
Supplementary Material

S1 Simulation Envirionments

We present details of the three non-stationary simulation environments in this section. Since we deal
with real-world physical tasks, each kind of task has its own dynamics type. The RL agent encounters
different types of dynamics sequentially in our setting. The switch of dynamics is assumed to finish
within a single timestep. Each type of dynamics may last for several episodes, and we call each
episode as one subtask since the dynamics type within an episode is invariant. Note that our method
is not restricted by the episodic assumption since the task index and task boundary are unknown. A
summary of the key parameters is shown in Table S1.

S1.1 Changeable Pole Length and Mass of CartPole-SwingUp

CartPole-SwingUp consists of a cart moving horizontally and a pole with one end attached at the
center of the cart. We modify the simulation environment based on the OpenAI Gym environment [1].
Different types of dynamics have different pole mass m and pole length l. In our setting, the agent
encounters four types of dynamics sequentially with the combinations (m, l) as (0.4, 0.5), (0.4, 0.7),
(0.8, 0.5), (0.8, 0.7). Denote the position of the cart as x and the angle of the pole as θ. The state
of the environment is x = (x, ẋ, cos θ, sin θ, θ̇) and action u is the horizontal force applied on the
cart. Therefore, the GP input is a 6 dimensional vector x̃ = (x,u). The GP target is a 5 dimensional
vector as the state increment y = ∆x = (∆x,∆ẋ,∆ cos θ,∆ sin θ,∆θ̇).

S1.2 Varying Torso Mass in HalfCheetah

In HalfCheetah, we aim to control a halfheetah in flat ground and make it run as far as possible. The
environment is modified based on MuJoCo [2]. We notice that the torso mass m significantly affects
the running performance. Therefore, we create two different types of dynamics by changing the
torso mass m iteratively between 14 and 34 to simulate real-world delivery situations. We denote the
nine joints of a halfcheetah as (root_x, root_y, root_z, back_thigh, back_shin, back_foot, front_thigh,
front_shin, front_foot). The state x is 18-dimensional consisting of each joint’s position and velocity.
The action u is 6-dimensional, including the actuator actions applied to the last six physical joints.
Therefore, the GP input x̃ = (x,u) is a 24-dimensional, and the GP target is the 18-dimensional
state increment y = ∆x.

S1.3 Dynamic Surrounding Vehicles in Highway-Intersection

The Highway-Intersection environment is modified based on highway-env [3]. We adapt the
group modeling [4] concept and treat all the other surrounding vehicles’ behaviors as part of the
environment dynamics. In addition to modeling the interactions (analogous to the effect of ego vehicle
action to other vehicles), the mixture model also needs to learn the ego vehicles’ dynamics (analogous
to the action’s effect on ego vehicle). For simplicity, we only experiment with environments containing
only one surrounding vehicle. Note that the multi-vehicle environment can be generated by following
the same setting but requires modification of pipelines. For example, to evaluate the posterior
probability of all surrounding vehicles from GP components, we can query the mixture model
multiple times and then calculate the predictive distribution for each vehicle.

We consider an intersection with a two-lane road. The downside, left, upside, and right entry is
denoted with index 0,1,2,3, respectively. The ego vehicle A0 has a fixed initial state as the right lane
of entry 0 and a fixed destination as the right lane of entry 1. In other words, A0 tries to do a left
turn with high velocity and avoid collision with others. Each type of dynamics has different start
and goal positions of the surrounding vehicle A1. A0 encounters three types of interactions with
the combinations of A1’s start entry and goal entry as (2, 1), (2, 0) and (1, 2). Note that when A1

emerges at entry 2 and heading to entry 0, A0 faces a typical unprotected left turn scenario.

Denote the positions and heading of a vehicle as (x, y, h). The state of A0 is (x, y, ẋ, ẏ, cosh, sinh)
in the word-fixed frame. The state of A1 is (xrel, yrel, ẋrel, ẏrel, coshrel, sinhrel) evaluated in the
body frame fixed at A0. We directly control the ego vehicle A0’s acceleration a and steering angle θ.

S1

Table S1: Simulation Environment Details. Each type of dynamics last for 3 episodes.
Environment CartPole HalfCheetah Intersection
State Dimension 5 18 12
Action Dimension 1 6 2
Episode Length 200 200 40
Simulation Interval (s) 0.04 0.01 0.1
Early Stop True when x out of limit False True when Collision
No. episodes / Dynamics 3 3 3

Table S2: Model Parameters.
Parameter CartPole HalfCheetah Intersection
concentration parameter α 0.1 1.5 0.5
sticky paramter β 1 1 1
initial noise σi, i = 1, ...c 0.001 0.1 0.001
initial output scale wi, i = 1, ...c 0.5 10.0 0.5
initial lengthscale 1/wi,j , i, j = 1, ...c 1.0 1.0 1.0
merge KL threshold ε 20 10 70
merge trigger nmerge 15 5 10
data distillation trigger ndistill 1500 2000 1500
inducing point number m 1300 1800 1300
GP update Steps / timestep 10 5 10
learning rate 0.1 0.1 0.1
discount γ 1 1 1
MPC plan horizion 20 15 20
CEM popsize 200 200 200
CEM No. elites 20 10 20
CEM iterations 5 5 5

Therefore, the GP input x̃ is a 14 dimensional vector consisting of the A0’s state and action as well
as A1’s state. The GP target is the increment of the ego vehicle’s and the other vehicle’s states.

S2 Method Details

The computing infrastructure is a desktop with twelve 64-bit CPU (model: Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz) and a GPU (model: NVIDIA GeForce RTX 2080 Ti). Since our method is
pre-train free, we do not need to collect data from different dynamics beforehand. However, for most
of the baselines, we collect data to pre-train them as detailed in Section S2.2. In our online setting,
there is no clear boundary between training and testing. More concretely, at each time step, our model
is updated by the streaming collected data and evaluated in MPC to select the optimal action.

S2.1 Parameters of Our Method

We list key parameters of our proposed method in Table S2. The concentration parameter α controls
the generation of new GP components. The larger the α, the more likely a new GP component
is spawned. The sticky parameter β increases the self-transition probability of each component.
The initial parameter θ0 for a new GP consists of initial noise σi, initial output scale wi and initial
lengthscale 1/wi,j . Larger lengthscale and output scale help alleviate the overfitting problem by
increasing the effect from the away points. HalfCheetah has a higher state dimension than the other
two and thus has larger ndistill and m. The planning horizon of Intersection is half of the total
episode length since the MPC needs to do predictive collision check to achieve safe navigation. For
the hyperparameter selection, we randomly search in a coarse range first and then do a grid search in
a smaller hyperparameter space.

S2

Table S3: Parameters of the DNN, ANP and MAML Baselines.
Baseline Parameter CartPole HalfCheetah Intersection

pre-train episodes / dynamics 10 10 10

DNN

gradient steps 200 100 100
optimizer Adam Adam Adam
learning rate 0.0005 0.001 0.008
hidden layers 2 2 2
units per layer 256 500 256
minibatch size 512 256 128

ANP

gradient steps 200 800 100
optimizer Adam Adam Adam
learning rate 0.0005 0.001 0.0005
hidden layers [256, 128, 64] [512, 256, 128] [256, 128, 64]
minibatch size 1024 64 1024
context number 100 100 100
target number 25 25 25
latent dimension 64 128 64

MAML

hidden layers 2 2 2
units per layer 500 500 500
step size α 0.01 0.01 0.01
step size β 0.001 0.001 0.001
meta steps 200 100 100
adapt learning rate 0.001 0.001 0.001
adapt step 10 10 10
meta batch size 1 1 1

S2.2 Parameters of Baselines

The critical parameters of using a DNN, an ANP [5, 6], and a MAML [7] are shown in Table S3. The
parameters for a single GP baseline and the concentration parameter α of the DPNN baseline are
the same as the corresponding ones of our proposed method, as in Table S2. The DNN parameters
in DPNN baseline is the same as the parameters of a single DNN, as in Table S3. Note that except
for the baseline using a single GP as dynamics models, all the other baselines require to collect
data to pre-train the model. In our setting, we collect ten episodes from each type of dynamics as
the pre-train dataset. The parameters for baselines are all carefully selected to achieve decent and
equitable performance in our nonstationary setting. For instance, since HalfCheetah has a larger
state dimension than the other two, it has larger units per layer in DNN and latent dimension in ANP.

To adapt the MAML method, in addition to the pre-train free assumption, we further release the
assumption that the task boundaries between different dynamics are unknown during the pre-train
procedure. Note that MAML is pre-trained with the same amount of data as the other baselines
to guarantee a fair comparison. The performance of MAML may increase if collecting more data.
During the online testing period, the adapt model copies meta-model’s weights and updates its
weights with recently collected data at each timestep.

S3 Additional Experiment Results

S3.1 Dynamics Assignments with Dirichlet Process Prior

We show that using pure DP prior is not sufficient to capture the dynamics assignments of streaming
data in real-world physical tasks by visualizing the cluster results in CartPole-SwingUp, as in
Figure 4. In this section, we show more statistics about the dynamics assignments with DP prior by
comparing the performance of DPNN and our method in Figure S1.

In CartPole-Sqingup, we can see that our method can accurately detect the dynamics shift and
cluster the streaming data to the right type of dynamics. However, when using DPNN, the more
types of dynamics encountered, the less accurate the assignments are. In Highway-Intersection,
our method sometimes cluster the data points into the wrong dynamics. We hypothesize that this

S3

(a) CartPole-Sqingup (b) Highway-Intersection

Figure S1: Correct Assignment Percentage using DPNN and our method. Our method ourperforms
DPNN in terms of task assignments.

Table S4: Reward Mean and Standard Deviation (std). The bold numbers indicate the maximum
means and minimum stds in each task.

CartPole HalfCheetah Intersection
Task1 Task2 Task3 Task4 Task1 Task2 Task1 Task2 Task3

Our
Method

mean 177.62 183.10 181.37 182.54 36.11 34.14 60.66 54.77 52.48
std 6.61 3.29 1.86 1.10 9.22 13.05 1.29 1.80 0.77

GP mean 178.04 169.46 174.45 171.67 2.70 -21.26 53.73 39.23 44.25
std 3.40 7.39 8.94 6.12 14.70 24.49 6.56 20.31 6.91

DNN mean 176.57 164.72 177.74 164.21 28.89 0.53 43.42 2.31 46.62
std 8.14 16.41 5.21 7.24 35.02 15.60 9.73 7.34 6.12

ANP mean 175.33 170.74 171.29 160.87 -4.27 -20.70 62.68 44.04 36.91
std 6.61 4.44 6.68 8.34 16.80 22.09 0.75 17.95 19.86

MAML mean 144.91 150.80 127.55 134.36 -70.49 -51.32 39.29 39.14 40.31
std 28.22 18.74 32.82 13.95 36.57 12.13 3.36 4.21 5.89

DPNN mean 187.24 182.52 180.20 161.58 -42.88 -39.30 59.97 46.89 18.64
std 5.03 6.82 3.09 45.27 16.37 8.14 2.92 15.33 22.42

may be due to the overlap in the spatial domain of different interactions. However, our method still
outperforms the DPNN in terms of dynamics assignments. DPNN can only stably identify the second
task, and either frequently generate new clusters for the first and third task or identify them as the
second task. We notice that the clustering accuracy of DPNN heavily relies on the number of previous
states concatenated (the length of the short term memory) [8]. To make the dynamics assignment of
DPNN more stable, in our setting, we use 50 (1/4 episode length) previous data points to determine
the dynamics assignment in CartPole and 20 (1/2 episode length) in Intersection.

S3.2 Will Dynamics Assignments Affect Task Performance?

To investigate whether the correct dynamics assignments improve the task performance, we compare
the accumulated subtask rewards of our method, the single GP baseline, and the DPNN baseline. The
single GP baseline is the ablation version of our method without dynamics assignments. In other
words, using a single GP indicates clustering different dynamics into a single cluster. The DPNN has
less accurate dynamics assignments than our method, as detailed in Section S3.1.

Table S4 and Figure 5 show that our method has higher rewards and smaller variances than the
baselines in most situations. Since our method performs better than the single GP baseline in all
three nonstationary environments, it shows that the dynamics recognition help increase the task
performance. Note that DPNN has higher rewards than our method in the first task of CartPole-
SwingUp. We hypothesize that this may be due to the pre-train procedure of DPNN. However,
our method outperforms DPNN in all the other dynamics, which indicates that accurate dynamics
assignments help improve task performances.

S4

S4 Model Derivation

In this part, we highlight the derivation of the soft assignment ρn(znk) in 2 that was originally
derived in [9] Eq.12-16 to ease reading. Note that we highly recommend reading [9] for thorough
understanding. The posterior distribution pn(z0:n,θ|D) for the assignments z0:n and model parameter
θ can be written as product of factors

pn(z0:n,θ|D) ∝ p((x̃n,yn)|θzn)p(zn|z0:n−1)pn−1(z0:n−1,θ|D0:n−1)

∝ p(θ)

n∏
i=i

p((x̃i,yi)|θzi)p(zi|z1:i−1) (S1)

Since S1 is in factorized form, we can apply Assumed Density Filtering (ADF) to approximate the
posterior of the first 0 to n data pair with q̂n(z0:n,θ) =

∏∞
k=0 γn(θk)

∏n
i=0 ρn(zi). The approximate

posterior for the n+ 1-th data pair is thus

p̂n+1(z0:n+1,θ|D0:n+1) ∝ p((x̃n+1,yn+1)|θ)p(zn+1|z0:n)q̂n(z0:n,θ) (S2)

q̂n+1(z0:n+1,θ) = arg min
qn+1∈Qn+1

KL
(
p̂n+1(z0:n+1,θ|D0:n+1)‖qn+1(z0:n+1,θ)

)
(S3)

With the mean field assumption, the optimal distribution for the new observation is given in 2.

References
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,

and Wojciech Zaremba. Openai gym, 2016.

[2] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 5026–5033. IEEE, 2012.

[3] Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

[4] Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehen-
sive survey and open problems. Artificial Intelligence, 258:66–95, 2018.

[5] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum,
Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on
Learning Representations, 2019.

[6] Shenghao Qin, Jiacheng Zhu, Jimmy Qin, Wenshuo Wang, and Ding Zhao. Recurrent attentive
neural process for sequential data. arXiv preprint arXiv:1910.09323, 2019.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1126–1135. JMLR. org, 2017.

[8] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning:
Continual adaptation for model-based RL. In International Conference on Learning Representa-
tions, 2019.

[9] Alex Tank, Nicholas Foti, and Emily Fox. Streaming variational inference for bayesian nonpara-
metric mixture models. In Artificial Intelligence and Statistics, pages 968–976, 2015.

S5

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

