼN :=
∑N
t=1 γ̃

N−t‖ε̄t‖∞, ÃN :=
∑N
t=1 γ̃

N−t‖Ω∗t (AVt−1
)‖∞.

Proof. Similar to Lemma 6, the result follows by considering an additional vector of errors in
Lemma 7.
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Theorem 1 (Smooth reg-AVI error propagation). For any initial value function V0, consider the
smooth regularized AVI scheme (19) with smoothing parameter β ∈ [0, 1) and time-varying tempera-
ture parameter (αt)t > 0. Denote γ̃ := βγ + (1− β). Then, one has

‖VN − V ∗‖∞ ≤ βẼN + βÃN + γ̃N‖V0 − V ∗‖∞, (20)

where ẼN :=
∑N
t=1 γ̃

N−t‖εt − Ω∗t (AVt−1)‖∞, ÃN :=
∑N
t=1 γ̃

N−t‖Ω∗t (AVt−1)‖∞, the regulariza-
tion gap Ω∗(AV ) := TΩV − T V and the approximation errors of value update εt := Vt − T Vt−1.

Proof. It is sufficient to invoke Lemma 8 with the error vector given by (27)

ε̄t = εt − Ω∗t (AVt−1).

D.3 Neural network function approximation

Motivated by the Soft Actor-Critic algorithm, we consider the value network Vθ : S → R trained
using the smooth reg-AVI update and (continuous-time) gradient descent for optimization (see
Section 5.3)

(smooth reg-AVI) θk+1 ← arg min
θ
‖Vθ − TΩk,βVk‖22, Vk+1 ← Vθk+1

. (28)

The central object of this study is the limiting Neural Tangent Kernel (NTK) [28] of the value network
Vθ, defined as

K(s, s′) = Eθ0∼init

[
∂Vθ(s)

∂θ

T
∂Vθ(s

′)

∂θ

∣∣
θ=θ0

]
. (29)

Below, we will show that the limiting NTK characterizes the approximation errors of (randomly
initialized) value network with sufficiently large width trained using (continuous-time) gradient
descent.
Theorem 3 (Linear convergence of value network errors). For notational simplicity, let us denote
the value network V (t) := Vθ

∣∣
θ=θ(t)

with sufficiently large width and the Bellman update bk+1 :=

TΩ,βVk. Then, if the limiting NTK of the neural net Vθ is positive definite, i.e its smallest eigenvalue
is positive λmin(K) > 0, then the following contraction holds almost surely over all initializations
θ(0) of the neural network

|uTj (V (t)− bk+1)| ≤ exp(−λmin(K)t)|uTj (V (0)− bk+1)|, ∀t ≥ 0, j ∈ [[S]],

where u1, . . . , uS are the eigenvectors of K. In particular, the process V (t) converges (in any norm)
to bk+1 almost surely over random initializations of Vθ at linear rate e−λmin(K).

Proof. Recall the dynamics of value function during the continuous gradient descent

dVθ
dt

= ∇θVθ θ̇(t) = −K(t)(Vθ(t) − TΩ,βVk)
∣∣
θ=θ(t)

. (30)

It has been shown in [19] that K(t)
a.s.
= K +O(m−1/2) for large m := min(m1, . . . ,mL), where K

is the limiting NTK given by (29).

Let K =
∑S
j=1 λjuju

T
j be the eigenvalue decomposition of K, where λmax(K) := λ1 ≥ · · · ≥

λS =: λmin(K) ≥ 0 are the eigenvalues and u1, . . . , uS are the eigenvectors, with uTj uk = 0 for all
j, k ∈ [[S]] such that j 6= k.

Technical note. Further suppose λmin(K) > supt≥0 ‖K(t)−K‖. This assumption is not at all
restrictive. For example, it is sufficient to have λmin(K) = Ω(1) (i.e the eigenvalues of K are
positive and bounded away from zero). This is because ‖K(t)−K‖ = O(m−1/2) as explained
before. Then, we can use K (the NTK) in place of K(t) in the remainder of the analysis.
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Multiplying both sides of (30) by the jth eigenvector uj of K, and simplifying, we get

d(uTj V (t))

dt
= uTj

dV (t)

dt
= −uTj K(V (t)− bk+1) = −λjuTj (V (t)− bk+1)),

Integrating the above equation w.r.t time t and taking absolute values then gives for all t ≥ 0,

|uTj (V (t)− bk+1)| = exp(−λjt)|(uTj (V (0)− bk+1)|
≤ exp(−λmin(K)t)(uTj |V (0)− bk+1|).

Because the eigenvectors u1, u2, . . . are pairwise orthogonal, we have ‖V (t) − bk+1‖2 ≤
O(e−λmin(K)t)‖V (0) − bk+1‖2, and so V (t) converges to bk+1 in the limit as t → ∞ (in any
norm, since all norms are equivalent in finite-dimensional spaces) exponentially fast with rate
e−λmin(K).

Example. If Vθ is a two-layer ReLU network under a certain form, then it can be shown that the
corresponding limiting NTK is given by K(s, s′) = ‖s‖‖s′‖κ

(
sT s
‖s‖‖s′‖

)
, where κ(u) := 1

π (u(π −
arccos(u)) +

√
1− u2).

Corollary 2 (Value network errors of the smooth reg-AVI). Under conditions of Theorem 2, the
neural network approximation error of problem (22) optimized by gradient descent is upper bounded
by

‖εak+1‖ = ‖Vθk+1
− TΩ,βVk‖

a.s.
= O(e−λmin(K)T ),

where K is the limiting NTK of the value network Vθ and T is the number of gradient descent steps.

Proof. The result follows from Theorem 3 at t→∞ due to the norm equivalence in finite dimensions.
It holds in any norm at the price of changing the constants in the O(m−1/2) (this constant is

√
S for

the `∞-norm). As a consequence of Theorem 3, the statement should be understood in an almost-sure
sense over random initializations of the neural network Vθ.
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