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Abstract

We present a federated, asynchronous, and (ε, δ)-differentially private algorithm
for PCA in the memory-limited setting. Our algorithm incrementally computes
local model updates using a streaming procedure and adaptively estimates its
r leading principal components when only O(dr) memory is available with d
being the dimensionality of the data. We guarantee differential privacy via an
input-perturbation scheme in which the covariance matrix of a dataset X ∈ R

d×n

is perturbed with a non-symmetric random Gaussian matrix with variance in

O
((

d
n

)2
log d

)
, thus improving upon the state-of-the-art. Furthermore, contrary

to previous federated or distributed algorithms for PCA, our algorithm is also
invariant to permutations in the incoming data, which provides robustness against
straggler or failed nodes. Numerical simulations show that, while using limited-
memory, our algorithm exhibits performance that closely matches or outperforms
traditional non-federated algorithms, and in the absence of communication latency,
it exhibits attractive horizontal scalability.

1 Introduction

In recent years, the advent of edge computing in smartphones, IoT and cryptocurrencies has induced
a paradigm shift in distributed model training and large-scale data analysis. Under this new paradigm,
data is generated by commodity devices with hardware limitations and severe restrictions on data-
sharing and communication, which makes the centralisation of the data extremely difficult. This
has brought new computational challenges since algorithms do not only have to deal with the sheer
volume of data generated by networks of devices, but also leverage the algorithm’s voracity, accuracy,
and complexity with constraints on hardware capacity, data access, and device-device communication.
Moreover, concerns regarding data ownership and privacy have been growing in applications where
sensitive datasets are crowd-sourced and then aggregated by trusted central parties to train machine
learning models. In such situations, mathematical and computational frameworks to ensure data
ownership and guarantee that trained models will not expose private client information are highly
desirable. In light of this, the necessity of being able to privately analyse large-scale decentralised
datasets and extract useful insights out of them is becoming more prevalent than ever before. A
number of frameworks have been put forward to train machine-learning models while preserving
data ownership and privacy like Federated Learning [37, 29], Multi-party computation [41, 32, 47],
Homomorphic encryption [20], and Differential Privacy [13, 14]. In this work we pursue a combined
federated learning and differential privacy framework to compute PCA in a decentralised way and
provide precise guarantees on the privacy budget. Seminal work in federated learning has been made,
but mainly in the context of deep neural networks, see [37, 29]. Specifically, in [29] a federated
method for training of neural networks was proposed. In this setting one assumes that each of a large
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number of independent clients can contribute to the training of a centralised model by computing
local updates with their own data and sending them to the client holding the centralised model
for aggregation. Ever since the publication of this seminal work, interest in federated algorithms
for training neural networks has surged, see [48, 24, 19]. Despite of this, federated adaptations of
classical data analysis techniques are still largely missing. Out of the many techniques available,
Principal Component Analysis (PCA) [44, 27] is arguably the most ubiquitous one for discovering
linear structure or reducing dimensionality in data, so has become an essential component in inference,
machine-learning, and data-science pipelines. In a nutshell, given a matrix Y ∈ R

d×n of n feature
vectors of dimension d, PCA aims to build a low-dimensional subspace of Rd that captures the
directions of maximum variance in the data contained in Y. Apart from being a fundamental tool for
data analysis, PCA is often used to reduce the dimensionality of the data in order to minimise the cost
of computationally expensive operations. For instance, before applying t-SNE [34] or UMAP [36].
Hence, a federated algorithm for PCA is not only desired when data-ownership is sought to be
preserved, but also from a computational viewpoint.

Herein, we propose a federated and differentially private algorithm for PCA (Alg. 1). The computation
of PCA is related to the Singular Value Decomposition (SVD) [16, 38] which can decompose any
matrix into a linear combination of orthonormal rank-1 matrices weighted by positive scalars. In
the context of high-dimensional data, the main limitation stems from the fact that, in the absence
of structure, performing PCA on a matrix Y ∈ R

d×n requires O(d2n + d3) computation time
and O(d2) memory. This cubic computational complexity and quadratic storage dependency on
d makes the cost of PCA computation prohibitive for high-dimensional data, though it can often
be circumvented when the data is sparse or has other type of exploitable structure. Moreover, in
some decentralised applications, the computation has to be done in commodity devices with O(d)
storage capabilities, so a PCA algorithm with O(d) memory dependency is highly desirable. On this
front, there have been numerous recent works in the streaming setting that try to tackle this problem,
see [39, 40, 35, 2, 3, 6]. However, most of these methods do not naturally scale well nor can they be
parallelised efficiently despite their widespread use, e.g. [7, 6]. To overcome these issues a reliable
and federated scheme for large decentralised datasets is highly desirable. Distributed algorithms for
PCA have been studied previously in [28, 31, 45]. Similar to this line of work in [42] proposed a
federated subspace tracking algorithm in the presence of missing values. However, the focus in this
line of work is in obtaining high-quality guarantees in communication complexity and approximation
accuracy and do not implement differential privacy. A number of papers in non-distributed, but
differentially private algorithms for PCA have been proposed. These can be roughly divided in two
main groups: (i) those which are model free and provide guarantees for unstructured data matrices,
(ii) those that are specifically tailored for instances where specific structure is assumed. In the
model-free PCA we have (SuLQ) [5], (PPCA) and (MOD-SuLQ) [8], Analyze Gauss [15]. In the
structured case, [22, 23, 21] studies approaches under the assumption of high-dimensional data, [54]
considers the case of achieving differential privacy by compressing the database with a random affine
transformation, while [18] proposes a distributed privacy-preserving version for sparse PCA, but
with a strong sparsity assumption in the underlying subspaces. To the best of our knowledge, the
combined federated, model free, and differential private setting for PCA has not been previously
addressed in literature. This is not surprising as this case is especially difficult to address. In the one
hand, distributed algorithms for computing principal directions are not generally time-independent.
That is, the principal components are not invariant to permutations the data. On the other hand,
guaranteeing (ε, δ)-differential privacy imposes an O(d2) overhead in storage complexity, which
might render the distributed procedure infeasible in limited-memory scenarios.

Summary of contributions: Our main contribution is Federated-PCA (Alg. 1) a federated, asyn-
chronous, and (ε, δ)-differentially private algorithm for PCA. Our algorithm is comprised out of
two independent components: (1) An algorithm for the incremental, private, and decentralised com-
putation of local updates to PCA, (2) a low-complexity merging procedure to privately aggregate
these incremental updates together. By design Federated-PCA is only allowed to do one pass through
each column of the dataset Y ∈ R

d×n using an O(d)-memory device which results in a O(dr)
storage complexity. Federated-PCA achieves (ε, δ)-differential privacy by extending the symmetric
input-perturbation scheme put forward in [8] to the non-symmetric case. In doing so, we improve the
noise-variance complexity with respect to the state-of-the-art for non-symmetric matrices.
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2 Notation & Preliminaries

This section introduces the notational conventions used throughout the paper. We use lowercase
letters y for scalars, bold lowercase letters y for vectors, bold capitals Y for matrices, and calligraphic
capitals Y for subspaces. If Y ∈ R

d×n and S ⊂ {1, . . . ,m}, then YS is the block composed of
columns indexed by S. We reserve 0m×n for the zero matrix in R

m×n and In for the identity matrix
in R

n×n. Additionally, we use ‖ · ‖F to denote the Frobenius norm operator and ‖ · ‖ to denote

the �2 norm. If Y ∈ R
d×n we let Y = UΣVT be its full SVD formed from unitary U ∈ R

d×d

and V ∈ R
n×n and diagonal Σ ∈ R

d×n. The values Σi,i = σi(Y) ≥ 0 are the singular values of

Y. If 1 ≤ r ≤ min(d, n), we let [Ur,Σr,V
T
r ] = SVDr(Y) be the singular value decomposition

of its best rank-r approximation. That is, the solution of min{‖Z−Y‖F : rank (Z) ≤ r}. Using
this notation, we define [Ur,Σr] be the rank-r principal subspace of Y. When there is no risk of
confusion, we will abuse notation and use SVDr(Y) to denote the rank-r left principal subspace
with the r leading singular values [Ur,Σr] We also let λ1(Y) ≥ · · · ≥ λk(Y) be the eigenvalues of

Y when d = n. Finally, we let �ek ∈ R
d be the k-th canonical vector in R

d.

Streaming Model: A data stream is a vector sequence yt0 ,yt1 ,yt2 , . . . such that ti+1 > ti for all

i ∈ N. We assume that ytj ∈ R
d and tj ∈ N for all j. At time n, the data stream y1, . . . ,yn can be

arranged in a matrix Y ∈ R
d×n. Streaming models assume that, at each timestep, algorithms observe

sub-sequences yt1 , . . . ,ytb of the data rather than the full dataset Y.

Federated learning: Federated Learning [29] is a machine-learning paradigm that considers how a
large number of clients owning different data-points can contribute to the training of a centralised
model by locally computing updates with their own data and merging them to the centralised model
without sharing data between each other. Our method resembles the distributed agglomerative
summary model (DASM) [50] in which updates are aggregated in a “bottom-up” approach following
a tree-structure. That is, by arranging the nodes in a tree-like hierarchy such that, for any sub-tree,
the leaves compute and propagate intermediate results the their roots for merging or summarisation.

Differential-Privacy: Differential privacy [14] is a mathematical framework that measures to what
extent the parameters or predictions of a trained machine learning model reveal information about any
individual points in the training dataset. Formally, we say that a randomised algorithm A(·) taking
values in a set T provides (ε, δ)-differential privacy if

P [A(D) ∈ S] ≤ eεP [A(D′) ∈ S] + δ (1)

for all measurable S ⊂ T and all datasets D and D′ differing in a single entry. Our algorithm extends
MOD-SuLQ [9] to the streaming and non-symmetric setting and guarantees (ε, δ)-differential privacy.
Our extension only requires one pass over the data and preserves the nearly-optimal variance rate
MOD-SuLQ.

3 Federated PCA

We consider a decentralised dataset D = {y1, . . . ,yn} ⊂ R
d distributed across M clients. The

dataset D can be stored in a matrix Y =
[
Y1|Y2| · · · |YM

]
∈ R

d×n with n � d and such that

Yi ∈ R
d×ni is owned by client i ∈ {1, . . . ,M}. We assume that each Yi is generated in a streaming

fashion and that due to resource limitations it cannot be stored in full. Furthermore, under the DASM
we assume that the M clients in the network can be arranged in a tree-like structure with q > 1 levels
and approximately � > 1 leaves per node. Without loss of generality, in this paper we assume that
M = �q . An example of such tree-like structure is given in Figure 1. We note that such structure can
be generated easily and efficiently using various schemes [51]. Our procedure is presented in Alg. 1.

Note that Alg. 1, invokes FPCA-Edge (Alg. 3) to privately compute local updates to the centralised
model and Alg. 2 to recursively merge the local subspaces in the tree. To simplify the exposition we
assume, without loss of generality, that every client i ∈ [T ] observes a vector yi

t ∈ R
d at time t ∈ [T ],

but remark that this uniformity in data sampling need not hold in the general case. We also assume
that clients accumulate observations in batches and that these are not merged until their size grows to
bi. However, we point out that in real-world device networks the batch size might vary from client
to client due to heterogeneity in storage capacity and could indeed be merged earlier in the process.
Finally, it is important to note that the network does not need to wait for all clients to compute a global
estimation, so that subspace merging can be initiated when a new local estimation has been computed
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Algorithm 1: Federated PCA (FPCA)

Data: Y =
[
Y1| · · · |YM

]
∈ R

d×n: Data for network with M nodes // (ε, δ): DP parameters // (α, β):
Bounds on energy, see (4) // B: Batch size for clients // r: Initial rank ;

Result: [U′,Σ′] ≈ SVDr(Y) ∈ R
d×r × R

r×r

Function Federated-PCAε,δ,α,β,r(Y, B) is
Compute Tε,δ,d,n minimum batch size to ensure differential privacy, see Lemma 2
Each client i ∈ [M ] : // 1. Initialise clients

Initialises PC estimate to (Ui,Σi) ← (0, 0), batch Bi ← [ ], and batch size bi ← Tε,δ,d,n

end
At time t ∈ {1, . . . , n} , each client i ∈ {1, . . . ,M} // 2. Computation of local
updates

Observes data-point yi
t ∈ R

d and add it to batch Bi ← [Bi,yi
t]

if Bi has bi columns then

(Ui,Σi) ← FPCA-Edgeε,δ,α,β,r(B
i,Ui,Σi)

Reset the batch Bi ← [ ], and set the batch size bi ← B
end

end
/* 3. Recursive subspace merge */
Arrange clients’ subspaces in a tree-like data structure and merge them recursively with Alg. 2

(Fig. 1)

end

without perturbing the global estimation. This time independence property enables federation as it
guarantees that the principal-component estimations after merging are invariant to permutations in
the data, see Lemma 10. Merge and FPCA-Edge are described in Algs. 2 and 3.

Figure 1: Federated model: (1) Leaf nodes (L) independently compute local updates asynchronously,
(2) The subspace updates are propagated upwards to aggregator nodes (A), (3) The process is repeated
recursively until the root node is reached, (4) FPCA returns the global PCA estimate.

3.1 Merging

Our algorithmic constructions are built upon the concept of subspace merging in which two subspaces
S1 = (U1,Σ1) ∈ R

r1×d × R
r1×r1 and S2 = (U2,Σ2) ∈ R

r2×d × R
r2×r2 are merged together to

produce a subspace S = (U,Σ) ∈ R
r×d × R

r×r describing the combined r principal directions of
S1 and S2. One can merge two sub-spaces by computing a truncated SVD on a concatenation of their
bases. Namely,

[U,Σ,VT] ← SVDr([λU1Σ1,U2Σ2]), (2)

where λ ∈ (0, 1] a forgetting factor that allocates less weight to the previous subspace U1. In [46, 17],
it is shown how (2) can be further optimised when VT is not required and we have knowledge that
U1 and U2 are already orthonormal. An efficient version of (2) is presented in Alg. 2. Alg. 2 is
generalised in [26] to multiple subspaces when the computation is incremental, but not streaming.
That is, when every subspace has to be computed in full in order to be processed, merged, and
propagated synchronously, which is not ideal for use in a federated approach. Hence, in Lemma 1 we
extend the result in [26] to the case of streaming data. Lemma 1 is proved in the Appendix.

Lemma 1 (Federated SVD uniqueness). Consider a network with M nodes where, at each timestep
t ∈ N, node i ∈ {1, . . . ,M} processes a dataset Di

t ∈ R
d×b. At time t, let Yi

t = [Di
1 | · · · | Di

t] ∈
R

d×tb be the dataset observed by node i and Yt =
[
Y1

t |Y2
t | · · · |YM

t

]
∈ R

d×tMb be the dataset

4



3.2 Local update estimation: Subspace tracking 5

Algorithm 2: Merger [46, 17]

Data: (U1,Σ1) ∈ R
d×r1 ×R

r1×r1 : First subspace // (U2,Σ2) ∈ R
d×r2 ×R

r2×r2 : Second subspace;

Result: (U′′,Σ′′) ∈ R
d×r × R

r×r merged subspace
Function Merger(U1,Σ1,U2,Σ2) is

Z ← UT
1 U2

[Q,R] ← QR(U2 −U1Z), the QR factorisation

[U′,Σ′′,∼] ← SVDr

([
Σ1 ZΣ2

0 RΣ2

])
U′′ ← [U1,Q]U′

end

observed by the network. Moreover, let Zt := [U1
tΣ

1
t | · · · | UM

t ΣM
t ] where [Ui

t,Σ
i
t, (V

i
t)

T ] =

SVD(Yi
t). If

[
Ut,Σt,V

T
t

]
= SVD(Yt) and [Ût, Σ̂t, (V̂t)

T ] = SVD(Zt), then Σ = Σ̂t, and

Ut = ÛtBt, where Bt ∈ R
r×r is a unitary block diagonal matrix with r = rank(Yt) columns. If

none of the nonzero singular values are repeated then Bt = Ir. A similar result holds if b differs for
each worker as long as b ≥ min rank(Yi

t) ∀i ∈ [M ].

3.2 Local update estimation: Subspace tracking

Consider a sequence {y1, . . . ,yn} ⊂ R
d of feature vectors. A block of size b ∈ N is formed

by taking b contiguous columns of {y1, . . . ,yn}. Assume r ≤ b ≤ τ ≤ n. If Ŷ0 is the empty
matrix, the r principal components of Yτ := [y1, · · · ,yτ ] can be estimated by running the following
iteration for k = {1, . . . , 
τ/b�},

[Û, Σ̂, V̂T ] ← SVDr

([
Ŷ(k−1)b y(k−1)b+1 · · · ykb

])
, Ŷkb ← ÛΣ̂V̂T ∈ R

d×kb. (3)

Its output after K = 
τ/b� iterations contains an estimate Û of the leading r principal components

of Yτ and the projection Ŷτ = ÛΣ̂V̂T of Yτ onto this estimate. The local subspace estimation in
(3) was initially analysed in [17]. FPCA-Edge adapts (3) to the federated setting by implementing
an adaptive rank-estimation procedure which allows clients to adjust, independently of each other,
their rank estimate based on the distribution of the data seen so far. That is, by enforcing,

Er(Yτ ) =
σr(Yτ )∑r
i=1 σi(Yτ )

∈ [α, β], (4)

and increasing r whenever Er(Yτ ) > β or decreasing it when Er(Yτ ) < α. In our algorithm, this
adjustment happens only once per block, though a number of variations to this strategy are possible.
Further, typical values for α and β are 1 and 10 respectively; note for best results the ratio α/β should
be kept below 0.3. Letting [r+ 1] = {1, . . . , r+ 1}, [r− 1] = {1, . . . , r− 1}, and 1{·} ∈ {0, 1} be
the indicator function, the subspace tracking and rank-estimation procedures in Alg. 3 depend on the
following functions:

SSVDr(D,U,Σ) = SVDr(D)1{UΣ = 0}+ Merger(U,Σ,D, I)1{UΣ �= 0}
AdjustRankα,β

r (U,Σ) =
(
[U,�er+1],Σ[r+1]

)
1{Er(Σ) > β}+ (U[r−1],Σ[r−1])1{Er(Σ) < α}

+(U,Σ)1{Er(Σ) ∈ [α, β]}

Note that the storage and computational requirements of the Subspace tracking procedure of Alg. 3
are nearly optimal for the given objective since, at iteration k, only requires O(r(d + kr)) bits of
memory and O(r2(d+kr)) flops. However, in the presence of perturbation masks, the computational
complexity is O(d2) due to the incremental covariance expansion per block, see Sec. 3.3.

3.3 Differential Privacy: Streaming MOD-SuLQ

Given a data matrix X ∈ R
d×n and differential privacy parameters (ε, δ), the MOD-SuLQ algorithm

[8] privately computes the k-leading principal components of

A =
1

n
XXT +Nε,δ,d,n ∈ R

d×d, (5)

5



3.3 Differential Privacy: Streaming MOD-SuLQ 6

the covariance matrix of X perturbed with a symmetric random Gaussian matrix Nε,δ,d,n ∈ R
d×d.

This symmetric perturbation mask is such that (Nε,δ,d,n)i,j ∼ N (0, ω2) for i ≥ j where

ω := ω(ε, δ, d, n) =
d+ 1

nε

√
2 log

(
d2 + d

2δ
√
2π

)
+

1

n
√
ε
. (6)

Materialising (5) requires O(d2) memory which is prohibitive given our complexity budgets. We can
reduce the memory requirements to O(cdn) by computing XXT incrementally in batches of size

c ≤ d. That is, by drawing Nd×c
ε,δ,d,n ∈ R

d×c and merging the non-symmetric updates

Ak,c =
1

b
X

[
(XT )(k−1)c+1 · · · (XT )ck

]
+Nd×c

ε,δ,d,n (7)

using Alg. 2. In Lemma 2 we extend the results in [8] to guarantee (ε, δ)-differential privacy in
(7). While the SuLQ algorithm [5], guarantees (ε, δ)-differential privacy with non-symmetric noise

matrices, it requires a variance rate of ω2 = 8d2 log2(d/δ)
n2ε2 , which is sub-optimal with respect to the

O(d
2 log(d/δ)
n2ε2 ) guaranteed by Lemma 2. Lemma 2 is proved in the Appendix.

Lemma 2 (Streaming Differential Privacy). Let X = [x1 · · ·xn] ∈ R
d×n be a dataset with ‖xi‖ ≤ 1,

Nε,δ,d,n ∈ R
d×d and A = 1

nXXT +Nε,δ,d,n. Let {v1, . . . ,vd} be the eigenvectors of 1
nXXT and

{v̂1, . . . , v̂d} be the eigenvectors of A. Let

ω(ε, δ, d, n) =
4d

εn

√
2 log

(
d2

δ
√
2π

)
+

√
2√
εn

. (8)

1. If (Nε,δ,d,n)i,j ∼ N (0, ω2) independently, then (7) is (ε, δ)-differentially private.

2. If n ≥ Tε,δ,d,n := ω−1
0

[
4dε−1

√
2 log

(
d2δ−1(2π)−1/2

)
+
√
2ε−1

]−1

, then (7) is (ε, δ)-

differentially private for a noise mask with variance ω2
0 .

3. Iteration (7) inherits MOD-SuLQ’s sample complexity guarantees, and asymptotic utility
bounds on E [|〈v1, v̂1〉|] and E [‖v1 − v̂1‖].

Alg. 3 uses the result in Lemma 2 for X = B ∈ R
d×b and computes an input-perturbation in a

streaming way in batches of size c. Therefore, the utility bounds for Alg. 3 can be obtained by setting
n = b in (8). If c is taken as a fixed small constant the memory complexity of this procedure reduces
to O(db), which is linear in the dimension. A value for ε can be obtained from Apple’s differential

Algorithm 3: Federated PCA Edge (FPCA-Edge)

Data: B ∈ R
d×b: Batch Y{(k−1)b+1,...,kb} // (Ûk−1, Σ̂k−1): SVD estimate for Y{1,...,(k−1)b} // r:

Initial rank estimate // (α, β): Bounds on energy, see (4) // (ε, δ): DP parameters // r: Initial rank
estimate

Result: (Û, Σ̂), principal r-subspace of Y{1,...,kb}.

Function FPCA-Edgeε,δ,α,β,r(B, Ûk−1, Σ̂k−1) is

/* Streaming MOD-SuLQ */
(U,Σ) ← (0, 0)
for � ∈ {1, . . . , d/c} do

Bs ← 1
b
B(B{(�−1)c+1,...,�c})

T +Nd×c
ε,δ,d,b such that

(
Nd×c

ε,δ,d,b

)
i,j

∼ N (0, ω2) and ω as in (8)

(U,Σ) ← SSVDr(Bs,U,Σ)
end
/* Subspace tracking */

(Û′, Σ̂′) ← Merger(U,Σ, Ûk−1, Σ̂k−1)

(Û, Σ̂) ← AdjustRankα,β
r (Û′, Σ̂′)

end

privacy guidelines [1]. However, in our experiments, we benchmark across a wider spectrum of
values.
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4 Experimental Evaluation

All our experiments were computed on a workstation using an AMD 1950X CPU with 16 cores
at 4.0GHz, 128 GB 3200 MHz DDR4 RAM, and Matlab R2020a (build 9.8.0.1380330). To foster
reproducibility both code and datasets used for our numerical evaluation are made publicly available
at: https://www.github.com/andylamp/federated_pca.

4.1 Differential Privacy empirical evaluation

To quantify the loss with the application of differential private that our scheme has we compare
the quality of the projections using the MNIST standard test set [30] and Wine [10] datasets which
contain, respectively, 10000 labelled images of handwritten digits and physicochemical data for
6498 variants of red and white wine. To retrieve our baseline we performed the full-rank PCA on
the MNIST and (red) Wine datasets and retrieved the first and second principal components, see
Figs. 2a and 2e. Then, on the same datasets, we applied FPCA with rank estimate r = 6, block
size b = 25, and DP budget (ε, δ) = (0.1, 0.1). The projections for Offline PCA, FPCA with no
DP mask, FPCA with DP mask, and vanilla MOD-SuLQ for the MNIST and (red) Wine datasets
are shown in Fig. 2. We note that for a fair comparison with MOD-SuLQ, the rank estimation was
disabled in this first round of experiments. It can be seen from Fig. 2 that in all cases FPCA learnt
the principal subspace of Offline PCA (up to a rotation) and managed to preserve the underlying
structure of the data. In fact, in most instances it even performed better than MOD-SuLQ. We note
that rotations are expected as the guarantees for our algorithm hold up to a unitary transform, see
Appendix C.
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Figure 2: MNIST and Wine projections, for (a,e) Offline PCA, (b,f) F-PCA without DP mask, (c,g) F-
PCA with DP mask, (d,h) (symmetric) MOD-SuLQ. Computed with DP budget of (ε, δ) = (0.1, 0.1).

To evaluate the utility loss with respect to the privacy-accuracy trade-off we fix δ = 0.01 and plot
qA = 〈v1, v̂1〉 for ε ∈ {0.1k : k ∈ {1, . . . , 40}} where v1 and v̂1 are defined as in Lemma 2.

Synthetic data was generated from a power-law spectrum2 Yα ∼ Synth(α)d×n ⊂ R
d×n using

α ∈ {0.01, 0.1, .5, 1}. The results are shown in Figure 3 where we see that a larger ε increases the
utility, but at the cost of lower DP. Quantitatively speaking, our experiments suggest that the more
uniform the spectrum is, the harder it is to guarantee DP and preserve the utility.

2If Y ∼ Synth(α)d×n iff Y = UΣVT with [U,∼] = QR(Nd×d), [V,∼] = QR(Nd×n), and Σi,i =
i−α, and Nm×n is an m× n matrix with i.i.d. entries drawn from N (0, 1).
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(a) F-PCA (with mask).
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(b) MOD-SuLQ (non-symmetric).
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Figure 3: Utility loss of qA for (a) F-PCA, (b) non-symmetric MOD-SuLQ, and (c) symmetric
MOD-SuLQ using δ = 0.05, N = 5k, and d = 20 across different ε and Yα ∼ Synth(α)d×n.

4.2 Computational performance evaluation

Figs. 4a, 4b, 4c evaluate the performance of FPCA-Edge against other streaming algorithms. The
algorithms considered in this instance are: FPCA-Edge (on a single node network), GROUSE [4],
Frequent Directions (FD) [11, 33], the Power Method (PM) [39], and a variant of Projection Approxi-
mation Subspace Tracking (PAST) [52], named SPIRIT (SP) [43]. In the spirit of a fair comparison,
we run FPCA-Edge without its DP features, given that no other streaming algorithm implements DP.
The algorithms are tested on: (1) synthetic datasets, (2) the humidity, voltage, temperature, and light
datasets of readings from Berkeley Mote sensors [12], (3) the MNIST and Wine datasets used in
the previous section. Figs. 4a and 4b report log(RMSE) errors with respect to the offline full-rank
PCA and show that FPCA exhibits state-of-the-art performance across all datasets. On the other
hand, Fig. 4c shows that the computation time of FPCA scales gracefully as the ambient dimension
d grows, and even outperforms SPIRIT.
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(d) FPCA: Total time
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(e) FPCA: PCA computation time
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Figure 4: (a)-(c) Approximation and execution benchmarks against other streaming algorithms for a
single-node network and without DP masks, (d)-(f) Computational scaling of FPCA on multi-node
networks with binary-trees of depth � = log2(node count).

Figs. 4d, 4e, 4f show the evaluation of FPCA in a simulated federated computation environment.
Specifically, they show the average execution times required to compute PCA on a dataset Yα ∼
Synth(α)d×N when fixing d = 103 and varying n ∈ {640k, 1.28M, 1.92M, 2.56M, 3.2M}. Fig. 4d
shows the total computation time of the federated computation, while Figs. 4e and 4f show respectively
the time spent computing PCA, and merging subspaces. Fig. 4d shows a regression after exceeding
the number of physical cores in our machine. However, the amortised cost shows that with sufficient
resources the federation can scale horizontally. More details can be found in Appendix D.4.
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5 Discussion & Conclusions

In this work, we introduced a federated streaming and differentially private algorithm for computing
PCA. Our algorithm advances the state-of-the-art from several fronts: It is time-independent,
asynchronous, and differentially-private. DP is guaranteed by extending the results in [8] to the
streaming and non-symmetric setting. We do this while preserving the same nearly-optimal asymptotic
guarantees provided by MOD-SuLQ. Our algorithm is complemented with several theoretical
results that guarantee bounded estimation errors and robustness to permutations in the data. We
have supplemented our work with a wealth of numerical experiments that show that shows that
Federated-PCA compares favourably against other methods in terms of convergence, bounded
estimation errors, and low memory requirements. An interesting avenue for future work is to study
Federated PCA in the setting of missing values while preserving differential privacy.

6 Broader Impact

PCA is an ubiquitous and fundamental tool in data analysis and machine learning pipelines and
also has important societal applications like poverty measurement. Computing PCA on large-scale
data is not only challenging from the computational point of view, but also from the public policy
point of view. Indeed, new regulations around data ownership and privacy like GDPR have imposed
restrictions in data collection and storage. Our work allows for large-scale decentralised computation
of PCA in settings where each compute node - be it large (servers), thin (mobile phones), or super-thin
(cryptocurrency blocks) - contributes in an independent an asynchronous way to the training of a
global model, while ensuring the ownership and privacy of the data. However, we note that our
algorithmic framework is a tool and, like all tools, is subject to misuse. For example, our framework
could allow malicious users to extract embeddings out of user data to be used for surveillance,
user fingerprinting, and many others not so desirable use-cases. We firmly believe, however, that
the positives outweigh the negatives and this work has the potential to unlock information from
decentralised datasets for the benefit of society, all while guaranteeing high-quality outputs and
stringent privacy properties.
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