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Abstract

Graphical models are powerful tools for modeling high-dimensional data, but
learning graphical models in the presence of latent variables is well-known to
be difficult. In this work we give new results for learning Restricted Boltzmann
Machines, probably the most well-studied class of latent variable models. Our
results are based on new connections to learning two-layer neural networks under
`∞ bounded input; for both problems, we give nearly optimal results under the
conjectured hardness of sparse parity with noise. Using the connection between
RBMs and feedforward networks, we also initiate the theoretical study of super-
vised RBMs [1], a version of neural-network learning that couples distributional
assumptions induced from the underlying graphical model with the architecture of
the unknown function class. We then give an algorithm for learning a natural class
of supervised RBMs with better runtime than what is possible for its related class
of networks without distributional assumptions.

1 Introduction

Graphical models are a powerful framework for modelling high-dimensional distributions in a way
that is interpretable and enables sophisticated forms of inference and reasoning. They are extensively
used in a variety of disciplines including the natural and social sciences where they have been used
to model the structure of gene regulatory networks, of connectivity in the brain, and the flocking
behavior of birds [2]. In many contexts, the structure of interactions between different observed
variables is unknown a priori and the goal is to infer this structure in a sample-efficient way from
data. There has been decades of research on various formulations of this problem, both theoretically
and empirically: for example, provable algorithms have been developed for learning tree-structured
graphical models [3], for learning models on graphs of bounded tree-width [4], for learning Ising
models on general graphs of bounded degree [5, 6, 7, 8] and in a variety of other contexts like
Gaussian graphical models (e.g. [9]). For the most part, the main interest has been on learning under
the assumption that the underlying model is sparse. Sparsity is a natural assumption since many
applications are in a sample-starved regime where the learning problem is information-theoretically
impossible without sparsity. Sparse models are generally considered to be more interpretable than
their dense counterparts since they satisfy large numbers of conditional independence relations.

A major challenge in probabilistic inference from data is the presence of latent or confounding
variables which are unobserved and may create complicated higher-order dependencies between
the observed variables. Specifically in the context of learning undirected graphical models, it is
well known that even if the underlying graphical model is well-behaved, if only a subset of the
variables are observed then the resulting marginal distribution can still be extremely complicated,
e.g. simulating the uniform distribution over satisfying assignments of an arbitrary circuit [10],
which makes the learning problem computationally intractable. On the other hand, under certain
assumptions we know that learning graphical models with latent variables can be both computationally
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and statistical tractable; for example, the setting of tree-structured models with latent variables has
been extensively studied in the context of phylogenetic reconstruction, see e.g. [11, 12]. However, in
non-tree-structured models there are comparatively few positive results for recovering latent variable
models in a computationally efficient fashion. One of the few exceptions is in the Gaussian case,
where [13] gave a positive result; this setting is very special, as latent variable GGMs do not have
higher-order interactions, but in fact are equivalent to GGMs with cliques.

Restricted Boltzmann Machines. In this work, we will focus on a latent variable model popu-
larized in the neural network literature known as the Restricted Boltzmann Machine (RBM) (see
e.g. [1, 14]) which has been applied to problems such as dimensionality reduction and collaborative
filtering [15, 16, 17]. It is also perhaps the most canonical version of an Ising model with latent
variables. The RBM describes a joint distribution over observed random variables X valued in
{±1}n1 and latent variables H valued in {±1}n2

Pr(X = x,H = h) ∝ exp
(
〈x,Wh〉+ 〈b(1), x〉+ 〈b(2), h〉

)
where the weight matrix W is an arbitrary n1 × n2 matrix and external fields/biases b(1) ∈ Rn1

and b(2) ∈ Rn2 are arbitrary, and X is referred to as the vector of visible unit activations and H
the vector of hidden unit activations. In the learning problem, we are given access to i.i.d. samples
of X but do not get to observe H . It is not hard to see that in the special case where the hidden
nodes are constrained to have degree 2, the class of marginal distributions on X induced by RBMs
is exactly the class of Ising models (pairwise binary graphical models), so the general RBM can be
thought of as a natural generalization of fully-observed Ising models, for which the learning problem
is well-understood. For hidden units with larger degree, the marginal distribution can be an arbitrary
Markov Random Field [18]. We also note that the parameters of the RBM are not identifiable even
given an infinite number of samples [18], so our goal for learning the RBM is generally speaking to
learn the distribution or related structural properties (e.g. the Markov blankets of the nodes in X).

Previous work on Learning RBMs. The most popular heuristic for learning RBMs is the con-
trastive divergence algorithm (see [1]), but there is no guarantee it will succeed. In recent work
[18, 19], the first provable algorithms were developed for learning RBMs, under the assumptions
that the model is (1) sparse and (2) ferromagnetic. On the other hand, it was shown in [18] that
learning general sparse RBMs is computationally intractable in general, because the conjecturally
hard problem of learning a sparse parity with noise [20] can be embedded into a sparse RBM with
a constant number of hidden units. The assumption of ferromagneticity (that variables are only
positively correlated, not negatively correlated) rules out this example and plays a crucial role in the
analysis of these works. Without ferromagneticity, viewing the marginal on X as a general Markov
Random Field allows for using prior work [8] to give learning algorithms with runtime nO(dH) where
dH is the maximum degree of a hidden node. This matches the lower bound of learning sparse parity
with noise mentioned previously.

To summarize, the best previous results for learning RBMs either (1) make the assumption of
ferromagneticity which makes building sparse parities impossible or (2) ignore all of the structure of
the RBM except the max hidden degree, and pay the price of a nΘ(dH) runtime. This leaves open the
question of developing algorithms whose runtime depends on some natural notion of a complexity
measures of the RBM.

Our Results. In this paper, we design an algorithm that is adaptive to a norm based complexity
measure of the RBM, and often outperforms approach (2) above significantly, while not eliminating
the possibility of negative correlation completely as in (1). The key idea of our approach is to develop
a novel connection between learning RBMs and their historical relative, feedforward neural networks.
This connection allows us to establish new results for learning RBMs, by proving new results about
learning feedforward neural networks (Section 2).

Our connection also validates the idea of a so-called supervised RBMs as a natural distributional
setting for classification with feedforward networks. Supervised RBMs, proposed by Hinton [1], treat
one visible unit of the RBM as the label and the other visible units as the input to the classifier. This
allows us to use the connection in the “reverse” direction — using natural structural assumptions
on the RBM (like ferromagneticity) to give better results for solving supervised prediction tasks
in an interesting distributional setting. Along these lines, we show that an assumption related to
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ferromagneticity, but allowing for some amount of negative correlation in the RBM, allows us to learn
the induced feedforward network faster than would be possible without distributional assumptions
(Section 3). Lastly, we present an experimental evaluation of our "supervised RBM" algorithm on
MNIST and FashionMNIST to highlight the applicability of our techniques in practice (Section 5).

2 Learning RBMs via New Results for Feedforward Networks

Relationship between RBMs and Feedforward Networks Our first result characterizes the rela-
tionship between RBMs and Feedforward networks. We show that there is a natural self-supervised
prediction task in RBMs, of predicting the spin at node i given all other observed nodes, for which the
Bayes-optimal predictor is exactly given by a two-layer feedforward network with a special family of
tanh-like activations.
Theorem 1. For any visible unit i in an arbitrary RBM,

E[Xi|X∼i] = tanh

b(1)
i +

∑
j

tanh(Wij)fβij

(
b
(2)
j +

∑
k 6=i

WkjXk

) (1)

where βij = | tanh(Wij)| and fβ(x) := 1
β tanh−1(β tanh(x)).

Proof. Observe that the conditional distribution of (Xi, H) given X∼i = x∼i is given by

Pr(Xi = xi, H = h|X∼i = x∼i) ∝ exp

xi(b(1)
i +

∑
j

Wijhj) + 〈W t
∼ix∼i + b(2), h〉

 (2)

where W∼i denotes the (n1 − 1)× n2 dimensional matrix given by deleting row i. Since the only
quadratic terms left in the potential are between the remaining visible unit Xi and the hidden units
hj , this conditional distribution is exactly an Ising model on a star graph, i.e. a tree of depth 1 with
root node corresponding to Xi. For all tree-structured graphical models, the conditional distribution
of the root given the leaves can be computed exactly by Belief Propagation (see e.g. [21, 22]); in the
case of Ising models it’s known the general BP formula can be written with hyperbolic functions as
above1.

Remark 1. An analogous result can be proved in the more general setting where the spins do not
have to be binary; for example in a Potts model version of the RBM where each spin is valued in a set
of size q, the conditional law of Xi given the others would be given again by a two-layer network
where the last layer is a softmax. In this paper we focus on the binary case for simplicity.
Remark 2. The family of activation functions fβ(x) naturally interpolates between the identity
activation (β = 1 where fβ(x) = x) and tanh activation at β = 0, since

lim
β→0

1

β
tanh−1(β tanh(x)) =

∂

∂β
tanh−1(β tanh(x))

∣∣∣
β=0

= tanh(x).

The exact structure of this prediction function is crucial in what follows and does not seem to have
been known in the RBM literature, though some related ideas have been used to develop better
heuristics for performing inference and training in RBMs (see discussion in Appendix B).

Given this connection, we show that if we can solve the problem of learning such a neural network
within sufficiently small error, then we can successfully learn the RBM. This reduces our RBM
learning problem to that of learning feedforward neural networks in the setting that the input is
bounded in `∞ norm.

Improved Results for Learning Feedforward Networks Subsequently, we give results for the
feedforward network problem which are nearly optimal both in the terms of sample complexity (in
the regime where λ is bounded) and in terms of computational complexity under the hardness of
learning sparse parity with noise; some aspects of this result are new even for the well-studied case of
learning neural networks with tanh activations (see Further Discussion).

1For the readers convenience, we include a self-contained derivation of (1) from (2) in Appendix B.1.
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Theorem 2 (Informal version of Corollary 1). Suppose that Y is a random variable valued in {±1},
X is a random vector such that ‖X‖∞ ≤ 1 almost surely and

E[Y |X] = tanh

b(1) +
∑
j

wjfβj

(
b
(2)
j +

∑
k

WjkXk

)
where b(1) ∈ R, βj ∈ [0, 1], w is an arbitrary real vector and W is an arbitrary real matrix. Let
Wj denote column j of W and suppose ‖Wj‖1 ≤ λ for every j and some λ ≥ 2. Then if we run
`1-constrained regression on the degree D monomial feature map ϕD(x) 7→

(∏
i∈S Xi

)
|S|≤D with

appropriate `1 constraint, the result ŵ satisfies with high probability

E[`(ŵ · ϕd(X), Y )] ≤ OPT + ε

where OPT is the minimum logistic loss for any measurable function of X , as long as the number
of samples m satisfies m = Ω((|b(1)|2λO(D)) log(2n)) where D = O(λ log(‖w‖1λ/ε)) and the
runtime of the algorithm is poly(nD).

We also show, under the standard assumption for hardness of learning sparse parity with noise,
the following lower bound which shows that the runtime guarantee in our result is close to tight
even in the usual setting of tanh neural networks (βj = 0) — it is optimal up to log log factors
in the exponent in its dependence on ε and ‖w‖1, and we also show that at least a subexponential
dependence (essentially 2

√
λ) on λ is unavoidable (assuming the dependence on other parameters in

the statement is fixed, since there are e.g. trivial algorithms that run in time 2n).

Theorem 3 (Informal version of Theorem 11). There exists families of models (one with ε a constant,

one with ‖w‖1 a constant) where a runtime of nΩ
(

log(‖w‖1/ε)
log log(‖w‖1/ε)

)
is needed for any algorithm to

achieve ε error with high probability, regardless of its sample complexity. Even in the case of
tanh activations (βj = 0 for all j), there exists a sequence of models with λ = Θ(n log(n)) and

‖w‖1 = O(
√
n) which requires runtime nΩ(

√
λ/ log2(λ) log(n) log ‖w‖1) to achieve error ε = 0.01 with

high probability.

To our knowledge, the fact that nlog(‖w‖1/ε)/ log log(‖w‖1/ε) runtime is required to learn this class even
for λ = 1, and by the above upper bound is tight up to the log log term, was not known before even
for standard tanh networks. As far as the dependence on λ, a similar problem was studied in [23]
where they proved the dependence cannot be polynomial using the result of [24] for intersection of
halfspaces, based on a different assumption, though our lower bound seems to be somewhat stronger
in the present context.

In particular the lower bounds on the runtime show that methods like the kernel trick cannot signifi-
cantly improve the runtime compared to the simple method of writing out the feature map explicitly
used in Theorem 2; however, writing out the feature map lets us use `1 regularization2 instead of `2
which can give significant sample complexity advantages (e.g. O(log n) vs O(n) for the usual sparse
linear regression setups).

Structure Learning of RBMs As explained above, our reduction based on Theorem 1 lets us use
the above feedforward network learning result to learn the structure of RBMs. By structure learning,
we mean learning the Markov blanket of the each visible unit in the marginal distribution of the RBM
over visible units, i.e. the minimal set of nodes S such thatXi is conditionally independent of all other
Xj conditionally on XS . We will also refer to the Markov blanket as the (two-hop) neighborhood of
node i. This is a natural objective as other tasks such as distribution learning are straightforward in
sparse models if the Markov blankets are known. As in the previous work on structure learning in other
undirected graphical models (e., we will need some kind of quantitative nondegeneracy condition to
guarantee nodes in the Markov blanket of node i are information-theoretically discoverable; it is not
hard to see (e.g. using the bounds from [26]) that if two nodes are neighbors but their interaction is
extremely weak then it becomes impossible to distinguish the model from the same model with the
edge removed without a very large number of samples.

2Interestingly, recent work [25] has shown in a special case connections between the implicit bias of gradient
descent in feedforward networks and `1 regularization in function space.

4



In Ising models and in ferromagnetic RBMs, there are simple conditions on the weight matrices
which can ensure neighbors are information-theoretically discoverable. In a general RBM, there
is no natural way to place constraints on the weights of the RBM to ensure this: the issue is that
two nodes Xi and Xj can be independent even though they have two neighboring hidden units with
non-negligible edge weights, since the effect of those hidden units can exactly cancel out so that Xi

and Xj are independent or indistinguishably close to independent (a number of examples are given in
[18]). For this reason, we will instead make the following assumption on the behavior of the model
itself instead of on its weight matrix:
Definition 1. We say that visible nodes i, j are η-nondegenerate two-hop neighbors if

I(Xi;Xj |X∼i,j) = E[`(E[Xi|X∼{i,j}], Xi)]− E[`(E[Xi|X∼i], Xi)] ≥ η

or if the same inequality holds with i and j interchanged. Here I(Xi;Xj |X∼i,j) is the conditional
mutual information between Xi and Xj conditional on X∼i,j , and the equality follows from Fact 1
in the Appendix and the definition of mutual information in terms of KL [27].

Information-theoretically, this condition says that nontrivial information is gained about Xi by
observing Xj , even after we have already observed X∼i,j . The fact that Xj is in the Markov blanket
of nodeXi exactly means that this quantity is nonzero. By Pinsker’s inequality [27], η-nondegeneracy
is also implied by a lower bound on the partial correlation Cov(Xi, Xj |X∼i,j).
Example 1. It is not hard to see that Ising models are equivalent to the marginal distribution of
RBMs with maximum hidden node degree equal to 2. Consider an Ising model with minimum edge
weight α and such that the maximum `1-norm into every node is upper bounded by λ and the external
field is upper bounded by B, then η ≥ e−O(λ+B)/α, see e.g. [6].
Example 2. In a ferromagnetic RBM with minimum edge weight α and maximum external field B, it
can be shown that η ≥ e−O(λ1+λ2+B)/α2 (see [18, 19]).

In order for the RBM to be learnable with a reasonable number of samples (since general RBMs can
represent arbitrary distributions with full support on the hypercube [18]), we need to assume it has
low complexity in the following sense:

Definition 2. We say that an RBM is (λ1, λ2)-bounded if for any i,
∑
j | tanh(Wij)|+ |b(1)

i | ≤ λ1

and the columns of W are bounded in `1 norm by λ2.

Note that λ1 and λ2 bound the `1 norm into the visible and hidden units, respectively. Based on
our upper bounds and lower bounds for the learnability of feedforward networks, it should be less
surprising that these parameters play a very different role in the computational learnability of RBMs.
Theorem 4 (Informal version of Theorem 12). Suppose all two-neighbors in a (λ1, λ2)-bounded
RBM are η-nondegenerate. Given m = Ω(λ

O(D)
2 log(2n)) i.i.d. samples from the RBM, where

D = O(λ2 log(λ1λ2/η)), we can recover its structure with high probability in time poly(nD).

Based on this result we also give a result for learning the RBM in TV distance under the same
assumption: see Theorem 13: the sample complexity of this method is essentially the above sam-
ple complexity plus n2(1 − tanh(λ1))−d2 where d2 is the maximum 2-hop degree; the poly(n)
dependence is required as even learning n bernoullis in TV requires Ω(n) sample complexity. Our
algorithm encodes the distribution as a sparse Markov Random Field, but (if desired) this can easily
be converted into a sparse RBM using an algorithm in [18]. Therefore we learn the distribution
properly, except that the learned RBM typically has more hidden units than the original RBM (i.e. it
is overparameterized).

When interpreting these result, it is crucial not to confuse the `1 norm parameters λ1, λ2 of visible
and hidden units with the maximum degrees of these units. Typically in Ising models, we should think
of the weight of a typical edge as shrinking as d grows so that units stay near the sensitive region of
their activation and the behavior of the model does not become trivial — this means that λ1 and λ2

may be much smaller than d. This is consistent with practical advice in the RBM literature, see e.g.
[1]. Probably the most well known sufficient condition for being able to sample in an Ising model (or
RBM) is Dobrushin’s uniqueness criterion which is equivalent to the requirement that λ1, λ2 ≤ 1
and this condition is actually tight for Glauber dynamics to mix quickly in the Ising model on the
complete graph (Curie-Weiss Model) [28]. We discuss this further in Remark 5; in Dobrushin’s
uniqueness regime and under some mild nondegeneracy conditions we expect that η = Ω(1/d2)
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so the above algorithm has runtime nlog(d), which is an exponential improvement in the exponent
compared to the best previously known result (O(nd) runtime by viewing the RBM as an MRF).

We also give lower bound results showing that the computational complexity of the above algorithm
is essentially optimal in terms of λ1 and η (based upon the hardness of learning sparse parity with
noise) and nearly optimal in terms of λ2 for an SQ (Statistical Query) algorithm, in the sense that any
SQ algorithm needs at least sub-exponential dependence on λ2 (given that the dependence on other
parameters is not changed — e.g. obviously there is a 2n time algorithm to learn this problem). In
particular, this shows that our results for learning feedforward networks under `∞ are close to tight
even in this application, where the input distribution is related to the label.

Theorem 5 (Informal version of Theorem 19). As before, λ2 refers to the maximum `1-norm into
any hidden unit and we choose parameters so that λ2 = poly(n) and λ1 = poly(n). There exists
ε > 0 so that no SQ algorithm with tolerance n−λ

ε
2 and access to nλ

ε
2 queries can structure learn an

α = Ω(1)-nondegenerate (λ1, λ2)-bounded RBM.

We also show (Theorem 16) that the η-nondegeneracy condition is required to achieve nontrivial
guarantees even if we are only interested in distribution learning (i.e. in TV), assuming the hardness
of learning sparse parity with noise.

3 Supervised RBMs

Since in many applications the input data to a classifier is clearly very structured (e.g. images,
natural language corpuses, data on networks, etc.), it is interesting to consider the behavior of
classification algorithms under structural assumptions on the data. RBMs are one (relatively simple)
generative model which can generate interesting structured data. This suggests the idea of learning
“supervised RBMs”, as proposed by Hinton [1], where we assume the input and label are drawn from
an RBM joint distribution, so that predicting the label is a feedforward network by Theorem 1; in
this model the label is just a special visible unit in the RBM. Based on the previous discussion about
computational lower bounds, we know that assuming the input to a feedforward network comes from
the corresponding RBM does not in general make learning easier, but we know that in RBMs there
are very natural assumptions we can make to avoid these computational issues. Our final result is of
exactly this flavor, showing how we can learn the supervised RBM under a ferromagneticity-related
condition faster than is possible if we did not have a distributional assumption.

In order to emphasize the special role of the node which we want to predict, we will adopt a modified
notation where the visible unit which we want to learn to predict is labeled Y and all other visible
units are still labeled X . More precisely, we model the joint distribution over input features X valued
in {±1}n1 , latent features H valued in {±1}n2 and label Y ∈ {±1} as,

Pr[X = x,H = h, Y = y] ∝ exp
(
〈x,Wh〉+ 〈h,w〉y + 〈b(1), x〉+ 〈b(2), h〉+ b(3)y

)
where the weight matrix W is a non-negative n1×n2 matrix, w is an arbitrary n1 dimensional vector
and b(1) ∈ Rn2 , b(2) ∈ Rn2 and b(3) ∈ R are arbitrary. Given the latent variables H , w can be seen
as the linear predictor for Y .

Theorem 6 (Informal Version of Theorem 21). Suppose the interaction matrix W is ferromag-
netic with minimum edge weight α. Further suppose one of the RBMs induced by condition-
ing on Y = 1 or Y = −1 is a (λ, λ)-RBM. Then there exists an algorithm that learns the
predictor Y that minimizes logistic loss up to error ε. The algorithm has sample complexity
m = n2

1 exp(λ)exp(O(λ))(1/α)O(1) log(n1/δ)/ε
2 and has runtime poly(m).

Our main algorithm can be broken down into three main steps: (1) Use greedy maximization of
conditional covariance CovAvg to first learn the two-hop neighborhoodN (i) of each observed variable
i w.r.t. the hidden layer conditioned on the label (see Algorithm 1), (2) For each observed variable Xi,
learn the conditional law of Xi | XN (i), Y using regression, and (3) Use the estimated distribution
to compute E[Y |X]. Step (1) leverages tools from [18, 19] but considers a setting where the RBM
may in fact have some amount of negative correlation, as w has arbitrary signs and is allowed to have
large norm. Step (2) can be achieved by simply looking at the conditional law under the empirical
distribution; this is efficient as we learn small neighborhoods.
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In step (3), we can make use of the following useful trick (a version of which can be found in [1]):
we already have enough information to derive the law of Y | X since we know the marginal law of
Y (the fraction of + and − labels) and the law of X | Y . However, naively carrying out the Bayes
law calculation is difficult because it involves partition functions (which are in general NP-hard
to approximate, see e.g. [29]). We avoid computing the partition function by observing that if we
define f1, f2 such that Pr(X,Y ) ∝ exp(f1(X)1(Y = 1) + f2(X)1(Y = −1) + by), then the law
of Y | X follows a logistic regression model where

E[Y | X] = tanh

(
f1(X)− f2(X)

2
+ b

)
for some constant b ∈ R. Therefore if we know f1, f2 up to additive constants (which we can derive
from the Fourier coefficients learned in (2)), we can simply fit a logistic regression model from data
to learn h plus the missing constants, and we can prove this works using fundamental tools from
generalization theory. We refer the reader to Appendix E for additional details.

Algorithm 1 LEARNSUPERVISEDRBMNBHD(u, τ,S) (Adapted from [18, 19])

1: Set S := φ

2: Set i∗ = arg maxv Ĉov
Avg

S (u, v|S, Y ), and η∗ = maxv Ĉov
Avg

S (u, v|S, Y )
3: if η∗ ≥ τ then
4: S = S ∪ {i∗}
5: else
6: Go to Step 8
7: Go to Step 2

8: For each v ∈ S, if Ĉov
Avg

S (u, v|S\{v}, Y ) < τ , remove v (Pruning step)
9: Return S

Observe that under the given distributional assumptions, our algorithm has runtime complexity
polynomial in the input dimension in contrast to Theorem 2 where the run time scales as nΩ(λ). A
simple example which shows the algorithm from this Theorem will outperform any algorithm without
distributional assumptions (like Theorem 2) is given in Remark 8.

4 Discussion: Comparison to Prior work on Learning Neural Networks

In the neural network learning literature, various works prove positive results that either (1) work for
any distribution with norm assumptions or (2) require strong distributional assumptions. The result of
Theorem 2 falls into the category (1) and the result of Theorem 6 falls into category (2).

We first discuss the relation of Theorem 2 to other previous works of type (1). Perhaps the most
closely related works are [23, 30, 31, 32]. All of these works assume the input is bounded in `2 norm
and give learning results based on kernel methods; of course, these results could be applied under the
assumption of `∞-bounded input, by using the inequality ‖x‖2 ≤

√
n‖x‖∞ and rescaling the input

to have norm 1. For comparison, the best result in the `2 setting with tanh activation is given in [32],
but this result (as is essentially necessary based on the known computational hardness results) has
exponential dependence on the `2 norm of the weights in the hidden units, so doing such a reduction
just using norm comparison bounds gives a runtime sub-exponential in dimension. Therefore it is
indeed crucial for us to give a new analysis adapting to learning with input bounded in `∞. An
interesting feature of this setting (as mentioned above) is that the kernel trick does not seem to be as
useful for improving the runtime as the `2 setting, where it seems genuinely better than writing out
the feature map [31, 32].

Due to the generality of direction (1), it is hard to design efficient algorithms. This further motivates
direction (2), however, making the right distributional assumptions which allow for efficient learning
while being well-motivated in context of real world data can be very challenging. Most prior work has
been limited to the Gaussian input [33, 34, 35, 36, 37, 38] or symmetric input [32, 39] assumptions
which are not satisfied by real world data. The works of [40, 41] gave results for some simple
tree-structured generative models. There has been some work in defining data based notions such as
eigenvalue decay [42] and score function computability [43] to get efficient results. Our assumption
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Figure 1: Five i.i.d. samples for each FashionMNIST class, drawn from the trained model by Gibbs
sampling.

for Theorem 6 in contrast exploits sparsity and nonnegative correlations among the input features
conditional on the output label.

5 Experiments

In this section we present some simple experiments on MNIST and FashionMNIST to confirm that our
method performs reasonably well in practice. In these experiments, we implemented the supervised
RBM learning algorithm from Theorem 6 which makes use of the classification labels provided in the
training data set. This algorithm outputs both a classifier (which predicts the label given the image)
and also a generative model (which can sample images given a label).

For classification, we allowed the logistic regression (described as “step (3)” above) to fit not just the
bias term but also coefficients on the sum of Fourier coefficients for each pixel (an input of dimension
768× 10 = 7680), since the runtime of the logistic regression step is almost negligible anyway. This
is useful because it allows greater dynamic range in the influence of each pixel.

We observed a test accuracy of 97.22± 0.16% on MNIST; the training accuracy was 99.9% and we
trained the logistic regression for 30 epochs (same as steps) of L-BFGS with line search enabled. For
FashionMNIST, we obtained a test accuracy of 88.84± 0.31%; the training accuracy was 92.19%
and we trained the logistic regression for 45 epochs with L-BFGS as before. Overall training took
a bit less than an hour each on a Kaggle notebook with a P100 GPU. Both datasets have 60, 000
training points and 10, 000 test; in both experiments we used a maximum neighborhood size of 12,
and stopped adding neighbors if the conditional variance shrunk by less than 1%.

For context, we note that our accuracy on MNIST is better than what we would get using standard
training methods for RBMs and logistic regression for classification; [44] reports accuracies of
approximately 95% for CD and 96% using a more sophisticated TAP-based training method. The
results are also around as good or better than what is achieved using many classical machine learning
methods on these datasets [45]; for example, logistic regression achieves error 91.7% and 84.2%
and polynomial kernel SVM achieves error 89.7% and 97.6% [45]. Of course, none of these results
are as good as specialized deep convolutional networks (over 99% on MNIST). In contrast to other
approaches using linear models such as kernel SVM, our approach also learns a generative model.
Being able to sample from the generative model can give some insight into how the model classifies.

To evaluate the performance of the learned RBM as a generative model, we generated samples
using Gibbs sampling starting from random initialization and run for 6000 steps. As is common
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practice, we output the probabilities generated in the last step instead of the sampled binary values,
so that the result is a normal greyscale image. We display the resulting samples in Figures 1 and 2
(for reference, see randomly sampled training datapoints in Appendix F): we note that the model
successfully generates samples with diversity, as in Figure 1 the model generates handbags both with
and without handles, and in Figure 2 it renders both common styles for drawing the number 4.

It is clear that the model fails to generate as detailed of patterns exhibited in real FashionMNIST
images since in our training algorithm, we represent a gray pixel as a random combination of black
and white, so a checkerboard pattern of black and white and a patch of grey are not well-distinguished.
We do this to ensure that our setup is comparable to classic RBM training [1]. It is potentially possible
to fix this by adding spins over larger alphabets (e.g. real-valued) to the model.

Broader Impact

We believe our work will be of most use to other researchers working on sparse graphical models
with latent variables. We do not expect our research to disadvantage any individual. As with most
machine learning tools, the proposed algorithm for classification could possibly fit to existing biases
in the data. In fact, since our algorithm also learns per class distributions, a practitioner can sample
from the distribution to further evaluate any biases implicitly modelled. Any practitioner using our
method will need to apply the same due diligence as if they were fitting their data using a different
method, such as logistic regression.
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A Outline of the Appendix

Here we briefly outline the contents of each remaining section; each bold heading in the text below
corresponds to a new section.

Appendix B. Connections between Distribution Learning and Prediction in RBMs In this
section we show that if you have learned the distribution of an RBM, then you have also in principle
learned how to predict the output of corresponding feedforward networks. These feedforward
networks are induced from a “self-supervised” prediction task: predicting the spin at node i given
observations of all other spins. This connection leverages a classical observation in probabilistic
inference: inference in all tree-structured graphical models has an exact solution known as Belief
Propagation (see e.g. [22, 21]); perhaps surprisingly, this observation is useful even though the RBM
itself is not tree structured. Conversely, in the next subsection we give quantitative bounds showing
that sufficiently good predictors for this self-supervised objective for every node i allows us to recover
the distribution of the corresponding RBM.

Appendix C. Guarantees for Learning Feedforward Networks (with arbitrary distribution).
In this section we prove upper and lower bounds for learning one-layer feedforward networks with fβ
activations in the hidden units and inputsX drawn from an arbitrary distribution such that ‖X‖∞ ≤ 1.

In the first two subsections, we prove the needed approximation-theoretic results about our class
of activations fβ , giving approximation results with uniform guarantees over the entire interval
β ∈ [0, 1]. In the special case of β = 0, fβ = tanh and the needed result has essentially already been
proved in the work of [23]. As explained in the first subsection, by a classical result of Bernstein
(Theorem 7 below) it turns out that analyzing approximation theory for functions analytic on [−1, 1]
is equivalent to analyzing the function’s extension into the complex plane. We develop the needed
complex-analytic estimates (which crucially are uniform in β) in the following subsection. We note
that the authors of [23] did not use Bernstein’s result to prove their bound; their analysis of the β = 0
case is longer because they more or less reproduce the steps from the proof of the upper bound of
Bernstein’s Theorem.

After solving the approximation-theoretic question, we use them in an `1-regression based algorithm
for learning feedforward networks, using an explicit polynomial feature map and the logistic version
of the Lasso with its corresponding nonparametric generalization bounds. We derive the needed
`1-norm bound in a clean way from the approximation-theoretic results using in part a Lemma of
[46], previously used in [31]. This proves Theorem 2. In the last subsection, we prove that this result
is nearly optimal under the hardness of sparse parity with noise, even in the case of tanh networks,
using two different ways to construct a parity out of tanh units: one is a well-known construction
from [47], the other is based on Taylor series expansion and is related to the MRF-to-RBM embedding
result established in [18].

Appendix D. Learning RBMs by Learning Feedforward Networks. In this section, we show
how to derive structure recovery results (i.e. recovery of Markov blankets) for RBMs by using the
feedforward network learning results developed in the previous section. Assuming η-nondegeneracy,
we show how to learn the structure of the network by doing simple regression tests, e.g. comparing
the minimal logistic loss achieved predicting node i from all other nodes to the loss when node j is
excluded from the input. This proves Theorem 4. We explain in more detail in Remark 5 how this
result is a significant improvement over previous results in interesting regimes where we know that
the RBM can actually be sampled from in polynomial time. Based on this, we prove a result for
learning the distribution: by Theorem 4 this reduces to the case where the structure is known, so
by proving a good estimate (Lemma 12) on the convergence of the natural predictor of Xi given its
neighbors, the empirical conditional expectation and using the tools developed in Section B.3 gives
the result. A key point here is that the empirical conditional expectation converges at a much faster
rate than e.g. relying on Theorem 10, which gives better sample complexity guarantees.

Finally, we again prove some computational hardness results. We establish that the algorithm’s
dependence is essentially optimal in terms of η and ‖w‖1 by using the Taylor-series based sparse
parity construction from [18], related to the construction used above for tanh networks. For the
dependence on λ2, the hidden unit `1-norm, we use a third, different construction of parity from [48]
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for the RBM setting; this construction is not amenable to adding noise, but we are able to prove a
lower bound on the runtime in terms of λ2 for all SQ (Statistical Query) algorithms (see e.g. [49]).

Appendix E. Learning a Feedforward Network by Learning RBMs. In this section, we prove
Theorem 6, which lets us learn to predict in supervised RBMs under a natural conditional ferro-
magneticity condition in a provably more computationally efficient way than applying distribution-
agnostic methods for learning feedforward networks like Theorem 2. In Remark 8 we give a simple
example where the gap is provable and explain the (in this case) simple intuition as to how the
approach of Theorem 6 uses the structure of the input data in a favorable way.

The idea of this learning algorithm is essentially to use Bayes rule to reduce computing the posterior
on the label (i.e. Pr(Y |X)) to computing the conditional likelihood of the observed X under the two
possible values of the label. In some situations where the conditional law of Y |X is very simple,
this approach may be overkill as it requires to model the law of X; however, we are interested in the
setting where the label Y may have a large, complicated effect on X so this approach seems perfectly
reasonable. An obvious issue with using Bayes rule in this way is that even if the the RBM is already
known perfectly, computing the normalizing constant for the conditional distribution under Y = +
or Y = − in such a model is #BIS-Hard [50]. Fortunately, for our application we show that we can
estimate the needed ratio of normalizing constants from the data using a simple variant of logistic
regression.

What remains is to learn how to estimate the conditional log-likelihoods i.e. Pr(X|Y ). Fortunately,
even though under our assumptions the original RBM was not ferromagnetic, the conditional models
we get by applying Bayes rule are indeed ferromagnetic so we can apply the methods developed in
[19] for learning such a model. Here we need the results of [19] and not the earlier work of [18] as
we expect the external fields in the resulting model to be inconsistent (have differing signs depending
on the site). Once the structure is recovered, we can learn the coefficients of the log-likelihood using
the results established in the previous section based on fast convergence of the empirical condition
expectation, and using these coefficients we can accurately estimate Pr(X|Y ) for the application of
Bayes rule.

Appendix F. Additional Experimental Data. In this section we include reference images from
both datasets along with samples generated by our algorithm trained on MNIST.

B Connections between Distribution Learning and Prediction in RBMs

To our knowledge, Theorem 1 has not been previously noted in the literature on RBMs. However,
this is not the first time connections between RBMs and message passing algorithms for inference
has been investigated: for example, the work of [51] extensively studied the use of message passing
algorithms (i.e. Belief Propagation and related algorithms) for estimating the mean and covariance
matrix of nodes in an RBM, and the work of [44] used the related TAP approximation to derive better
alternatives to constrastive divergence for training RBMs in practice. The key conceptual difference is
that in these works, their goal is to solve a much harder problem (e.g. estimating marginals and logZ)
which is well-known to be NP-hard in general. In contrast, for our application to learning the relevant
task ends up being predicting one node from the others, which it turns out is not computationally
difficult if we know the model — conditioning on the other nodes breaks all cycles in the graph,
which is the obstacle that makes inference difficult in general.

B.1 Conditional Law Derivation

In this Appendix we give, for the reader’s convenience, a self-contained derivation of the conditional
law (1) described in Theorem 1 for E[Xi|X∼i] from (2). As described in the proof of the Theorem,
the result is obtained as a special case of the Belief Propagation algorithm as described in a number
of references, including [21, 22], which is derived by performing a more general version of this
calculation. First recall that the joint conditional law on Xi, H condiditioned on X∼i is given by (2):

Pr(Xi = xi, H = h|X∼i = x∼i) ∝ exp

xi(b(1)
i +

∑
j

Wijhj) + 〈W t
∼ix∼i + b(2), h〉

 .
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The computation proceeds by rewriting this measure with respect to a “cavity” measure where all
terms involving Xi are removed. For each hidden unit j, define a corresponding probability measure

µHj→Xi(hj) ∝ exp

∑
k 6=i

Wkjxjhj + b
(2)
j hj


under which

∑
j hjµHj→Xi(hj) = tanh(

∑
kWkjxj + b

(2)
j ) and rewrite the joint probability over

X,H as

Pr(Xi = x,H = h|X∼i = x∼i) ∝ exp

xi(b(1)
i +

∑
j

Wijhj)

∏
j

µHj→Xi(hj).

Now we compute that

Pr[Xi = xi|X∼i = x∼i]

=
∑
h

xi Pr(Xi = xi, H = h|X∼i = x∼i)

∝
∑
h

exp

xi(b(1)
i +

∑
j

Wijhj)

µH→Xi(h)

= exp(xib
(1)
i )

n2∏
j=1

(cosh(Wij) + sinh(xiWij) tanh(
∑
k 6=i

Wkjxj + b
(2)
j ))

∝ exp(xib
(1)
i )

n2∏
j=1

(1 + xi tanh(Wij) tanh(
∑
k 6=i

Wkjxj + b
(2)
j ))

= exp

xib(1)
i +

n2∑
j=1

log(1 + xi tanh(Wij) tanh(
∑
k 6=i

Wkjxj + b
(2)
j ))


where we used ∝ to ignore constants of proportionality independent of xi and in the third line we
used Lemma 1 below. Therefore if we use that

log(1+βxi) =
1

2
log

1 + βxi
1− βxi

+
1

2
(log(1+βxi)+log(1−βxi)) = tanh−1(βxi)+

1

2
(log(1+β)+log(1−β))

where we see the last term does not depend on x, we can compute that

E[Xi = xi|X∼i = x∼i]

=

∑
xi
xi exp

(
xib

(1)
i +

∑n2

j=1 log(1 + xi tanh(Wij) tanh(
∑
k 6=iWkjxj + b

(2)
j ))

)
∑
xi

exp
(
xib

(1)
i +

∑n2

j=1 log(1 + xi tanh(Wij) tanh(
∑
k 6=iWkjxj + b

(2)
j ))

)
=

∑
xi
xi exp

(
xib

(1)
i +

∑n2

j=1 xi tanh−1(tanh(Wij) tanh(
∑
k 6=iWkjxj + b

(2)
j ))

)
∑
xi

exp
(
xib

(1)
i +

∑n2

j=1 xi tanh−1(tanh(Wij) tanh(
∑
k 6=iWkjxj + b

(2)
j ))

)
= tanh

b(1)
i +

n2∑
j=1

tanh−1(tanh(Wij) tanh(
∑
k 6=i

Wkjxj + b
(2)
j ))


where in the final step we used that tanh(z) = ez−e−z

ez+e−z . From this we get (1) by plugging in the
definition of fβij .
Lemma 1. For any z ∈ R we have the formula for moment generating function of a recentered
Bernoulli:

EX∼Ber±(tanh(z))[exp(λX)] = cosh(λ) + sinh(λ) tanh(z)

where Ber±(µ) denotes the distribution of a {±1}-valued random variable with mean µ.
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Proof. First recall that EX∼Rad[exp(λX)] = cosh(λ) and EX∼Rad[X exp(λX)] = tanh(λ).
Therefore

EX∼Ber±(tanh(z))[exp(λX)] = EX∼Rad
[
eλX

ezX

cosh(z)

]
=

cosh(z + λ)

cosh(z)

=
cosh(z) cosh(λ) + sinh(z) sinh(λ)

cosh(z)

= cosh(λ) + sinh(λ) tanh(z).

B.2 2-layer Tanh Neural Network as Bayes-Optimal Prediction in an RBM

In particular, (1) lets us realize any standard 2-layer tanh neural network as the Bayes-optimal
predictor in an RBM in a natural limit where the number of hidden neurons goes to infinity, but the
effect of each hidden neuron is very small, so that the `1 norm of the weights going into the top
neuron stays bounded by a constant. Each hidden unit in the neural network corresponds in a direct
way to several duplicated hidden units in the RBM. The construction is given explicitly in the next
Lemma; we will not use the statement explicitly but use it to develop intuition for (1).

Lemma 2. Suppose that g(x) = tanh
(
u0 +

∑T
j=1 uj tanh (Mj0 +

∑
kMjkxk)

)
where x is n-

dimensional, i.e. g is a 2-layer neural network with tanh activations. Then

g(x) = lim
K→∞

tanh

u0 +

K∑
i=1

T∑
j=1

tanh(uj/K)f|uj/K|

(
Mj0 +

∑
k

Mjkxk

) ,

so by (1) from Theorem 1 the restriction of f to {±1}n is the Bayes-optimal predictor of a visible unit
in an RBM with n+ 1 total visible units where the activations of the other visible units are known.

Proof. This follows from the observation in Remark 2 and from Theorem 1 by building the corre-
sponding RBM with KT hidden units.

B.3 Distribution learning bounds from prediction bounds

In this section, we show how good estimates of the conditional prediction functions can be used in a
direct way to recover the joint distribution of the RBM in total variation distance.

Algorithm 2 DISTRIBUTIONFROMPREDICTORS

1: For every i we suppose we are given f̂i : {±1}n → R and set N̂ (i) such that f̂i is a predictor of
node i from other nodes that depends only on those in the set N̂ (i)

2: Define S := {S : ∃i, S ⊂ N̂ (i)}
3: for S ∈ S do
4: For all i ∈ S, define ŵS,i := EX∼Uni({±1}n)[tanh−1(f̂i(X))XS\i].
5: Define ŵS := 1

|S|
∑
i∈S ŵS,i.

6: Return the MRF with unnormalized pmf exp
(∑

S∈S ŵSXS

)
.

Lemma 3 ([26]). Suppose P,Q are distributions over random variable X valued in {±1}n. If
P (x) ∝ exp(

∑
S pSXS) and Q(x) ∝ exp(

∑
S qSXS) then

SKL(P,Q) =
∑
S

(pS − qS)(EP [XS ]− EQ[XS ]).

where SKL(P,Q) = KL(P,Q) + KL(Q,P ) is the symmetrized KL divergence.
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Proof. From the definition we see

SKL(P,Q) = EP
[
log

P (x)

Q(x)

]
−EQ

[
log

P (x)

Q(x)

]
= EP

[∑
S

(pS − qS)XS

]
−EQ

[∑
S

(pS − qS)XS

]
so using linearity of expectation proves the result.

The following definition captures the level of contiguity P has with the uniform measure when
looking at small sets of coordinates.
Definition 3. For any distribution P on {±1}n and d ≤ n we define

δP (d) := inf
|S|≤d

inf
xS

2|S|P (XS = xS).

Lemma 4. For any function f which depends on at most d coordinates,
EP [f(X)2] ≥ δP (d)EX∼{±1}n [f(X)2]

The following Lemma is a standard observation used in most previous works on learning Ising models
including [6, 7, 8] and others.
Lemma 5. A (λ1, λ2)-bounded RBM satisfies δP (d) ≥ (1− tanh(λ1))d.

Proof. In the d = 1 case this follows from the law of total expectation as E[Xi|H,X∼i] =

tanh(b
(1)
i +

∑
jWijHj) and the term inside the tanh has magnitude at most λ1 by definition.

For general d the result follows by induction, by using the above argument for a single spin and then
applying the induction hypothesis to the model where than spin is plus and where that spin is minus,
since these models are also (λ1, λ2)-bounded RBMs.

Lemma 6. Let P̂ denote the distribution returned by Algorithm DISTRIBUTIONFROMPREDICTORS

and let P be the true distribution. Let logP (x) =
∑
S wSxS and log P̂ (x) =

∑
S ŵSxS be the

Fourier expansions of the log-likelihoods. Then

SKL(P̂ , P ) ≤
∑
S

|wS − ŵS |

≤
∑
i

2|N (i)|/2+1√
δP (|N (i) ∪ N̂ (i)|)

√
EX′ [(tanh−1(f̂i(X ′))− tanh−1(EP [Xi|X∼i]))2]

where X ′ ∼ Uni({±1}n).

Proof. Define wS to be the true coefficient in the true MRF potential. By Lemma 3 and Holder’s
inequality we know SKL(P, P̂ ) ≤ 2

∑
S |ŵS − wS |. Then by Jensen’s inequality and the Cauchy-

Schwarz inequality, ∑
S

|ŵS − wS | ≤
∑
S

1

|S|
∑
i∈S
|ŵS,i − wS |

=
∑
i

∑
S:i∈S

1

|S|
|ŵS,i − wS |

≤
∑
i

2|N (i)|/2
√∑
S:i∈S

(ŵS,i − wS)2.

Now using Plancherel’s theorem [52], the fact that fi(x) = tanh
(∑

S:i∈S wSxS\{i}
)
, and the

definition of δP (d) gives the result.

C Guarantees for Learning Feedforward Networks (with Arbitrary
Distribution)

In this section we prove upper and lower bounds for learning one-layer feedforward networks with fβ
activations in the hidden units and inputsX drawn from an arbitrary distribution such that ‖X‖∞ ≤ 1.
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C.1 Preliminaries: Optimal Approximation of Analytic Functions

Identify C with R2 by taking x to be real and y to be the imaginary component of a complex number
z. Define Eρ to be the region bounded by the ellipse in C = R2 centered at the origin with equation
x2

a2 + y2

b2 = 1 with semi-axes a = 1
2 (ρ + ρ−1) and b = 1

2 |ρ − ρ
−1|; the focii of the ellipse are ±1.

In the present context, this is sometimes referred to as a Bernstein ellipse. For an arbitrary function
f : [−1, 1]→ R, let ED(f) denote the error of the best polynomial approximation of degree D in
infinity norm on the interval [−1, 1] of f , i.e.

ED(f) := min
P :deg(P )≤D

max
x∈[−1,1]

|f(x)− P (x)|. (3)

The following theorem of Bernstein exactly characterizes the asymptotic rate at which ED(f) shrinks:
Theorem 7 (Theorem 7.8.1, [53]). Let f be a function defined on [−1, 1]. Let ρ0 be the supremum of
all ρ such that f has an analytic extension on the interior of Eρ. Then

lim sup
D→∞

D
√
ED(f) =

1

ρ0

where we interpret the rhs as∞ when ρ0 = 0.

For the definition of what it means for the function to be analytic on a region of the complex plane,
we refer to a text on complex analysis such as [54]. For our application we need only the upper bound
and we need a quantitative estimate for finite degree d. In the proof of the upper bound in [53], the
following result is proved:
Theorem 8 (Quantitative Variant of Theorem 7.8.1, [53]). Suppose f is analytic on the interior of
Eρ1 and |f(z)| ≤M on the closure of Eρ1 . Then

ED(f) ≤ 2M

ρ1 − 1
ρ−D1 .

This quantitative variant was previously used in [55] as part of a construction of low-degree approxi-
mations to the ReLU activation with specific properties. Note that when applying this theorem, we
should center f so that the constant M is small, since adding constants to f will obviously not change
Ed(f).

C.2 Approximation Guarantees for fβ Family of Activations

Recall that the activations fβ were defined in Theorem 1 to be fβ(x) = 1
β tanh−1(β tanh(x)).

Recall that if β = 1 then fβ(x) = x so the function is analytic everywhere on C, and if β = 0 is is
tanh so it is meromorphic. For the remaining values of β ∈ (0, 1), the function fβ is slightly more
complicated (it has branch cuts), however we show it is still nicely behaved near the real line.
Lemma 7. For β ∈ [0, 1] the function fβ is analytic on the strip {x+ iy : |y| < π/2}.

Proof. Observe that

f ′β(z) =
1− tanh2(z)

1− β2 tanh2(z)
..

Since tanh is analytic except at points of the form z = π
2 i + πki, the only other possible poles

are solutions to β2 tanh2(z) = 1, i.e. solutions to tanh(z) = ±1/β. Recalling that tanh−1(z) =
1
2 (log(1 + z)− log(1− z)) and taking into account the branch cut from (−∞, 0] for the logarithm,
we see that the solutions to tanh(z) = 1/β are of the form

z =
1

2
log

1 + 1/β

1/β − 1
+
πi

2
+ kπi

and for tanh(z) = −1/β of the form

z =
1

2
log

1/β − 1

1 + 1/β
+
πi

2
+ kπi

for k ∈ Z. In particular we see that f ′β is analytic on the strip {x+ iy : |y| < π/2} so fβ is as well
(since the region is simply connected, this can be proved by path integration [54]).
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To get a quantitative upper bound we will need to bound (the centered version of) fβ on the Bernstein
ellipse, which will require us to back away from the singularities of f ′β on the lines y = ±π/2. The
following Lemma proves that f ′β is uniformly bounded in a slightly smaller region:

Lemma 8. For all β ∈ [0, 1], |f ′β(z)| ≤ 2 everywhere on the closed strip {x+ iy : |y| ≤ π/4}.

Proof. Observe that

f ′β(z) =
1− tanh2(z)

1− β2 tanh2(z)
=

cosh2(z)− sinh2(z)

cosh2(z)− β2 sinh2(z)

=
1

1 + (1− β2) sinh2(z)
=

1

1 + (1− β2) cosh(2z)−1
2

using the identies cosh2(x) − sinh2(x) = 1 and sinh2(z) = cosh(2z)−1
2 . Since cosh(2x + 2iy) =

e2x+2iy+e−2x−2iy

2 we see that under the assumption |y| ≤ π/4 that cosh(2x+ 2iy) lies in the right
half plane, therefore |1+(1−β2) cosh(2z)−1

2 | ≥ |1− (1−β2)/2| ≥ 1/2 which proves the result.

Lemma 9. For any β ∈ [0, 1], arbitrary h ∈ R, and any R ≥ 0,

ED(fβ(Rx+ h)) ≤ 4R(1 + 2R)

(1 + 1/2R)D

Proof. Just for this proof define gβ,h(x) := fβ(Rx+h)−fβ(h). We prove this bound by application
of Bernstein’s theorem. By Lemma 7 we know that fβ is analytic on the strip {x+ iy : |y| < π/2}
so in particular it is analytic on the closed strip {x+ iy : |y| ≤ π/4}, and by Lemma 8 we know that
|f ′β | ≤ 2 on the closed strip.

We now compute ρ so that REρ is contained in the latter strip. We solve

1

2
(ρ− ρ−1) =

π

4R

which gives ρ2− π
2Rρ−1 = 0 so ρ =

π/2R+
√
π2/4R2+4

2 > 1+1/2R. Since |g′β,h(z)| ≤ R|f ′β | ≤ 2R

on the closure of the ellipse, it follows by the mean-value theorem that |gβ,h| ≤ 2(1 + 1/2R)R ≤
1 + 2R on E1+1/2R and applying Theorem 8 gives the result.

C.3 Learning Feedforward Networks under `∞ Bounded Input

Since the final activation in our network is tanh, we recall some useful facts about logistic regression
and the logistic loss which we will use.

Definition 4. The logistic loss is defined to be

`(v, y) := log(1 + e−2vy).

We note that the factor of 2 in the exponent and the normalization differ depending on convention.

The following facts about the logistic loss which can be checked from the definition (or see a reference
such as [56]):

Fact 1. The following are true if y ∈ {±1} is fixed:

1. `(v, y) is convex and 2-Lipschitz in v.

2. `(v, y) = − log Pr(Ŷ = y) where Ŷ is a {±1}-valued random variable with expectation
tanh(v).

3. ∂
∂v `(v, y) = −2ye−2vy

1+e−2vy and ∂2

∂v2 `(v, y) = 2
1+cosh(2v) .

Furthermore if Y is a {±1}-valued random variable (and v is deterministic) then
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4. EY `(v, Y ) = KL(L(Y ),L(Ŷ )) +H(Y ) where Ŷ is defined above, L(Y ) denotes the law
of random variable Y , KL denotes the Kullback-Liebler divergence and H denotes the
Shannon entropy.

We recall the following Theorem which states the agnostic learning guarantee for fitting `1-constrained
predictors in logistic loss, i.e. the logistic version of the Lasso:
Theorem 9 (Theorem 26.15 of [56]). Suppose that X is a random vector in Rn such that ‖X‖∞ ≤ 1
almost surely and Y is an arbitrary {±1}-valued random variable. Then with probability at least
1− δ, simultaneously for all w with ‖w‖1 ≤ R it holds that

Ê[`(w ·X,Y )] ≤ E[`(w ·X,Y )] + 4R

√
2 log(2n)

m
+ 2R

√
2 log(2/δ)

m

where Ê denotes the empirical expectation over m i.i.d. copies (X1, Y1), . . . , (Xm, Ym) of (X,Y ).

In order to bound the `1 norm of our predictor we will need the following Lemmas:

Lemma 10 ([46], Lemma 2.13 of [31]). Suppose p(x) =
∑D
i=0 βix and |p(x)| ≤M for x ∈ [−1, 1],

then
∑D
i=0 β

2
i ≤ (D + 1)(4e)2DM2.

Lemma 11. Suppose that p(x) =
∑D
i=0 ai(w · x)i =

∑
α uαx

α. Then∑
α

|uα| ≤
√∑

i

a2
i (1 + ‖w‖1)D.

Proof. For any multi-index α let wα :=
∏
i∈α wi and observe by the multinomial theorem

p(w · x) =
∑
i

ai(w · x)i =
∑
i

ai
∑
|α|=i

(
i

α

)
wαx

α.

Therefore by the triangle inequality, multinomial theorem, and Cauchy-Schwarz inequality∑
α

|uα| ≤
∑
i

|ai|
∑
|α|=i

(
i

α

)
|wα| =

∑
i

|ai|‖w‖i1 ≤
√∑

i

a2
i

∑
i

‖w‖2i1 ≤
√∑

i

a2
i (1 + ‖w‖1)d

where in the last step we used 1 + x2 + x4 + · · ·+ xk ≤ (1 + x)k for x ≥ 0.

Theorem 10. Suppose that Y is a random variable valued in {±1}, X is a random vector such that
‖X‖∞ ≤ 1 almost surely and

E[Y |X] = tanh

b(1) +
∑
j

wjfβj

(
b
(2)
j +

∑
k

WjkXk

)
where b(1) ∈ R, βj ∈ [0, 1], w is an arbitrary real vector and W is an arbitrary real matrix. Let
Wj denote column j of W . Then `1-constrained regression on the degree D monomial feature map
ϕD(x) 7→

(∏
i∈S Xi

)
|S|≤d with `1 constraint

‖w‖1 ≤ R := |b(1)|+
√
D + 1(4e)D+1

∑
j

|wj |(1 + ‖Wj‖1)D+1

returns a predictor ŵ such that with probability at least 1− δ,

E[`(ŵ · ϕd(X), Y )]− E[`(v∗(X), Y )]

≤ 8
∑
j

|wj |
‖Wj‖1 + 2‖Wj‖21
(1 + 2/‖Wj‖1)

D
+ 4R

√
2D log(2n)

m
+ 2R

√
2 log(2/δ)

m

where v∗(X) := tanh−1(E[Y |X]) = b(1) +
∑
j wjfβj

(
b
(2)
j +

∑
kWjkXk

)
is the minimizer of the

expected logistic loss over all measurable functions of X . The runtime is poly(nD).
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Proof. The fact that v∗(X) is the minimizer of the logistic loss E[`(h(X), Y )] over allX-measurable
functions h can be seen from Fact 1. To derive the bound we combine the approximation-theoretic
guarantees developed in the previous section with the `1 guarantee for logistic Lasso.

For the approximation step, define w∗ so that w∗ ·ϕd(X) is given by replacing each activation fβj by
its best polynomial approximation Pj on the interval [b

(2)
j − ‖Wj‖1, b(2)

j + ‖Wj‖1]. By the triangle
inequality and Lemma 9, for any x ∈ {±1}n,

|v∗(x)−w∗ ·ϕd(x)| ≤
∑
j

|wj ||(fβj −Pj)(b
(2)
j +

∑
k

Wjkxk)| ≤ 4
∑
j

|wj |
(
‖Wj‖1 + 2‖Wj‖21

)
(1 + 2/‖Wj‖1)

D
.

Since the logistic loss is 2-Lipschitz (Fact 1.1), this implies that

E[`(w∗ · ϕD(X), Y )] ≤ E[`(v∗(X), Y )] + 8
∑
j

|wj |
(
‖Wj‖1 + 2‖Wj‖21

)
(1 + 2/‖Wj‖1)

D
. (4)

Combining Lemma 8, Lemma 10 and Lemma 11 and using the triangle inequality shows that
‖w∗‖1 ≤ R where R is as specified in the Theorem statement. Then applying Theorem 9 and
combining it with (4) gives the desired inequality bounding the error of the predictor ŵ.

To simplify usage of this Theorem, we give the following slightly less precise bound which will be
used from now on:
Corollary 1. In the same setting as Theorem 10, if we assume that ‖Wj‖1 ≤ λ for every j and
λ ≥ 2, then with probability at least 1− δ, E[`(ŵ ·ϕd(X), Y )]−E[`(v∗(X), Y )] ≤ ε as long as the
number of samples m satisfies m = Ω((|b(1)|2λO(D)) log(2n/δ)) where D = O(λ log(‖w‖1λ/ε))
and the runtime of the algorithm is poly(nD).

Proof. In order to make the first term of the bound on E[`(ŵ · ϕd(X), Y )] − E[`(v∗(X), Y )] at
most ε/2, we can upper bound it by O(‖w‖1λ2/(1 + 2/λ)D) and see that it suffices to take D =
Ω(λ log(‖w‖1λ/ε)). Then R = |b(1)| + exp(O(D))‖w‖1λD+1 = |b(1)| + λO(D) so it suffices to
take m = Ω((|b(1)|2 + λO(D)) log(2n/δ))

Remark 3. In the analysis of Theorem 10 we did not concern ourselves with the exact constants
in the runtime. However, if we are interested in optimizing the runtime it should be noted that
instead of getting a precise estimate of the empirical risk minimizer when computing the logistic
regression, one can achieve a similar statistical guarantee by using a single pass of stochastic
mirror descent/exponentiated gradient (see reference text [57]), e.g. as used in [8] where the needed
high-probability guarantees can be found.

C.4 Nearly Matching computational lower bounds

In this section, we show that the runtime guarantee of Corollary 1 is close to optima: more precisely
its runtime is optimal in ‖w‖1 and ε up to a log log factor in the exponent, and also that at least
sub-exponential dependence on λ is required. We first recall the definition of this problem and a
standard hardness assumption for learning sparse parity with noise. We phrase it in terms of a testing
problem versus the uniform distribution, which is equivalent to a learning formulation (i.e. recovering
S below), by boosting the probability of success and using a standard reduction of removing one
coordinate at a time and testing (see e.g. [20]).
Definition 5. The k-sparse parity with noise distribution is the following distribution on (X,Y )
parameterized by η ∈ (0, 1/2) and an unknown subset S of size k:

1. Sample X ∼ Unif({−1,+1}n).

2. With probability 1/2 + η, set Y =
∏
s∈S Xs, and with probability 1/2 − η, set Y =

(−1)
∏
s∈S Xs.

The k-sparse parity with noise problem is to test between the uniform and k-sparse parity with noise
with sum of probability of Type I and Type II errors upper bounded by 0.01, given access to an oracle
which generates samples from one of the two distributions.
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Assumption 1 (Hardness of learning sparse parity with noise). Suppose kn is an arbitrary sequence
of positive integers with kn = o(n1−ε) for any ε > 0 and n growing, any algorithm which solve the
k-sparse parity with noise testing problem must have runtime nΩ(kn).

The reason for the condition kn = o(n1−ε) is simply because the number of sets of size n is 2n,
not nn, so small correction factors in the exponent are needed when k is comparable to n. The best
known algorithm for learning sparse parity with noise runs in time n0.8kn [20].
Theorem 11. In the setting of Corollary 1 and under Assumption 1, for λ ≤ 2 there exists families of
models (one with ε a constant, one with ‖w‖1 a constant) where a runtime of

n
Ω
(

log(‖w‖1/ε)
log log(‖w‖1/ε)

)
is needed for any algorithm to achieve ε error with high probability, regardless of its sample complexity
and even in the case of tanh activations (βj = 0 for all j). There also exists a sequence of models
with λ = Θ(n log(n)) and ‖w‖1 = O(

√
n) which requires runtime

nΩ(
√
λ/ log2(λ) log(n) log ‖w‖1)

to achieve error ε = 0.01 with high probability.

Proof. We first show a lower bound of nΩ(log(‖w‖1/ε)) for a family of models where λ ≤ 1. Recall
we are proving a lower bound in the βj = 0 case where all activations are tanh. The lower bound
is shown by building a parity function out of tanh functions exactly using a simple taylor series
expansion argument, under the assumption that the input to the network is in the hypercube {±1}n.
The construction proceeds in a similar fashion to the sparse parity with noise lower bound for learning
RBMs of bounded hidden degree established in [18]. We first describe the construction of a parity
function on boolean inputs x1, . . . , xk. It suffices to build this parity with a small (constant-size)
coefficient, since we can repeat it to make the coefficient larger. We start from the fact that

tanh(z) = 2
∑
k

(−1)k

π2k+2
(1− 1/4k+1)ζ(2k + 2)z2k+1

for |z| < π/2 and recall that the Riemann ζ function does not vanish on even integers [54], so every
coefficient in this expansion is nonzero. Furthermore it is known that ζ(n) → 1 as n → ∞, since
this follows from the power series definition of ζ(s) =

∑
1
ns , so we can write

tanh(z) =
∑
k

a2k+1z
2k+1

where a2k+1 6= 0 for any k and |a2k+1| = Θ(1/π2k+2). From this we can see that for some constant
c 6= 0,

x1 · · ·x2k+1 = c
(2k + 1)2k+1

a2k+1
tanh

(
x1 + · · ·+ x2k+1

2k + 1

)
+ p(x)

where p(x) is of degree at most k − 1, using that x2
i = 1 for all i on the hypercube; here the constant

c (which is close to 1) is a fixed correction factor to handle the small effect of maximum-degree
terms coming from expanding higher order terms in the tanh power series. We can inductively
rewrite each of the highest-order coefficients of p in terms of tanh and lower order monomials: this
ultimately gives us a way to write parity as a linear combination of tanh functions. Using this, we can
rewrite tanh( 1

4x1 · · ·x2k+1) as a two-layer tanh network with ‖w‖1 = kO(k) and λ ≤ 1. Taking
ε = 1/16 and using the hardness of k-sparse parity with noise, we get that the runtime for learning
the corresponding network is at least nΩ(k) = nΩ(log(‖w‖1)/ log log(‖w‖1)).

We can similarly prove a lower bound of nΩ(log(1/ε)/ log log(1/ε)) for constant λ, ‖w‖1 by using the
same method to convert tanh(ηx1 · · ·x2k+1) into a two-layer network and by taking η = k−Θ(k) so
that the `1 norm of the coefficients is shrunk to be at most 1. Taking ε = Θ(η) and using the sparse
parity with noise lower bound as above gives the result.

Finally, we give a lower bound showing exponential dependence on λ is necessary. We use the
well-known fact that a parity can be written as a small sum of threshold functions [47]. For k even,

x1 · · ·xk = 1[x1+· · ·+xk ≥ −k]−2(1[x1+· · ·+xk ≥ −k+2]−1[x1+· · ·+xk ≥ −k+4]+· · · )
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with a total of k + 1 terms in the sum on the rhs. We now consider replacing each threshold function
with the approximation 1[a ≥ b] ≈ 1+tanh(λ′(a−b+1/2))

2 for some λ′ > 0. Note that the error of
this approximation for a singe threshold unit and integers a, b is maximized when a− b = 0 where
the error is 1−tanh(λ′/2)

2 = O(e−λ
′
). Therefore by Holder’s inequality, the error in approximating

x1 · · ·xk by replacing all of the threshold functions is O(ke−λ
′
) = O(ke−λ/(k+1/2)), where we

used that λ = (k+ 1/2)λ′ where λ is the hidden node `1 norm as used previously. By adding a tanh
nonlinearity on top of the approximate parity, this gives an approximate construction of sparse parity
with noise.

Taking k =
√
n and λ = Θ(k2 log(n)) we see that the resulting model is TV-distance n−Θ(k) from

sparse parity with noise, so any algorithm with runtime cn−Θ(k) cannot distinguish this model from
sparse parity with noise with probability better than 75% for sufficiently small constant c > 0. From
the assumed hardness of learning sparse parity with noise, any algorithm succeeding to distinguish
this model from the uniform distribution with sufficiently small error probability requires runtime
nΩ(k) = n

√
λ/ log2(λ) log(n) log ‖w‖1 .

Remark 4. In the second construction in the proof of Theorem 11, based off of approximating
threshold functions, the computational lower bound becomes stronger if we allow the algorithm
access to less data (recall that for a fixed noise level, Θ(k log n) samples suffice information-
theoretically for sparse parity with noise). If we only allow to use Θ(k log n) samples as information-
theoretically required, then we can take λ = Θ(k(log k + log log n)) and the runtime required is
nk = nλ/(log logn+log(λ)).

D Learning RBMs by Learning Feedforward Networks

D.1 Structure and Distribution Learning Guarantees

In this section we discuss application of the prediction guarantees from the previous section to
structure and distribution learning. As motivation, recall that in undirected graphical models the
Markov blanket or neighborhood of a node i, the minimal set of nodes which separate node i from
the rest of the model in the underlying graph, is one of the most interesting pieces of information to
learn about a node. By the Markov property, node i interacts directly only with nodes in its Markov
blanket, in the sense that Xi is conditionally independent of all other nodes Xk given the values of
nodes Xj for all j in the markov blanket of i. Learning the markov blanket of all nodes, equivalently
learning the underlying graph of the Markov Random Field, is referred to as structure learning. It is
also known (see e.g. [18]) that once we have performed structure learning, distribution learning (e.g.
in total variation distance) becomes a conceptually straightforward task as it can typically be reduced
to solving low-dimensional regression problems.

As explained in the introduction, learning the structure requires a non-degeneracy condition on
neighbors (recall the definition of η-nondegeneracy from above). In the introduction, we stated that
if all edges are η-nondegenerate then we can learn the structure perfectly; in the next Theorem, we
state a slightly more precise result giving the result we can successfully test between non-neighbors
and η-nondegenerate neighbors, without requiring nondegeneracy on the entire model. Since our
guarantee holds with high probability, using the union bound it immediately gives a result for structure
recovery under η-nondegeneracy.

Theorem 12. Let i and j be two visible nodes in a (λ1, λ2)-bounded RBM. Let H0 be the hypothesis
that nodes i and j are not two-hop neighbors and H1 the hypothesis that nodes i and j are η-
nondegenerate two-hop neighbors. Given δ > 0 and m = Ω(λ

O(D)
2 log(2n/δ)) i.i.d. samples where

D = O(λ2 log(λ1λ2/η)), we can test in time poly(nD) between H0 and H1 with sum of Type I and
Type II errors upper bounded by δ.

Proof. We run the following testing procedure:

1. Run the `1 regression algorithm from Theorem 1 to predict Xi from X∼i and from X∼i,j .

2. Repeat the previous step with i and j reversed.
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3. If the decrease in prediction accuracy for removing i or j is at least 3η/4 in either step 1 or
step 2, reject H0.

That this works follows by combining Theorem 1 and Corollary 1, by choosing ε = η/8 under H0

the difference in prediction error is at most 2ε whereas under H1 it must be at least η − 2ε.

Assuming that all 2-hop neighbors in the RBM are η-nondegenerate, the above Theorem lets us
recover the structure of the RBM (its 2-hop neighborhoods) in time poly(nD). In the following
remark, we explain how large D is in the regimes where we know polynomial time sampling from
the RBM is possible:

Remark 5 (Comparison to polynomial time sampling regimes). Dobrushin’s uniqueness criterion is
probably the most well-known sufficient condition for sampling to be possible in polynomial time in a
general pairwise model. Dobrushin’s condition is that for every node i, the total `1-norm of the edges
touching node i is at most 1, where the mixing time guarantees for Glauber dynamics become worse
as the maximum norm approaches 1 (see [28]). This condition is tight in the example of the Ising
model on the complete graph (Curie-Weiss), or for the bipartite complete graph (i.e. dense RBM)
with all edge weights positive and equal and an equal number of visible and hidden units.

Under Dobrushin’s uniqueness criterion on the RBM, we have that λ1, λ2 ≤ 1 so D = O(log(1/η)).
As mentioned above, we cannot compute η in terms of just the edge weights for general models,
but if we for example assume the model is d-regular and has all edge weights equal to +1/d and
no external field then it is not too hard to show that η = Ω(1/d2) (see e.g. [18]), so in this case
the overall runtime is nlog(d). We expect that under Dobrushin’s condition η = Ω(1/d2) except in
perhaps some rare degenerate situations. This means the runtime is improved by an exponential
factor in the exponent compared to what one gets by just applying the RBM to MRF reduction, since
learning d-wise MRFs is known to require nd time in general [8].

In some other interesting contexts, it is also known that polynomial time sampling can only be
guaranteed when λ1, λ2 = O(1): for antiferromagnetic Ising models on bounded degree graphs
with equal edge weights the sharp result is known for every d [58, 59, 29] and embedding these
Ising models as RBMs with hidden nodes of degree 2 in a straightforward way gives models with
λ1, λ2 = O(1) and η = Ω(1/d2) (see Example 1 above).

For distribution learning we will need the following technical Lemma, which is proved in Ap-
pendix D.2 using the local Rademacher complexity framework [60]. Informally it says that if X is a
random variable with a density with respect to the uniform measure on {±1}n that is lower bounded
by a constant, then given a number of samples m which is large with respect to the size of the domain
the natural estimator of tanh−1(E[Y |X]) has error which converges at a 1/m rate, which generalizes
the case of estimating the (exponential-family parameterization of) mean, the n = 0 case, in a natural
way. Since the bound depends exponentially on n, we will only apply it in settings where we expect
n is small. Similar bounds are used in previous works including [5, 6] and proved using different
methods, though they are not quite as optimized (e.g. deriving this result from Lemma 3.2 of [6]
would give a 1/γ2 dependence); this bound can be shown to be optimal up to constants.

Lemma 12. Suppose that X is a random variable valued in {±1}n with Pr(X = x) ≥ γ/2n for
every x and Y is a random variable valued in {±1}. Suppose that |E[Y |X]| ≤ r for r < 1. Let
Ê[Y |X] be the empirical conditional expectation of Y given X based upon m i.i.d. samples of
(X,Y ) and define h(X) := min(max(E[Y |X], r),−r). Then with probability at least 1− δ,

E[(tanh−1(h(X))− tanh−1(E[Y |X]))2] .
2n/γ + log(1/δ)

(1− r2)2m

where . denotes inequality up to an absolute constant.

We present the proof of this lemma in the subsequent subsection. From this Lemma we straightfor-
wardly get the right result for learning a sparse RBM with known 2-hop neighborhoods.

Lemma 13. For any (λ1, λ2)-bounded RBM where the maximum two-hop degree of any visible node

is at most d2 and where ‖b(1)‖∞ ≤ B, for δ > 0 andm = Ω

(
n2
(

2
(1−tanh(λ1))

)d2+1

log(n/δ)/ε4
)

we have that with probability at least 1− δ, Algorithm DISTRIBUTIONFROMSTRUCTURE given m
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Algorithm 3 DISTRIBUTIONFROMSTRUCTURE

1: We assume for every node i we are given a recovered neighborhood N̂ (i). N̂ (i)

2: For every node i with neighborhood N̂ (i), let fi(X) := Ê[Xi|XN̂ (i)] be the empirical condi-
tional expectation of Xi given XN̂ (i).

3: Return the output of Algorithm DISTRIBUTIONFROMPREDICTORS run with these fi.

samples and N̂ (i) = N (i) for every i returns a distribution P̂ which is ε-TV close to the distribution
of the RBM. Furthermore, if wS , ŵS are as defined as in Lemma 6 then

2TV(P, P̂ )2 ≤ SKL(P, P̂ ) ≤
∑
S

|wS − ŵS | ≤ ε2.

Proof. By Lemma 6, Lemma 5 and Lemma 12 we have

SKL(P̂ , P ) ≤
∑
S

|wS − ŵS |

≤
∑
i

2d2/2+1

(1− tanh(λ1))d2/2

√
EX∼Uni({±1}n)[(tanh−1(hi(X))− tanh−1(EP [Xi|X∼i])2]

≤
∑
i

2d2/2+1

(1− tanh(λ1))d2

√
EXN(i)

[(tanh−1(hi(X))− tanh−1(EP [Xi|X∼i])2]

≤
∑
i

2d2/2+1

(1− tanh(λ1))d2

√
2d2/(1− tanh(λ1))d2 + log(n/δ)

(1− tanh(λ1)2)2m

and by Pinsker’s inequality TV(P̂ , P )2 ≤ SKL(P̂ , P )/2 so the result follows.

Theorem 13. Suppose that all visible nodes in an RBM which are neighbors in the Markov blanket
sense are η-nondegenerate neighbors, and that maximum 2-hop degree of any visible node is at most

d2. Then given δ > 0 and m = Ω(λ
O(D)
2 log(2n/δ) + n2

(
2

(1−tanh(λ1))

)d2+1

log(n/δ)/ε4) i.i.d.

samples where D = O(λ2 log(λ1λ2/η)) samples, Algorithm DISTRIBUTIONFROMSTRUCTURE run
with the set of η-nondegenerate neighbors output by Theorem 12 returns with probability at least
1− δ a distribution which is ε-TV close to the true distribution of the RBM.

Proof. This follows by combining Theorem 12 and Lemma 13.

Remark 6. If we do not assume that all neighbors are η-nondegenerate, then by Theorem 16 it is
impossible to get a nontrivial distribution learning guarantee assuming the hardness of learning
sparse parity with noise, in the sense that the naive approach of forgetting the RBM structure entirely
and using MRF learning results (e.g. [8]) cannot be improved.

D.2 Proof of Lemma 12

We recall the statement of Lemma 12. Suppose that X is a random variable valued in {±1}n
with Pr(X = x) ≥ γ/2n for every x and Y is a random variable valued in {±1}. Suppose that
|E[Y |X]| ≤ r for r < 1. Let Ê[Y |X] be the empirical conditional expectation of Y given X
based upon m i.i.d. samples of (X,Y ) and define h(X) := min(max(E[Y |X], r),−r). Then with
probability at least 1− δ,

E[(tanh−1(h(X))− tanh−1(E[Y |X]))2] .
2n

γ(1− r2)2m
+

log(1/δ)

(1− r2)2m

We will prove the result by proving the analogous result without the tanh−1 first, as Lemma 14.
The following general result reduces this to computing the local Rademacher complexity of the
corresponding function class.
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Theorem 14 (Corollary 5.3 of [60]). Suppose that F is a class of functions from X to [−1, 1] and
`(ŷ, y) is a loss which satisfies:

1. ` is L-Lipschitz in ŷ.

2. There is a constantB ≥ 1 such that for any random variableX supported on X and random
variable Y on [−1, 1]

E(f(X)− f∗(X))2 ≤ BE[`(f(X), Y )− `(f∗(X), Y )]

where f∗(X) is a minimizer of E[`(f(X), Y )] which we assume exists.

Then if ψ(r) is a sub-root function (meaning a monotonically increasing non-negative function with
ψ(r)/

√
r monotonically decreasing) such that

ψ(r) ≥ BLE sup
f∈F,L2E[(f−f∗)2]≤r

1

m

m∑
i=1

σi(f − f∗)(Xi) (5)

where the σi are i.i.d. Rademacher random variables, then for any r ≥ ψ(r) with probability at least
1− δ

E[`(f̂(X), Y )− `(f∗(X), Y )] .
r

B
+

(L+B) log(1/δ)

m
where the notation . hides an absolute constant.
Lemma 14. Under the same setup as Lemma 12,

E[(h(X)− E[Y |X])2] .
2n

γm
+

log(1/δ)

m
.

Proof. We consider F the class of arbitrary functions from X to [−r, r] and take `(ŷ, y) := (ŷ − y)2

to be the square loss so L = 2 and B = 1 satisfy the conditions above. It is clear from the definition
of h that it is the empirical risk minimizer for this function class and loss. Since this class is convex
we can take ψ(r) to be defined by the rhs of (5) (Lemma 3.4 of [60]) and it remains to compute the
fixed point of ψ. Thus if we write g := f − f∗

ψ(r) = 2E sup
f :4E[g2]≤r

1

m

m∑
i=1

σig(Xi)

and we observe by the assumption Pr(X = x) ≥ γ/2n that

EX [g2] ≥ γEX′∼Uni({±1}n)[g(X ′)2] = γ
∑
S

ĝ(S)2

by Plancherel’s Theorem [52] where ĝ(S) denotes the Fourier coefficient of g corresponding to set
S, so that g(x) =

∑
S ĝ(S)xS where xS =

∏
s∈S xs. Therefore by the above, the Cauchy-Schwarz

inequality, and Jensen’s inequality we have

ψ(r) = 2E sup
g:4E[g2]≤r

1

m

m∑
i=1

σig(Xi)

≤ 2E sup
g:
∑
S ĝ(S)2≤r/4γ

1

m

∑
S

ĝ(S)
1

m

m∑
i=1

σi(Xi)S

≤
√
r/γE

1

m

√√√√∑
S

(
m∑
i=1

σi(Xi)S

)2

≤
√
r

m
√
γ

√√√√E
∑
S

(
m∑
i=1

σi(Xi)S

)2

=

√
r

√
mγ

2n/2.

Solving for the fixed point of r =
√
r√
mγ 2n/2 gives r∗ = 2n

γm so the result follows from Theorem 14.
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Proof of Lemma 12. Recall that the derivative of tanh−1 at x is 1
1−x2 . Therefore on the domain

[−r, r] the function tanh−1 is 1
1−r2 Lipschitz. Therefore by the mean value theorem,

E[(tanh−1(h(X))− tanh−1(E[Y |X]))2] ≤ 1

(1− r2)2
E[(h(X)− E[Y |X])2]

and applying Lemma 14 gives the result.

D.3 Matching Computational Lower Bounds

In the following sequence of theorems we show that our runtime guarantees for structure learning
of RBMs cannot be significantly improved. The first result relies in part on the representation of
sparse parity with noise given in [18]; this embedding is constructed in a similar way to the first
embedding used in Theorem 11. It shows the dependence on λ1 and η is correct when asking for
structure recovery.

Theorem 15. In the same setup as Theorem 12 and under Assumption 1, there exists a family of
instances parameterized by n going to infinity with λ2 ≤ 2 such that any algorithm which is able to
achieve structure recovery for a model with all neighbors being η-nondegenerate requires runtime
nΩ(log(λ1/η)/ log log(λ1/η)), regardless of its sample complexity.

Proof. In [18], it was shown that for any fixed constant η (say η = 1/8), there exists an embedding
of k-sparse parity with noise into an RBM where every hidden unit has incoming edges of total `1
norm upper bounded by 2 (i.e. satisfying λ1 ≤ 2) and there are 2O(k) hidden units; it can be checked
straightforwardly that for η = 1/8 that λ2 = kO(k). Therefore if we fix ε = η/2 then when assuming
the hardness of k-sparse parity with noise there is a nΩ(k) runtime lower bound which matches since
λ2 = eO(k).

For the tightness in ε, by making the parity bias η exponentially small in k log(k), it’s easy to check
that by repeating the construction in [18] that we can make λ2 a constant; then to find the parity with
noise one needs ε exponentially small in k log k as well, and the hardness assumption implies the
runtime must be nΩ(k).

By tensorizing this construction, we show that the η-nondegeneracy assumption is required, even
if we only care about distribution learning. More precisely, we need it to learn in TV distance
with runtime better than the pessimistic nO(dh) result which follows from viewing the RBM as an
unstructured MRF and using the result of [8].

Theorem 16. There exists a family of RBMs with n nodes, maximum hidden node degree dH , and
λ1, λ2 = O(1) such that any algorithm which can learn this family of RBMs within total variation
distance at most 1/4 requires nΩ(dH) time.

Proof. The construction in Theorem 15 shows that there exists a family of RBMs given by embedding
sparse parity with noise with the desired property, except that the total variation distance is only
guaranteed to be 2−O(dH log(dH)). By building a larger RBM consisting of 2dH log(dH) disjoint copies
of the original RBM (note that the resulting increase in n is a multiplicative factor independent of the
original n), we can boost the total variation distance to be arbitrarily close to 1.

In order to give lower bounds with respect to λ2 for fixed η, we need a significantly more involved
argument. We first recall an approximate construction of parity (with low levels of noise) from [48]:

Theorem 17 (Theorem 7 of [48]). There exists an RBM network with n2 +1 hidden units and weights
poly(n, log(1/ε)) such that the marginal distribution P on the visible units satisfies P (x) ∝ ef(x)

for some f satisfying
sup

x∈{±1}n
|f(x)/C − x1 · · ·xn| ≤ ε

where C > 0 satisfies C = poly(log(n), log(1/ε)).

This construction is for a dense parity, but obviously we can make the parity as sparse as we want by
adding additional visible units not connected to anything else. More significantly, since the above
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theorem only constructs an ε-approximate instance of parity with noise η = O(1/2−1/poly(n, 1/ε)),
when n or 1/ε is large it does not seem that the resulting distribution is computationally hard to
distinguish from the uniform distribution, since Gaussian elimination over F2 has some chance of
succeeding to find the parity. Since we need ε to be small for the model to be indistinguishable from
sparse parity with noise, this appears to be a barrier to deriving a hardness result from the above
Theorem. Instead, we will prove that our result cannot be significantly improved for SQ (Statistical
Query) algorithms (for a reference, see [49]). In the Statistical Query model algorithms do not have
access to data, but instead have access to an SQ oracle:
Definition 6. An oracle for the statistical query model over distribution D over X,Y takes input
(g, τ) where g is a function g : {±1}n × {±1} → [−1, 1] and τ is a tolerance, and gives output v
with

|EX,Y∼D[g(X,Y )]− v| ≤ τ.

Standard arguments, i.e. implementing the needed regressions using standard gradient-based methods
for convex optimization shows that our algorithm for learning RBMs can be implemented in the
statistical query model (in this case, the separation of X and Y in the definition above is somewhat
artificial but we will take Y to be a particular visible unit in the RBM). We will show that statistical
query algorithms cannot do better than subexponential dependence on λ2.

The following theorem statements a lower bound for learning concepts of large SQ-dimension in
the Statistical Query model. The definition of SQ-dimension can be found in [49], but for our
purposes the only needed fact is that the class of k-parities over the uniform distribution {±1}n has
SQ-dimension

(
n
k

)
[49].

Theorem 18 ([49]). Let F be a class of functions over {±1}n and D a distribution such that
SQ-DIM(F , D) ≥ d ≥ 16. Then if all queries are made with tolerance at least 1/d1/3, then at least
d1/3/2 queries are required to learn F with error less than 1/2− 1/d3 in the statistical query model.
Theorem 19. Let S be an unknown subset of [n] of size k and containing n and D is the distribution
of the RBM produced by Theorem 17 on S where the other n − |S| visible units are isolated and
without external field. Let F be the class of parities on [n− 1]. As before, λ2 refers to the maximum
`1-norm into any hidden unit and we choose parameters so that λ2 = poly(n) and ‖w‖1 = poly(n).
There exists ε > 0 so that no SQ algorithm with tolerance n−λ

ε
2 and access to nλ

ε
2 queries can learn

F with error less than 1/4.

Proof. In Theorem 17 we take ε = exp(−n) which gives λ2 = poly(n). The resulting RBM is then
within TV distance exp(−n) of the distribution of a parity over the uniform distribution with a small
amount of label noise, so an SQ algorithm for the RBM setting implies an SQ algorithm for learning
parity, and the result follows from the lower bound of Theorem 18.

E Learning a Feedforward Network by Learning RBMs

In this section we reverse the connection between RBMs and Feedforward networks by using RBMs
with certain structural assumptions as a useful distributional assumption for learning feedforward
network. More formally, we assume our data is generated by the following Supervised RBM.
Definition 7. A Supervised Restricted Boltzmann Machine is any joint distribution over random
variables X valued in {±1}n1 , H valued in {±1}n2 and label Y ∈ {±1} of the form

Pr[X = x,H = h, Y = y] ∝ exp
(
〈x,Wh〉+ 〈h,w〉y + 〈b(1), x〉+ 〈b(2), h〉+ b(3)y

)
where the weight matrix W is an arbitrary nV × nH matrix and external fields/biases b(1) ∈ Rn1 ,
b(2) ∈ Rn2 and b(3) are arbitrary, and X is referred to as the vector of visible unit activations and
H the vector of hidden unit activations.

We make the following additional assumptions on the parameters of the model.
Assumption 2 (Minimum Ferromagnetic Interaction). For all i ∈ [n1], j ∈ [n2] either Wij = 0 or
Wij ≥ α.

We do not make any assumption on the weight w to the label. Therefore the model overall is not
ferromagnetic.
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Assumption 3 (Sparsity). For all i ∈ [n1],
∑n2

j=1Wij + |b(1)
i | ≤ λ and for either y = −1 or y = 1,

for all j ∈ [n2]
∑n1

i=1Wij + |b(2)
j + ywj | ≤ λ.

Here the sparsity assumption implies that under the conditioning of the label to either value, the
sparsity parameter is bounded. This conditional sparsity can be exploited by an algorithm for learning
the conditional distribution whereas a direct regression algorithm may be unable to gain from the
same.
Remark 7. Observe that the generative model of X itself is not sparse since Y is connected to all
hidden nodes however conditioned on knowing the label Y , the model is now sparse. This assumption
is more reasonable than assuming sparsity directly on the model of X which may not hold.

Assumption 4 (Balanced Label). For y ∈ {±1}, Pr[Y = y] ≥ β.

The above assumption essentially rules out trivial constant learners. Using data, it is easy to check if
this assumption is satisfied or not.

As before, we can compute the conditional mean function of the label as follows:

E[Y |X = x] = tanh

b(3) +
∑
j

tanh−1 (tanh(wj)νj)


where νj := tanh

(
b
(2)
j +

∑
i tanh−1 (tanh(Wij)Xi)

)
= tanh

(
b
(2)
j +

∑
iWijXi

)
. This repre-

sents a 2-layer neural network and in the limit of infinite hidden nodes, it can represent all 2-layer
tanh networks (see Lemma 2).
Assumption 5 (Boundedness). When E[Y |X = x] is re-expressed as tanh(f∗(x) + b∗) for some
function f∗ with no constant term and b∗ ∈ R. |b∗| ≤ B for some B > 0.

The above assumption intuitively says that the effect on Y that does not depend on X is bounded. B
can be bounded in terms of the network parameters.

Also observe that conditioned on a fixed label,

Pr[X = x,H = h|Y = y] ∝ exp
(
〈x,Wh〉+ 〈b(1), x〉+ 〈b(2) + wy, h〉

)
which is a sparse, ferromagnetic RBM with arbitrary external field. Thus, we capture a neural
network problem with a conditional RBM distributional assumption on the input. This distributional
assumption seems more natural than the Gaussian input distribution which is extensively used in
prior work. Also, this assumption allows us to leverage prior known algorithms for structure learning
of ferromagnetic RBMs to learn the prediction function.

E.1 Preliminaries: Structure Learning of RBMs with Ferromagnetic Interactions

Consider a RBM with the following additional assumptions:
Assumption 6 (Minimum Ferromagnetic Interaction). For all i ∈ [n1], j ∈ [n2] either Wij = 0 or
Wij ≥ α.

Assumption 7 (Sparsity). For all i ∈ [n1],
∑n2

j=1Wij + |b(1)
i | ≤ λ and for all j ∈ [n2],

∑n1

i=1Wij +

|b(2)
j | ≤ λ.

Under these assumptions, [19] has shown that a simple greedy algorithm based on covariance
maximization suffices to learn the structure of the RBM. Under the further assumption of non-
negative external fields, [18] previously showed a similar greedy maximization algorithm with better
dependence on the sparsity parameter λ.

The crucial structural property that [19] use is their algorithm is the following strengthening of the
FKG inequality,
Lemma 15 (Lemma 2 of [19]). For any observed nodes u, v and set S ⊆ [n1]\{u, v},

Cov(u, v|XS = xS) := E[XuXv|XS = xS ]−E[Xu|XS = xS ] E[Xv|XS = xS ] ≥ α2 exp(−12λ).
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Subsequently they define average conditional covariance CovAvg(u, v|S) = ExS [Cov(u, v|XS =
xS)] which straightforwardly is lower bounded by an application of the above lemma. Their final
algorithm essentially greedily maximizes this average conditional covariance to build the neighbor-
hood.

Theorem 20 (Theorem 2 of [19]). Consider M samples S drawn from a RBM with arbitrary
external field satisfying the given assumptions. For τ = α2

2 exp(−12λ) and δ = exp(−2λ)/2, with
probability 1−ζ , LEARNRBMNBHD(u, τ,S) outputs exactly the two-hop neighborhood of observed
variable u for

M ≥ Ω

(
(log(1/ζ) + T ∗ log(n))

22T∗

τ2δ2T∗

)
and T ∗ =

8

τ2
.

Moreover, the algorithm runs in time O(T ∗Mn).

E.2 Prediction from Distribution Learning

Here we will present our algorithm for learning the supervised RBM followed by a proof of its
correctness. Instead of learning the label function directly, we will instead first learn the underlying
generative model of X conditioned on a particular value of the label and use this knowledge to predict
Y .

Theorem 21. Given a supervised RBM satisfying Assumption 2, 3, 4 and 5, there exists an algo-
rithm with sample complexity m = n2 exp(λ)exp(O(λ))(1/α)O(1)(1/β)O(1) log(n/δ)/ε2 and run-
time poly(m) returns hypothesis h such that,

E[`(h(X), Y ]− E[`(h∗(X), Y ] ≤ ε

where ` is the logistic loss and h∗ is the minimizer of the logistic loss.

Remark 8. For an example where this algorithm is better than if we have no distributional assump-
tions, observe that we can construct a ferromagnetic RBM where E[Y |X] is a sparse parity function
by adapting in a straightforward way the reduction used in the proof of the part of Theorem 11 with
bounded λ (the use of tanh as opposed to fβ in that construction is not fundamental, or we can use a
finite version of Lemma 2), since the hidden units in that proof all have nonnegative weights. It’s
clear why Algorithm LEARNSUPERVISEDRBMNBHD is better than an algorithm which doesn’t
know the input distribution: under the true input distribution, the visible units involved in the parity
are correlated so the algorithm can find them, which makes learning the sparse parity easy.

Our main algorithm can be broken down into three main steps: 1) Use greedy maximization (similar
to Algorithm 1 of [19]) to first learn the two-hop neighborhoodN (i) of each observed variable i w.r.t.
the hidden layer conditioned on the label, 2) For each observed variable Xi, learn the distribution for
X|Y = y for y = ±1, and 3) Use the estimated distribution to compute E[Y |X].

Structure Learning For notation simplicity, we will overload notation and represent
CovAvg(u, v|S, Y ) = ExS ,y[Cov(u, v|XS = xS , Y = y)] where Cov(u, v|XS = xS , Y = y) =
E[XuXv|XS = xS , Y = y] − E[Xu|XS = xS , Y = y] E[Xv|XS = xS , Y = y]. Then for struc-
ture learning, our algorithm essentially follows Algorithm 1 of [19] with the slight modification of
conditioning w.r.t. Y .

Theorem 22. Consider m samples S drawn from a supervised RBM satisfying Assumption 2, 3 and
4. For τ = βα2

2 exp(−12λ) and δ = exp(−2λ)/2, with probability 1− ζ,
LEARNSUPERVISEDRBMNBHD(u, τ,S) outputs exactly the two-hop neighbors of observed vari-
able u w.r.t. the hidden layer, with

m ≥ Ω

(
(log(1/ζ) + T ∗ log(n))

22T∗

τ2βδ2T∗

)
and T ∗ =

8

τ2
.

Moreover, the algorithm runs in time O(T ∗Mn).

Proof. In order to apply Theorem 20 to our setting, the only two properties we need to show
are 1) given the conditioning of Y , the average conditional covariance bound still holds, that is,
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CovAvg(u, v|S ∪ {0}) is lower bounded for all S ⊆ [n2]\{u, v} for v in the two-hop neighborhood
of u, 2) Pr[XS = xS , Y = y] for all xS and y. We have,

CovAvg(u, v|S, Y ) =
∑
y∈±1

∑
xS∈{±1}|S|

Pr[XS = xS , Y = y]Cov(u, v|XS = xS , Y = y)

By Assumption 3, we know that either for y = 1 or y = −1 (say y = 1 WLOG), the resulting RBM
is sparse therefore we can apply Lemma 15 to the ones conditioned on y = 1. Also, we know that
Cov(u, v|XS = xS , Y = y) ≥ 0 for all xS and y due to FKG inequality for ferromagnetic RBMs.
This implies that,

CovAvg(u, v|S, Y ) ≥
∑

xS∈{±1}|S|
Pr[XS = xS , Y = 1]Cov(u, v|XS = xS , Y = 1)

≥
∑

xS∈{±1}|S|
Pr[XS = xS , Y = 1]α2 exp(−12λ)

≥ Pr[Y = 1]α2 exp(−12λ) ≥ βα2 exp(−12λ).

For the second part, let us order the elements of S of size k as s1, . . . , sk, then we have

Pr[XS = xS , Y = y] = Pr[Y = y]× Pr[Xs1 = xs1 |Y = y]× Pr[Xs2 = xs2 |Xs1 = xs1 , Y = y]× . . .
× Pr[Xsk = xsk |Xs1 = xs1 , . . . , Xsk−1

= xsk−1
, Y = y]

Since l1-norm to the observed nodes is bounded by λ, by Bresler’s property (see [6]) we have
Pr[Xsr = xsr |Xs1 = xs1 , . . . , Xsr = xsr , Y = y] ≥ δ. This implies that Pr[XS = xS , Y = y] ≥
βδ|S| for all values of xS and y. Now by applying Theorem 20 with the correct parameters, we get
the required result.

Distribution Learning Given the neighborhood of each observed node, we run Algorithm DISTRI-
BUTIONFROMSTRUCTURE and subsequently use Lemma 13 to guarantee that we obtin the weights
of the unnormalized MRFs for distributions X|Y = y for y ∈ {±1} up to epsilon accuracy. More
formally,

Lemma 16. Let the maximum two-hop degree of any visible node is at most d2 and ‖b(1)‖∞ ≤ B.

For δ > 0 and m = Ω

(
n2
(

2
(1−tanh(λ))

)d2+1

log(n/δ)/ε2
)

we have that with probability at least

1− δ, Algorithm DISTRIBUTIONFROMSTRUCTURE given m samples and N̂ (i) = N (i) for every i
returns unnormalized MRFs of X|Y = y for y ∈ {±1} with coefficients f̂ (y)

S that are close to the
coefficients of the true unnormalized MRFs f (y)

S , that is,∑
S

|f̂ (y)
S − f (y)

S | ≤ ε.

Constructing the Predictor Observe that the joint distribution of X and Y can be represented as,

Pr[X = x, Y = y] ∝ exp

(∑
S

f
(1)
S xS1[y = 1] +

∑
S

f
(−1)
S xS1[y = −1] + b∗y

)

for some b∗ and coefficients of the true unnormalized MRFs f (y)
S corresponding to conditioning of

Y = y. This gives us,

E[Y |X = x] = tanh

(∑
S

(f
(1)
S − f (−1)

S )

2
xS + b

)
≈ε tanh

(∑
S

(f̂
(1)
S − f̂ (−1)

S )

2
xS + b

)

Since we have estimates of f (y)
S , to learn the predictor for Y we only need to find b∗ which we can find

by minimizing ` snce it is convex. Let hb =
∑
S

(f
(1)
S −f

(−1)
S )

2 xS+b and ĥb =
∑
S

(f̂
(1)
S −f̂

(−1)
S )

2 xS+b.
We minimize Ê[`(hb(X), Y )] over b and suppose the minimizer is b̂. By Fact 1.3, `(ĥb(X), Y ) ≤
`(hb(X), Y ) + 4ε. By Fact 1.4, hb∗ is the minimizer of the logistic loss. Then we have,

Ê[`(hb(X), Y )] ≤ Ê[`(ĥb∗(X), Y )] + 4ε ≤ Ê[`(hb∗(X), Y )] + 8ε.

31



Last we need a generalization bound that holds for our hypothesis class. For this we bound the
Rademacher complexity (see [56] for more background) of the class of functions ` ◦ H where
H := {hb||b| ≤ B}.

Rm(` ◦ H) ≤ 2Rm(H)

= Eσ

 ∑
b||b|≤B

1

m

m∑
i=1

σihb(x
(i))


= Eσ

 ∑
b||b|≤B

1

m

m∑
i=1

σi
∑
S

(f
(1)
S − f (−1)

S )xS + 2b


= 2Eσ

 ∑
b||b|≤B

1

m

m∑
i=1

σib


= 2BEσ

[
1

m

∣∣∣∣∣
m∑
i=1

σi

∣∣∣∣∣
]

≤ 2B√
m
.

Here the first inequality follows from the contraction lemma (see [61]) and the last from standard
properties of Radmeacher variables. Now applying Theorem 26.5 from [56] we get

|E[`(hb(X), Y )]− E[`(ĥb(X), Y )]| ≤ 2B√
m

+ c

√
log(1/δ)√

m

where c is the maximum value of logistic loss by any hypothesis in the class. Observe that by Fact 1.4,
logistic loss at hb∗ is bounded by a constant. Hence by Lipschitzness, we know that loss anywhere
will be bounded by O(max(1, B)). Therefore choosing m ≥ Ω(B2 log(1/δ)/ε2) suffices to get
within ε. Combining this with before we get that the loss is within O(ε) of the best loss.

Proof of Theorem 21 First, the algorithm runs LEARNSUPERVISEDRBMMBHD for each node to
learn the structure of the induced RBM exactly with the given samples

m1 = exp(λ)exp(O(λ))(1/α)O(1)(1/β)O(1) log(n/δ).

With the structure, we run DISTRIBUTIONFROMSTRUCTURE to learn both the induced RBMs for

each conditioning of the label using m2 ≥ Ω

(
n2
(

2
(1−tanh(λ))

)d2+1

log(n/δ)/ε2
)

samples where

d2 is the max 2-hop neighborhood size. Note that the dependence on λ is greater in m1 than m2.
Subsequently, given the unnormalized mrfs, we run a simple optimization to find the bias term of the
predictor using m3 ≥ Ω(B2 log(1/δ)/ε2) samples. Combining the learnt mrf and the bias term, we
get our hypothesis.
Remark 9. If the model is not ferromagnetic, it is also possible and we expect it may be advantageous
in some models to still use a similar indirect approach based on Bayes rule for learning a predictor
of Y , but using the result of Theorem 1 instead of the greedy structure recovery method used in
this section. The disadvantage of this approach is of course that its runtime for achieving structure
recovery is slower.

F Additional Experimental Data

Figure 3 contains samples generated from the model trained on MNIST images. For reference, we
also include samples from the true MNIST and FashionMNIST training sets in the same format as
Figure 2 and Figure 1.
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Figure 2: Five i.i.d. samples for each MNIST class, drawn from the trained model by Gibbs sampling.

Figure 3: Reference MNIST images chosen randomly from training set.
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Figure 4: Reference FashionMNIST samples from training set.
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