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Abstract

In the world of big data, large but costly to label datasets dominate many fields. Active learning,
a semi-supervised alternative to the standard PAC-learning model, was introduced to explore whether
adaptive labeling could learn concepts with exponentially fewer labeled samples. While previous results
show that active learning performs no better than its supervised alternative for important concept classes
such as linear separators, we show that by adding weak distributional assumptions and allowing compar-
ison queries, active learning requires exponentially fewer samples. Further, we show that these results
hold as well for a stronger model of learning called Reliable and Probably Useful (RPU) learning. In
this model, our learner is not allowed to make mistakes, but may instead answer “I don’t know.” While
previous negative results showed this model to have intractably large sample complexity for label queries,
we show that comparison queries make RPU-learning at worst logarithmically more expensive in both
the passive and active regimes.
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1 Introduction

In recent years, the availability of big data and the high cost of labeling has lead to a surge of interest in
active learning, an adaptive, semi-supervised learning paradigm. In traditional active learning, given an in-
stance space X, a distribution D on X, and a class of concepts c : X → {0, 1}, the learner receives unlabeled
samples x from D with the ability to query an oracle for the labeling c(x). Classically our goal would be
to minimize the number of samples the learner draws before approximately learning the concept class with
high probability (PAC-learning). Instead, active learning assumes unlabeled samples are inexpensive, and
rather aims to minimize expensive queries to the oracle. While active learning requires exponentially fewer
labeled samples than PAC-learning for simple classes such as thresholds in one dimension, it fails to provide
asymptotic improvement for classes essential to machine learning such as linear separators [1].

However, recent results point to the fact that with slight relaxations or additions to the paradigm, such
concept classes can be learned with exponentially fewer queries. In 2013, Balcan and Long [2] proved that
this was the case for homogeneous (through the origin) linear separators, as long as the distribution over
the instance space X = Rd was (nearly isotropic) log-concave–a wide range of distributions generalizing
common cases such as gaussians or uniform distributions over convex sets. Later, Balcan and Zhang [3] ex-
tended this to isotropic s-concave distributions, a diverse generalization of log-concavity including fat-tailed
distributions. Similarly, El-Yaniv and Wiener [4] proved that non-homogeneous linear separators can be
learned with exponentially fewer queries over gaussian distributions with respect to the accuracy parameter,
but require exponentially more queries in the dimension of the instance space X, making their algorithm
intractable in high dimensions.

Kane, Lovett, Moran, and Zhang (KLMZ) [5] proved that the non-homogeneity barrier could be broken
for general distributions in two dimensions by empowering the oracle to compare points rather than just
label them. Queries of this type are called comparison queries, and are notable not only for their increase
in computational power, but for their real world applications such as in recommender systems [6] or for
increasing accuracy over purely label-based techniques [7]. Our work adopts a mixture of the approaches of
Balcan, Long, Zhang, and KLMZ. By leveraging comparison queries, we show that non-homogeneous linear
separators may be learned in exponentially fewer samples as long as the distribution satisfies weak concentra-
tion and anti-concentration bounds, conditions realized by, for instance, (not necessarily isotropic) s-concave
distributions. Further, by introducing a new average case complexity measure, average inference dimension,
that extends KLMZ’s techniques to the distribution dependent setting, we prove that comparisons provide
significantly stronger learning guarantees than the PAC-learning paradigm.

In the late 80’s, Rivest and Sloan [8] proposed a competing model to PAC-learning called Reliable and
Probably Useful (RPU) learning. This model, a learning theoretic formalization of selective classification
introduced by Chow [9] over two decades prior, does not allow the learner to make mistakes, but instead
allows the answer “I don’t know,” written as “⊥”. Here, error is measured not by the amount of misclassified
examples, but by the measure of examples on which our learner returns ⊥. RPU-learning was for the most
part abandoned by the early 90’s in favor of PAC-learning as Kivinen [10–12] proved the sample complexity
of RPU-learning simple concept classes such as rectangles required an exponential number of samples even
under the uniform distribution. However, the model was recently re-introduced by El-Yaniv and Wiener
[4], who termed it perfect selective classification. El-Yaniv and Wiener prove a connection between Active
and RPU-learning similar to the strategy employed by KLMZ [5] (who refer to RPU-learners as “confident”
learners). We extend the lower bound of El-Yaniv and Wiener to prove that actively RPU-learning linear
separators with only labels is exponentially difficult in dimension even for nice distributions. On the other
hand, through a structural analysis of average inference dimension, we prove that comparison queries allow
RPU-learning with nearly matching sample and query complexity to PAC-learning, as long as the underlying
distribution is sufficiently nice. This last result has already found further use by Hopkins, Kane, Lovett,
and Mahajan [13], who use our analysis of average inference dimension to extend their comparison-based
algorithms for robustly learning non-homogeneous hyperplanes to higher dimensions.
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1.1 Background and Related Work

1.1.1 PAC-learning

Probably Approximately Correct (PAC)-learning is a framework for learning classifiers over an instance
space introduced by Valiant [14] with aid from Vapnik and Chervonenkis [15]. Given an instance space X,
label space Y , and a concept class C of concepts c : X → Y , PAC-learning proceeds as follows. First, an
adversary chooses a hidden distribution D over X and a hidden classifier c ∈ C. The learner then draws
labeled samples from D, and outputs a concept c′ which it thinks is close to c with respect to D. Formally,
we define closeness of c and c′ as the error:

errD(c′, c) = Prx∈D[c′(x) 6= c(x)].

We say the pair (X,C) is PAC-learnable if there exists a learner A which, using only n(ε, δ) = Poly( 1
ε ,

1
δ )

samples1, for all ε, δ picks a classifier c′ that with probability 1− δ has at most ε error from c. Formally,

∃A s.t. ∀c ∈ C, ∀D,PrS∼Dn(ε,δ) [errD(A(S), c) < ε] ≥ 1− δ.

The goal of PAC-learning is to compute the sample complexity n(ε, δ) and thereby prove whether certain
pairs (X,C) are efficiently learnable. In this paper, we will be concerned with the case of binary classification,
where Y = {0, 1}. In addition, in the case that C is linear separators we instead write our concept classes as
the sign of a family H of functions h : X → R. Instead of (X,C), we write the hypothesis class (X,H), and
each h ∈ H defines a concept ch(x) = sgn(h(x)). The sample complexity of PAC-learning is characterized
by the VC dimension [16–18] of (X,H) which we denote by k, and is given by:

n(ε, δ) = θ

(
k + log( 1

δ )

ε

)
.

1.1.2 RPU-learning

Reliable and Probably Useful (RPU)-learning is a stronger variant of PAC-learning introduced by Rivest
and Sloan [8], in which the learner is reliable: it is not allowed to make errors, but may instead say “I don’t
know” (or for shorthand, “⊥”). Since it is easy to make a reliable learner by simply always outputting “⊥”,
our learner must be useful, and with high probability cannot output “⊥” more than a small fraction of the
time. Let A be a reliable learner, we define the error of A on a sample S with respect to D, c to be

errD(A(S), c) = Prx∼D[A(S)(x) =⊥].

We call 1 − errD(A(S), c) the coverage of the learner A, denoted CD(A(S)), or just C(A) when clear from
context. Finally, we say the pair (X,C) is RPU-learnable if ∀ε, δ, there exists a reliable learner A which in
n(ε, δ) = Poly( 1

ε ,
1
δ ) samples has error ≤ ε with probability ≥ 1− δ:

∃A s.t. ∀c ∈ C,∀D,PrS∼Dn(ε,δ) [errD(A(S), c) ≤ ε] ≥ 1− δ

RPU-learning is characterized by the VC dimension of certain intersections of concepts [11]. Unfortunately,
many simple cases turn out to be not RPU-learnable (e.g. rectangles in [0, 1]d, d ≥ 2 [10]), with even
relaxations having exponential sample complexity [12].

1.1.3 Passive vs Active Learning

PAC and RPU-learning traditionally refer to supervised learning, where the learning algorithm receives pre-
labeled samples. We call this paradigm passive learning. In contrast, active learning refers to the case where
the learner receives unlabeled samples and may adaptively query a labeling oracle. Similar to the passive
case, for active learning we study the query complexity q(ε, δ), the minimum number of queries to learn
some pair (X,C) in either the PAC or RPU learning models. The hope is that by adaptively choosing when
to query the oracle, the learner may only need to query a number of samples logarithmic in the sample

1Formally, n(ε, δ) must also be polynomial in a number of parameters of C
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complexity.

We will discuss two paradigms of active learning: pool-based active learning, and membership query syn-
thesis (MQS) [19, 20]. In the former, the learner has access to a pool of unlabeled data and may request
that the oracle label any point. This model matches real-world scenarios where learners have access to large,
unlabeled datasets, but labeling is too expensive to use passive learning (e.g. medical imagery). Membership
query synthesis allows the learner to synthesize points in the instance space and query their labels. This
model is the logical extreme of the pool-based model where our pool is the entire instance space. Because
we will be considering learning with a fixed distribution, we will slightly modify MQS: the learner may only
query points in the support of the distribution2. This is the natural specification to distribution dependent
learning, as it still models the case where our pool is as large as possible.

1.1.4 The Distribution Dependent Case

While PAC and RPU-learning were traditionally studied in the worst-case scenario over distributions, data
in the real world is often drawn from distributions with nice properties such as concentration and anti-
concentration bounds. As such, there has been a wealth of research into distribution-dependent PAC-
learning, where the model has been relaxed only in that some distributional conditions are known. Dis-
tribution dependent learning has been studied in both the passive and the active case [2, 21–23]. Most
closely related to our work, Balcan and Long [2] proved new upper bounds on active and passive learning of
homogeneous (through the origin) linear separators in 0-centered log-concave distributions. Later, Balcan
and Zhang [3] extended this to isotropic s-concave distributions. We directly extend the original algorithm of
Balcan and Long to non-homogeneous linear separators via the inclusion of comparison queries, and leverage
the concentration results of Balcan and Zhang to provide an inference based algorithm for learning under
general s-concave distributions.

1.1.5 The Point Location Problem

Our results on RPU-learning imply the existence of simple linear decision trees (LDTs) for an important
problem in computer science and computational geometry known as the point location problem. Given a set
of n hyperplanes in d dimensions, called a hyperplane arrangement of size n and denoted by H = {h1, . . . , hn},
it is a classic result that H partitions Rd into O(nd) cells. The point location problem is as follows:

Definition 1.1 (Point Location Problem). Given a hyperplane arrangement H = {h1, . . . , hn} and a point
x, both in Rd, determine in which cell of H x lies.

Instances of this problem show up throughout computer science, such as in k-sum, subset-sum, knapsack,
or any variety of other problems [24]. The best known depth for a linear decision tree solving the point loca-
tion problem is from a recent work of Hopkins, Kane, Lovett, and Mahajan [25], who proved the existence of
a nearly optimal Õ(d log(n)) depth LDT for arbitrary H and x. The caveat of this work is that the LDT may
use arbitrary linear queries, which may be too powerful of a model in practice. Kane, Lovett, and Moran
[26] offer an O(d4 log(d) log(n)) depth LDT restricting the model to generalized comparison queries, queries
of the form sgn(a〈h1, x〉− b〈h2, x〉) for a point x and hyperplanes h1, h2. These queries are nice as they pre-
serve structural properties of the input H such as sparsity, but they still suffer from over-complication–any
H allows an infinite set of queries.

KLMZ’s [5] original work on inference dimension showed that in the worst case, the depth of a comparison
LDT for point location is Ω(n). However, by restricting H to have good margin or bounded bit complexity,
they build a comparison LDT of depth Õ(d log(d) log(n)), which comes with the advantage of drawing from
a finite set of queries for a given problem instance. Our work provides another result of this flavor: we
will prove that if H is drawn from a distribution with weak restrictions, for large enough n there exists a
comparison LDT with expected depth Õ(d log2(d) log2(n)).

2We note that in this version of the model, the learner must know the support of the distribution. Since we only use the
model for lower bounds, we lose no generality by making this assumption.
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1.2 Our Results

1.2.1 Notation

We begin by introducing notation for our learning models. For a distribution D, an instance space X ⊆ Rd,
and a hypothesis class H : X → R, we write the triple (D,X,H) to denote the problem of learning a
hypothesis h ∈ H with respect to D over X. When D is the uniform distribution over S ⊆ X, we will
write (S,X,H) for convenience. We will further denote by Bd the unit ball in d dimensions, and by Hd

hyperplanes in d dimensions. Given h ∈ H and a point x ∈ X, a label query determines sign(h(x)); given
x, x′ ∈ X, a comparison query determines sign(h(x)− h(x′)).

In addition, we will separate our models of learnability into combinations of three classes Q,R, and S,
where Q ∈ {Label, Comparison}, R ∈ {Passive, Pool, MQS}, and S ∈ {PAC, RPU}. Informally, we say an
element Q defines our query type, an element in R our learning regime, and an element in S our learning
model. Learnability of a triple is then defined by the combination of any choice of query, regime, and model,
which we term as the Q-R-S learnability of (D,X,H). Note that in Comparison-learning we have both a
labeling and comparison oracle.

Finally, we will discuss a number of different measures of complexity for Q-R-S learning triples. For passive
learning, we will focus on the sample complexity n(ε, δ). For active learning, we will focus on the query
complexity q(ε, δ). In both cases, we will often drop δ and instead give bounds on the expected sample/query
complexity for error ε denoted E[n(ε)] (or q(ε) respectively), the expected number of samples/queries needed
to reach ε error. A bound for probability 1−δ then follow with log(1/δ) repetitions by Chernoff. In the case of
a finite instance space X of size n, we denote the expected query complexity of perfectly learning X as E[q(n)].

As a final note, we will at times use a subscript d in our asymptotic notation to suppress factors only
dependent on dimension.

1.2.2 PAC-Learning

To show the power of active learning with comparison queries in the PAC-learning model, we will begin
by proving lower bounds. In particular, we show that neither active learning nor comparison queries alone
provide a significant speed-up over passive learning. In order to do this, we will assume the stronger MQS
model, as lower bounds here transfer over to the pool-based regime.

Proposition 1.2. For small enough ε, and δ = 1
2 , the query complexity of Label-MQS-PAC learning

(Bd,Rd, Hd) is:

q(ε, 1/2) = Ωd

((
1

ε

) d−1
d+1

)
.

Thus without enriched queries, active learning fails to significantly improve over passive learning even
over a nice distributions. Likewise, adding comparison queries alone also provides little improvement.

Proposition 1.3. For small enough ε, and δ = 3
8 , the sample complexity of Comparison-Passive-PAC

learning (Bd,Rd, Hd) is:

n(ε, 3/8) = Ω

(
1

ε

)
.

Now we can compare the query complexity of active learning with comparisons to the above. For our
upper bound, we will assume the pool-based model with a Poly(1/ε, log(1/δ)) pool size, as upper bounds
here transfer to the MQS model. Our algorithm for Comparison-Pool-PAC learning combines a modification
of Balcan and Long’s [2] learning algorithm with noisy thresholding to provide an exponential speed-up for
non-homogeneous linear separators.

Theorem 1.4. Let D be a log-concave distribution over Rd. Then the query complexity of Comparison-
Pool-PAC learning (D,Rd, Hd) is

q(ε, δ) = Õ

((
d+ log

(
1

δ

))
log

(
1

ε

))
.
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Kulkarni, Mitter, and Tsitsiklis [27] (combined with an observation from [2]) also give a lower bound of
d log(1/ε) for log-concave distributions for arbitrary binary queries (and thus for our setting), so Theorem 1.4
is near tight in dimension and error. It should be noted, however, that to cover non-isotropic distributions,
Theorem 1.4 must know the exact distribution D. This restriction becomes unnecessary if the distribution
is promised to be isotropic.

1.3 RPU-Learning

In the RPU-learning model, we will first confirm that passive learning with label queries is intractable
information theoretically, and continue to show that active learning alone provides little improvement. Unlike
in PAC-learning however, we will show that comparisons in this regime provide a significant improvement
in not only active, but also passive learning.

Proposition 1.5. The expected sample complexity of Label-Passive-RPU learning (Bd,Rd, Hd) is:

E[n(ε)] = Θ̃d

((
1

ε

) d+1
2

)
.

Thus we see that RPU-learning linear separators is intractable for large dimension. Further, active
learning with label queries is of the same order of magnitude.

Proposition 1.6. For all δ < 1, the query complexity of Label-MQS-RPU learning (Bd,Rd, Hd) is:

q(ε, δ) = Ωd

((
1

ε

) d−1
2

)
.

These two bounds are a generalization of the technique employed by El-Yaniv and Wiener [4] to prove
lower bounds for a specific algorithm, and apply to any learner. We further show that this bound is tight up
to a logarithmic factor. For passive RPU-learning with comparison queries, we will simply inherit the lower
bound from the PAC model (Proposition 1.3).

Corollary 1.7. For small enough ε, and δ = 3
8 , any algorithm that Comparison-Passive-RPU learns

(Bd,Rd, Hd) must use at least

n(ε, 3/8) = Ω

(
1

ε

)
samples.

Note that unlike for label queries, this lower bound is not exponential in dimension. In fact, we will show
that this bound is tight up to a linear factor in dimension, and further that employing comparison queries in
general shifts the RPU model from being intractable to losing only a logarithmic factor over PAC-learning
in both the passive and active regimes. We need one definition: two distributions D,D′ over Rd are affinely
equivalent if there is an invertible affine map f : Rd → Rd such that D(x) = D′(f(x)).

Theorem 1.8. Let D be a distribution over Rd that is affinely equivalent to a distribution D′ over Rd, for
which the following holds:

1. ∀α > 0, Prx∼D′ [||x|| > dα] ≤ c1
α

2. ∀α > 0, 〈v, ·〉+ b ∈ Hd, Prx∼D′ [|〈x, v〉+ b| ≤ α] ≤ c2α
The sample complexity of Comparison-Passive-RPU-learning (D,Rd, Hd) is:

n(ε, δ) = Õ

(
d log

(
1
δ

)
log
(

1
ε

)
ε

)
,

and the query complexity of Comparison-Pool-RPU learning (D,Rd, Hd) is:

q(ε, δ) = Õ

(
d log

(
1

δ

)
log2

(
1

ε

))
.

Note that the constants have logarithmic dependence on c1 and c2.
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It is worth noting that Theorem 1.8 is also computationally efficient, running in time Poly(d, 1/ε, log(1/δ)).
The distributional assumptions are satisfied by a wide range of distributions, including (based upon concen-
tration results from [3]) the class of s-concave distributions for s ≥ − 1

2d+3–this removes the requirement of
isotropy from the label-only learning algorithms for homogeneous hyperplanes of [3].

We view Theorem 1.8 and its surrounding context as this work’s main technically novel contribution. In
particular, to prove the result, we introduce a new average-case complexity measure called average inference
dimension that extends the theory of inference dimension from [5] (See Section 1.4.2). In addition, by dint
of this framework, our analysis implies the following result for the point location problem as well.

Theorem 1.9. Let D be a distribution satisfying the criterion of Theorem 1.8, x ∈ Rd, and h1, . . . , hn ∼ D.
Then for large enough n there exists an LDT using only label and comparison queries solving the point
location problem with expected depth

Õ(d log2(n))

For ease of viewing, we summarize our main results on expected sample/query complexity in Tables 1
and 2 for the special case of the uniform distribution over the unit ball. The only table entries not novel to
this work are the Label-Passive-PAC bounds [21, 18], and the lower bound on Comparison-Pool/MQS-PAC
learning [2, 27]. Note also that lower bounds for PAC learning carry over to RPU learning.

Table 1: Expected sample and query complexity for PAC learning (Bd,Rd, Hd).

PAC Passive Pool MQS

Label Θ
(
d
ε

)
[21, 18] Ωd

((
1
ε

) d−1
d+1

)
Ωd

((
1
ε

) d−1
d+1

)
Comparison Ω

(
1
ε

)
Θ̃
(
d log

(
1
ε

))
Θ̃
(
d log

(
1
ε

))
[2, 27]

Table 2: Expected sample and query complexity for RPU learning (Bd,Rd, Hd).

RPU Passive Pool MQS

Label Θ̃d

((
1
ε

) d+1
2

)
Ω̃d

((
1
ε

) d−1
2

)
Ω̃d

((
1
ε

) d−1
2

)
Comparison Õ

(
d
ε

)
Õ
(
d log2

(
1
ε

))
Õ
(
d log2

(
1
ε

))

1.4 Our Techniques

1.4.1 Lower Bounds: Caps and Polytopes

Our lower bounds for both the PAC and RPU models rely mainly on high-dimensional geometry. For
PAC-learning, we consider spherical caps, portions of Bd cut off by a hyperplane. Our two lower bounds,
Label-MQS-PAC, and Comparison-Passive-PAC, consider different aspects of these objects. The former
(Proposition 1.2) employs a packing argument: if an adversary chooses a hyperplane uniformly among a
set defining some packing of (sufficiently large) caps, the learner is forced to query a point in many of
them in order to distinguish which is labeled negatively. The latter bound (Proposition 1.3), follows from an
indistinguishability argument: if an adversary chooses just between one hyperplane defining some (sufficiently
large) cap, and the corresponding parallel hyperplane tangent to Bd, the learner must draw a point near the
cap before it can distinguish between the two.

For the RPU-learning model, our lower bounds rely on the average and worst-case complexity of polytopes.
For Label-Passive-RPU learning (Propositions 1.5), we consider random polytopes, convex hulls of samples
S ∼ Dn, whose complexity E(D,n) is the expected probability mass across samples of size n. In this
regime, we consider an adversary who, with high probability, picks a distribution in which almost all samples
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are entirely positive. As a result, the learner cannot infer any point outside of the convex hull of their
sample, which bounds their expected coverage by E(D,n). For Label-MQS-RPU learning (Proposition 1.6),
the argument is much the same, except we consider the maximum probability mass over polytopes rather
than the expectation. These techniques are generalizations of the algorithm specific lower bounds given by
El-Yaniv and Wiener [4], who also consider random polytope complexity.

1.4.2 Upper Bounds: Average Inference Dimension

We focus in this section on techniques used to prove our RPU-learning upper bounds, which we consider
our most technically novel contribution. To prove our Comparison-Pool-RPU learning upper bound (and
corresponding point location result), Theorems 1.8 and 1.9, we introduce a novel extension to the inference
dimension framework of KLMZ [5]. Inference dimension is a combinatorial complexity measure that charac-
terizes the distribution independent query complexity of active learning with enriched queries. KLMZ show,
for instance, that linear separators in R2 may be Comparison-Pool-PAC learned in only Õ(log( 1

ε )) queries,
but require Ω

(
1
ε

)
queries in 3 or more dimensions.

Given a hypothesis class (X,H), and a set of binary queries Q (e.g. labels and comparisons), denote the
answers to all queries on S ⊆ X by Q(S). Inference dimension examines the size of S necessary to infer
another point x ∈ X, where S infers the point x under h, denoted

S →h x,

if Q(S) under h determines the label of x. As an example, consider H to be linear separators in d dimensions,
Q to be label queries, and our sample to be d+ 1 positively labeled points under some classifier h in convex
position. Due to linearity, any point inside the convex hull of S is inferred by S under h.

Then in greater detail, the inference dimension of (X,H) is the minimum k such that in any subset of
X of size k, at least one point can be inferred from the rest:

Definition 1.10 (Inference Dimension [5]). The inference dimension of (X,H) with query set Q is the
smallest k such that for any subset S ⊂ X of size k, ∀h ∈ H, ∃x ∈ S s.t. Q(S − {x}) infers x under h.

KLMZ show that finite inference dimension implies distribution independent query complexity that is
logarithmic in the sample complexity. On the other hand, they prove a lower bound showing that PAC
learning classes with infinite inference dimension requires at least Ω(1/ε) queries.

To overcome this lower bound (which holds for linear separators in three or more dimensions), we intro-
duce a distribution dependent version of inference dimension which examines the probability that a sample
contains no point which can be inferred from the rest.

Definition 1.11 (Average Inference Dimension). We say (D,X,H) has average inference dimension g(n),
if:

∀h ∈ H,PrS∼Dn [@x s.t. S − {x} →h x] ≤ g(n).

Theorems 1.8 and 1.9 follow from the fact that small average inference dimension implies that finite
samples will have low inference dimension with good probability (Observation 4.6). Our main technical
contribution lies in proving a structural result (Theorem 4.10): that the average inference dimension of

(D,Rd, Hd) with respect to comparison queries is superexponentially small, 2−Ωd(n2), as long as D satisfies
the weak distributional requirements outlined in Theorem 1.8.

2 Background: Inference Dimension

Before proving our main results, we detail some additional background in inference dimension that is nec-
essary for our RPU-learning techniques. First, we review the inference-dimension based upper and lower
bounds of KLMZ [5]. Let fQ(k) be the number of oracle queries required to answer all queries on a sample
of size k in the worst case (e.g. fQ(k) = O(k log(k)) for comparison queries via sorting). Finite inference
dimension implies the following upper bound:
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Theorem 2.1 ([5]). Let k denote the inference dimension of (X,H) with query set Q. Then the expected
query complexity of (X,H) for |X| = n is:

E[q(n)] ≤ 2fQ(4k) log(n).

Further, infinite inference dimension provides a lower bound:

Theorem 2.2 ([5]). Assume that the inference dimension of (X,H) with query set Q is > k. Then for
ε = 1

k , δ = 1
6 , the sample complexity of Q-Pool-PAC learning (X,H) is:

q(ε, 1/6) = Ω(1/ε).

As the name would suggest, the upper bound derived via inference dimension is based upon a reliable
learner that infers a large number of points given a small sample. While not explicitly stated in [5], it follows
from the same argument that finite inference dimension gives an upper bound on the sample complexity of
RPU-learning:

Corollary 2.3. Let k denote the inference dimension of (X,H) with query set Q. Then the sample complexity
of Q-Passive-RPU learning (X,H) is:

E[n(ε)] = O

(
k

ε

)
.

3 PAC Learning with Comparison Queries

In this section we study PAC learning with comparison queries in both the passive and active cases.

3.1 Lower Bounds

To begin, we prove that over a uniform distribution on a unit ball, learning linear separators with only label
queries is hard.

Proposition 3.1 (Restatement of Proposition 1.2). For small enough ε, and δ = 1
2 , the query complexity

of Label-MQS-PAC learning (Bd,Rd, Hd) is:

q(ε, 1/2) = Ωd

((
1

ε

) d−1
d+1

)
.

Proof. This follows from a packing argument. It is well known (see e.g. [28]) that for small enough ε, it

is possible to pack Ωd

((
1
ε

) d−1
d+1

)
disjoint spherical caps (intersections of halfspaces with Bd) of volume 2ε

onto Bd. By Yao’s Minimax Theorem [29], we may consider a randomized strategy from the adversary such
that any deterministic strategy of the learner will fail with constant probability. Consider an adversary
which picks one of the disjoint spherical caps to be negative uniformly at random. If the learner queries

only Od

((
1
ε

) d−1
d+1

)
points, for a small enough constant and ε, any strategy will uncover the negative cap

with at most some constant, say less than 25% probability. Since for small enough ε there will be at least
three remaining caps in which the learner never queried a point, the probability that the learner outputs the
correct negative cap (which is necessary to learn up to error ε), is at most 1/3 due to uniform distribution
of the negative cap. Thus alltogether the learner will fail with probability at least 1/2.

To show that our exponential improvement comes from the use of comparisons in combination with active
learning, we will prove that using comparisons coupled with passive learning provides no improvement.

Proposition 3.2 (Restatement of Proposition 1.3). For small enough ε, and δ = 3
8 , any algorithm that

passively learns (Bd,Rd, Hd) with comparison queries must use at least

n(ε, δ) = Ω

(
1

ε

)
samples.

9



Proof. Let h2ε be a hyperplane which forms a spherical cap c of measure 2ε, and h be the parallel hyperplane
tangent to this cap. By Yao’s Minimax Theorem [29], we consider an adversary which chooses uniformly
between h2ε and h. Given k uniform samples from Bd, the probability that at least one point lands inside
the cap c is ≤ 2kε. Let

k = o

(
1

ε

)
,

then for small enough ε, this probability is ≤ 1/4. Say no sample lands in c, then h2ε and h are completely
indistinguishable by label or comparison queries. Any hypothesis chosen by the learner must label at least
half of c positive or negative, and will thus have error ≥ ε with either h2ε or h. Since the distribution over
these hyperplanes is uniform, the learner fails with probability at least 50%. Thus in total the probability
that the learner fails is at least 3

4 ·
1
2 = 3

8

Together, these lower bounds show it is only the combination of active learning and comparison queries
which provides an exponential improvement.

3.2 Upper Bounds

For completeness, we will begin by showing that Proposition 1.2 is tight for d = 2 before moving to our main
result for the section.

Proposition 3.3. The query complexity of Label-MQS-PAC learning (B2,R2, H2) is:

q(ε, 0) = O

((
1

ε

) 1
3

)
.

Proof. To begin, we will show that selecting k = O
((

1
ε

) 1
3

)
points along the boundary of B2 in a regular

fashion (such that their convex hull is the regular k sided polygon) is enough if all such points have the same
label. This follows from the fact that each cap created by the polygon has area and thus probability mass

Area(Cap) =
1

2
(2π/k − sin(2π/k)).

Taylor approximating sine shows that picking k = O
((

1
ε

) 1
3

)
gives Area(Cap) < ε. If all k points are of the

same sign (say 1), a hyperplane can only cut through one such cap, and thus labeling the entire disk 1.
Thus we have reduced to the case where there are one or more points of differing signs. In this scenario, there
will be exactly two edges where connected vertices are of different signs, which denotes that the hyperplane
passes through both edges. Next, on each of the two caps associated with these edges, we query O(log(1/ε))
points in order to find the crossing point of the hyperplane via binary search up to an accuracy of ε/2. This
reduces the area of unknown labels to the strip connecting these two < ε/2 arcs, which has < ε probability
mass. Picking any consistent hyperplane then finishes the proof.

Now we will show that active learning with comparison queries in the PAC-learning model exponentially
improves over the passive and label regimes. Our work is closely related to the algorithm of Balcan and Long
[2], and relies on using comparison queries to reduce to a combination of their algorithm and thresholding.
Our bounds will relate to a general set of distributions called isotropic (0-centered, identity variance) log-
concave distributions, distributions whose density function f may be written as eg(x) for some concave
function g. log-concavity generalizes many natural distributions such as gaussians and convex sets. To
begin, we will need a few statements regarding isotropic log-concave distributions proved initially by Lovasz
and Vempala [30], and Klivans, Long, and Tang [31] (here we include additional facts we require for RPU-
learning later on).

Fact 3.4 ([30, 31]). Let D be an arbitrary log-concave distribution in Rd with probability density function
f , and u, v normal vectors of homogeneous hyperplanes. The following statements hold where 3,4,5, and 6
assume D is isotropic:
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Algorithm 1: Comparison-Pool-PAC learn (D,Rd, Hd)

1 N = O
(

1
ε

)
; shift list = [];

2 normal vector = B-L
(
Iso(D −D), O

(
log(1/ε)

ε

)
, δ
)

;

3 for i in range O(log(1/δ)) do
4 S ∼ DN ;
5 S = Project(S, normal vector);
6 shift list.add(Threshold(S));

7 end
8 Return h = 〈normal vector, ·〉+ median(shift list)

Figure 1: Algorithm for Comparison-Pool-PAC learning hyperplanes over a log-concave distribution D. Our
algorithm references three sub-routines. The first, B-L(D, ε, δ), is the algorithm from Theorem 3.5. The
second is Project(sample,vector), which simply projects each point in a sample onto the given vector. The
third is Threshold(S), which produces a threshold consistent with labeling S by binary search.

1. D −D, the difference of i.i.d pairs, is log-concave

2. D may be affinely transformed to an isotropic distribution Iso(D)

3. There exists a universal constant c s.t. the angle between any u and v, denoted θ(u, v), satisfies
cθ(u, v) ≤ Prx∼D[sgn(〈x, v〉) 6= sgn(〈x, u〉)]

4. ∀a > 0,Prx∈D[||x|| ≥ a] ≤ e−
a√
d

+1

5. All marginals of D are isotropic log-concave

6. If d = 1,Prx∈D[x ∈ [a, b]] ≤ |b− a|

We will additionally need Balcan and Long’s [2] query optimal algorithm for label-Pool-PAC learning
homogeneous hyperplanes3.

Theorem 3.5 (Theorem 5 [2]). Let D be a log-concave distribution over Rd. The query complexity of
Label-Pool-PAC learning (D,Rd, H0

d) is

q(ε, δ) = O

((
d+ log

(
1

δ

)
+ log log

(
1

ε

))
log

(
1

ε

))
,

where H0
d is the class of homogeneous hyperplanes.

Using these facts, we will give an upper bound for the Pool-based model assuming a pool of Poly(1/ε, log(1/δ))
unlabeled samples. For a sketch of the algorithm, see Figure 1.

Theorem 3.6 (Restatement of Theorem 1.4). Let D be a log-concave distribution over Rd. The query
complexity of Comparison-Pool-PAC learning (D,Rd, Hd) is

q(ε, δ) = O

((
d+ log

(
1

δ

)
+ log log

(
1

ε

))
log

(
1

ε

))
.

Proof. Recall that D may be affinely transformed into an isotropic distribution Iso(D). Further, we may
simulate queries over Iso(D) by applying the same transformation to our samples, and after learning over
Iso(D), we may transform our learner back to D. Thus learning Iso(D) is equivalent to learning D, and we
will assume D is isotropic without loss of generality. Our algorithm will first learn a “homogenized” version
of the hidden separator h = 〈v, ·〉 + b via Balcan and Long’s algorithm, thereby reducing to thresholding.

3This work was later improved to be computationally efficient [32], but no longer achieved optimal query complexity.
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Note that comparison queries on the difference of points x, y ∈ D is equivalent to a label query on the point
x− y on the homogeneous hyperplane with normal vector v:

h(x)− h(y) = (〈v, x〉+ b)− (〈v, y〉+ b) = 〈v, x− y〉.

We begin by drawing samples from the log-concave distribution D −D and then apply Balcan and Long’s

algorithm [2] to learn the homogenized version of h (〈v, ·〉) up to O
(

ε
log(1/ε)

)
error with probability 1 − δ

using only

O

((
d+ log

(
1

δ

)
+ log log

(
1

ε

))
log

(
1

ε

))
comparison queries. Further, since the constant c given in item 2 of Fact 3.4 is universal, this means any
separator output by the algorithm has a normal vector u with angle

θ(u, v) = O

(
ε

log(1/ε)

)
.

Having learned an approximation to v, we turn our attention to approximating b. Consider the set of points
on which u and v disagree, that is:

Dis = {x : sgn(〈v, x〉+ b) 6= sgn(〈u, x〉+ b)}

To find an approximation for b, we need to show that there will be correctly labeled points close to the
threshold. To this end, let α = ε/8 and define b±α such that:

D({y : α < 〈u, y〉+ b < bα}) = α

D({y : b−α < 〈u, y〉+ b < −α}) = α

We will show that drawing a sample S of O
(

1
ε

)
points, the following three statements hold with at least 2/3

probability:

1. ∃x1 ∈ S : α < 〈u, x1〉+ b < bα

2. ∃x2 ∈ S : b−α < 〈u, x2〉+ b < −α

3. ∀x ∈ Dis ∩ S, |〈u, x〉+ b| < α

Since the measure of the regions defined in statements 1 and 2 is ε/4, the probability that S does not have
at least one point in both regions is ≤ 2 ∗ (1− α)|S| ≤ 1/6 with an appropriate constant.

To prove the third statement, assume for contradiction that there exists x ∈ Dis∩S such that |〈u, x〉+ b| >
ε/4. Because 〈u, x〉+ b and 〈v, x〉+ b differ in sign, this implies that |〈u− v, x〉| = |〈u− v, xu,v〉| > α, where
xu,v is the projection of x onto the plane spanned by u and v. We can bound the probability of this event
occurring by the concentration of isotropic log-concave distributions:

Pr[|〈u− v, xu,v〉| > α] ≤ e−Ω( ε
|u−v| ). (1)

Because we have bounded the angle between u and v, with a large enough constant for θ we have:

|u− v| ≤ O
(

ε

log (|S|)

)
.

Then with a large enough constant for θ, union bounding over Dis∩S gives that the third statement occurs
with probability at most 1/6.

We have proved that with probability 2/3, statements 1,2, and 3 hold. Further, if these statements hold,
any hyperplane 〈u, ·〉+ b′ we pick consistent with thresholding will disagree on at most ε/4 probability mass
from 〈u, ·〉+ b due to the anti-concentration of isotropic log-concave distributions and the definition of b±α.
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Further, repeating this process O(log(1/δ)) times and taking the median shift value b′ gives the same state-
ment with probability at least 1− δ by a Chernoff bound. Note that the number of queries made in this step
is dominated by the number of queries to learn u.

Finally, we need to analyze the error of our proposed hyperplane 〈u, ·〉 + b′. We have already proved that
the error between this and 〈u, ·〉 + b is ≤ ε/4 with probability at least 1 − δ, so it is enough to show that
D(Dis) ≤ 3ε/4. This follows similarly to statement 3 above. The portion of Dis satisfying |〈u, x〉 + b| ≤ α
has probability mass at most ε/4 by anti-concentration. With a large enough constant for θ, the remainder
of Dis has mass at most ε/2 by (1). Then in total, with probability 1− 2δ, 〈u, ·〉+ b′ has error at most ε.

Balcan and Long [2] provide a lower bound on query complexity for log-concave distributions and oracles
for any binary query of Ω(d log( 1

ε )), so this algorithm is tight up to logarithmic factors.

4 RPU Learning with Comparison Queries

Kivinen [12] showed that RPU-learning is intractable for nice concept classes even under simple distributions
when restricted to label queries. We will confirm that RPU-learning linear separators with only label queries
is intractable in high dimensions, but can be made efficient in both the passive and active regimes via
comparison queries.

4.1 Lower bounds

In the passive, label-only case, RPU-learning is lower bounded by the expected number of vertices on a
random polytope drawn from our distribution D. For simple distributions such as uniform over the unit
ball, this gives sample complexity which is exponential in dimension, making RPU-learning impractical for
any sort of high-dimensional data.

Definition 4.1. Given a distribution D and parameter ε > 0, we denote by vD(ε) the minimum size of a
sample S drawn i.i.d from D such that the expected measure of the convex hull of S, which we denote E(D,n)
for |S| = n, is ≥ 1− ε.

The quantity vD(ε), which has been studied in computational geometry for decades [33, 34], lower bounds
Label-Passive-RPU Learning, and in some cases provides a matching upper bound up to log factors.

Proposition 4.2. Let D be any distribution on Rd. The expected sample complexity of Label-Passive-RPU-
learning (D,Rd, Hd) is:

n(ε, 1/3) = Ω

(
vD(2ε)

log(1/ε)

)
.

Proof. The proof follows from considering a setting in which the learner will almost always draw positive
points, and therefore cannot infer anything outside of their convex hull. More formally, for any δ > 0 and
sample size n, there exists some radius rδ,n such that the probability that a sample S ∼ Dn contains any
point outside the ball of radius rδ,n, Bd(rδ,n), is less than δ. By Yao’s Minimax Theorem [29], it is sufficient
to consider an adversary who picks some hyperplane tangent to Bd(rδ,n) with probability 1 − δ (labeling
it entirely positive), and otherwise chooses a hyperplane uniformly from Sd × [−rδ,n, rδ,n]. Notice that if
the adversary chooses the tangent hyperplane and the learner draws a sample S entirely within the ball,
for any point x outside the convex hull of S there exist hyperplanes within the support of the adversary’s
distribution that are consistent on S but differ on x.

Recall that vD(ε) is the minimum size of the sample S which needs to be drawn such that 1 − E(D,n)
is ≤ ε in expectation. Consider drawing a sample S of size n = vD(2ε)− 1. The expected measure E(D,n)
is then

E(D,n) < 1− 2ε.
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This in turn implies a bound by the Markov inequality on the probability of the measure of the convex hull
of a given sample, which we denote V (S):

PrS∼Dn [V (S) ≥ 1− ε] ≤ 1− 2ε

1− ε
= 1− ε

1− ε
.

Now consider the following relation between samples of size n and bn/kc, which follows by viewing our size
n sample as k distinct samples of size at least n/k:

1− PrS∼Dbn/kc [V (S) < 1− ε]k ≤ PrS∼Dn [V (S) ≥ 1− ε].

Combining these results and letting k = log(1/ε):

PrS∼Dbn/kc [V (S) < 1− ε] ≥
(

ε

1− ε

)1/k

≥ 1/2.

To force any learner to fail on a sample, we need two conditions: first that the measure of the convex hull
is < 1− ε, and second that all points lie in Bd(rδ,n). Since the latter occurs with probability 1− 2δ, picking
δ < 1/12 then gives the desired success bound:

PrS∼Dbn/ log(1/ε)c [(V (S) ≥ 1− ε) ∨ (∃x ∈ S : x /∈ Bd(r1/12,n)] ≤ 1/2 + 2δ < 2/3.

Further, for simple distributions such as uniform over a ball, this bound is tight up to a log2 factor.

Proposition 4.3. The sample complexity of Label-Passive-RPU learning (Bd,Rd, Hd) is:

E[n(ε)] = O
(

log(d/ε)vBd
(ε

2

))
= Od

(
log(1/ε)

(
1

ε

) d+1
2

)
.

Proof. We will begin by computing vBd(ε) for a ball. The expected measure of a sample drawn randomly
from Bd is computed in [35], and given by

E(Bd, n) = 1− c(d)n−
2
d+1 ,

where c(d) is a constant depending only on dimension. Setting c(d)n
−2
d+1 = ε then gives:

vBd(ε) =

((
c(d)

ε

) d+1
2

)

Given a sample S of size O(log(1/δ)n), let Sp denote the subset of positively labeled points, and Sn
negatively labeled. We can infer at least the points inside the convex hulls of Sp and Sn. Our goal is to show
that, with high probability, the measure of M = ConvHull(Sp)∪ConvHull(Sn) is ≥ 1− ε. To show this, we
will employ the fact [33] that the expected measure of the convex hull of a sample of size n uniformly drawn
from any convex body K is lower-bounded by:

E(K,n) = 1− c(d)n−
2
d+1 .

Given this, let P of measure p be the set of positive points, and N the negative points with measure 1− p.
Since we have drawn O(log(1/δ)n) points, with probability ≥ 1− δ we will have at least pn points from P ,
and at least (1− p)n points from N . Given this many points, the expected value of our inferred mass M is:

E[M ] ≥ pE(P, pn) + (1− p)E(N, (1− p)n)

= 1− c(d)
(
p(pn)−2/(d+1) + (1− p)((1− p)n)−2/(d+1)

)
.
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This function is minimized at p = .5, and plugging in p = .5, n = 2vBd
(
ε
2

)
gives E[M ] ≥ 1− 2d−1

2d ε.

However, since we have conditioned on enough points being drawn from P and N, we are not done. This
occurs across at least a 1− δ percent of our samples, meaning that if we assume the inferred mass M is 0 on
other samples, our expected error (for a large enough constant on our number of samples) will be at most:

1− E[M ] = (1− δ) (2d− 1)ε

2d
+ δ.

Setting δ = ε/(2d) is enough to drop the error below ε, and gives the number of samples as

O
(

log(d/ε)vBd
(ε

2

))
.

In the active regime, this sort of bound is complicated by the fact that we are less interested in the
number of points drawn than labeled. If we were restricted to only drawing E[n(ε)] points, we could repeat
the same argument in combination with the expected number of vertices to get a bound. However, with a
larger pool of allowed points, the pertinent question becomes the maximum rather than expected measure
of the convex hull. In cases such as the unit ball, these actually give about the same result.

Proposition 4.4 (Restatement of Proposition 1.6). For all δ < 1, the query complexity of Label-MQS-RPU
learning (Bd,Rd, Hd) is:

q(ε, δ) = Ωd

((
1

ε

) d−1
2

)
Proof. The maximum volume of the convex hull of n points in Bd is [34]

max
S,|S|=n

(Vol(ConvHull(S))) = 1− θd
(
n−

2
d−1

)
.

Notice here the difference from the random case in the exponent, which comes from the fact that we are

only counting the expected θd

(
n
d−1
d+1

)
vertices on the boundary of the hull of the sample. The lower bound

is then implied by the same adversary strategy as in Proposition 4.2, since for small enough ε, the convex

hull of any set of od

((
1
ε

) d−1
2

)
points has less than 1− ε probability mass.

4.2 Upper bounds

Our positive results for comparison based RPU-learning rely on weakening the concept of inference dimension
to be distribution dependent. With this in mind, we introduce average inference dimension:

Definition 4.5 (Average Inference Dimension). We say (D,X,H) has average inference dimension g(n),
if:

∀h ∈ H,PrS∼Dn [@x s.t. S − {x} →h x] ≤ g(n).

In other words, the probability that we cannot infer a point from a randomly drawn sample of size n is
bounded by its average inference dimension g(n). There is a simple average-case to worst-case reduction for
average inference dimension via a union bound:

Observation 4.6. Let (D,X,H) have average inference dimension g(n), and S ∼ Dn. Then (S,H) has
inference dimension k with probability:

Pr[Inference dimension of (S,H) ≤ k] ≥ 1−
(
n

k

)
g(k).

Proof. The probability that a fixed subset S′ ⊂ S of size k does not have a point x s.t. S − {x} →h x is at
most g(k). Union bounding over all

(
n
k

)
subsets gives the desired result.
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This reduction allows us to apply inference dimension in both the active and passive distributional cases.
This is due in part to the fact that the boosting algorithm proposed by KLMZ [5][Theorem 3.2] is reliable
even when given the wrong inference dimension as input–their core algorithm simply runs a linear program
whose constraints are given by query responses and thus never errs. As a result, we may plug this reduction
directly into their algorithm.

Corollary 4.7. Given a query set Q, let fQ(n) be the number of queries required to answer all questions on
a sample of size n. Let (D,X,H) have average inference dimension g(n), then there exists an RPU-learner
A with coverage

E[C(A)] = max
k≤n

(
1−

(
n

k

)
g(k)

)
n− k
n

after drawing n points. Further, the expected query complexity of actively RPU-learning a finite sample
S ∼ Dn is

E[q(n)] ≤ min
k≤n

2fQ(4k) log(n)

(
1− g(k)

(
n

k

))
+ ng(k)

(
n

k

)
Proof. For the first fact, we will appeal to the symmetry argument of [5]. Consider a reliable learner A which
takes in a sample S of size n− 1 and infers all possible points in D. To compute coverage, we want to know
the probability a random point x ∼ D is inferred by A. Since S was randomly drawn from D, this is the
same as computing the probability that any point in S ∪ {x} can be inferred from S. By Observation 4.6,
the probability that S ∪ {x} has inference dimension k is(

1−
(
n

k

)
g(k)

)
.

Since x could equally well have been any point in S by symmetry, if S has inference dimension k the
coverage will be at least n−k

n [5]. Since this occurs with probability at least 1−
(
n
k

)
g(k) by Observation 4.6,

the expected coverage of A is at least

E[C(A)] ≥
(

1−
(
n

k

)
g(k)

)
n− k
n

.

The second statement follows from a similar argument. If S has inference dimension k, then by Theorem 2.1
the expected query complexity is at most 2fQ(4k) log(n). For a given k, the expected query complexity is
then bounded by:

E[q(n)] ≤ 2fQ(4k) log(n) Pr[S has inference dimension ≤ k] + nPr[S has inference dimension > k].

Plugging in Observation 4.6 and minimizing over k then gives the desired result.

In fact, this lemma shows that RPU-learning (D,X,H) with inverse super-exponential average inference
dimension loses only log factors over passive or active PAC-learning. Asking for such small average inference
dimension may seem unreasonable, but something as simple as label queries on a uniform distributions over
convex sets has average inference dimension 2−Θ(n log(n)) with respect to linear separators [36].

Corollary 4.8. Given a query set Q, let fQ(n) be the number of queries required to answer all questions on

a sample of size n. For any α > 0, let (D,X,H) have average inference dimension g(n) ≤ 2−Ω(n1+α). Then
the expected sample complexity of Q-Pool-RPU learning is:

E[n(ε)] = O

(
log( 1

ε )1/α

ε

)
.

Further, the expected query complexity of actively learning a finite sample S ∼ Dn is:

E[q(n)] ≤ 2fQ

(
O
(

log1/α(n)
))

log(n).
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Proof. Both results follow from the fact that setting the average inference dimension k to O
(
log(n)1/α

)
gives(

1−
(
n

k

)
g(k)

)
= 1−O

(
1

n

)
.

Then for the sample complexity, it is enough to plug this into Corollary 4.7 and let n be

n = O

(
log( 1

ε )1/α

ε

)
.

Plugging this into the query complexity sets the latter term from Corollary 4.7 to 1, giving:

E[q(n)] ≤ 2fQ

(
O
(

log1/α(n)
))

log(n).

We will show that by employing comparison queries we can improve the average inference dimension of
linear separators from 2Ω(−n log(n)) to 2−Ω(n2), but first we will need to review a result on inference dimension
from [5].

Theorem 4.9 (Theorem 4.7 [5]). Given a set X ⊆ Rd, we define the minimal-ratio of X with respect to a
hyperplane h ∈ Hd as:

minx∈X |h(x)|
maxx∈X |h(x)|

.

In other words, the minimal-ratio is a normalized version of margin, a common tool in learning algorithms.
Given X, define Hd,η ⊆ Hd to be the subset of hyperplanes with minimal ratio η with respect to X. The
inference dimension of (X,Hd,η) is then:

k ≤ 10d log(d+ 1) log(2η−1).

Our strategy to prove the average inference dimension of comparison queries follows via a reduction to
minimal-ratio. Informally, our strategy is very simple. We will argue that, with high probability, throwing
out the closest and furthest points from any classifier leaves a set with large minimal-ratio. We will show
this in three main steps.

Step 1: Assuming concentration of our distribution, a large number of points are contained inside a ball.
We will use this to bound the maximum function value for a given hyperplane when its furthest points are
removed.

Step 2: Assuming anti-concentration of our distribution, we will union bound over all hyperplanes to
show that they have good margin. In order to do this, we will define the notion of a γ-strip about a hy-
perplane h, which is simply h “fattened” by γ in both directions. If not too many points lie inside each
hyperplane’s γ-strip, then we can be assured when we remove the closest points the remaining set will have
margin γ. Since we cannot union bound over the infinite set of γ-strips, we will build a γ-net of the objects
and use this instead.

Step 3: Combining the above results carefully shows that for any hyperplane, removing the furthest and
closest points leaves a subsample of good minimal-ratio. In particular, by making sure the number of re-
maining points matches the bound on inference dimension given in Theorem 4.9, we can be assured that one
of these points may be inferred from the rest as long as our high probability conditions hold.

Theorem 4.10. Let D be a distribution over Rd affinely equivalent to another with the following properties:

1. ∀α > 0, Prx∼D[||x|| > dα] ≤ c1
α

2. ∀α > 0, 〈v, ·〉+ b ∈ Hd, Prx∼D[|〈x, v〉+ b| ≤ α] ≤ c2α
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Then for n = Ω(d log2(d)), the average inference dimension g(n) of (D,Rd, Hd) is

g(n) ≤ 2
−Ω

(
n2

d log(d)

)
,

where the constant has logarithmic dependence on c1, c2.

Proof. To begin, note that since inference is invariant to affine transformation we can assume that our
distribution D satisfies properties 1 and 2 without loss of generality. Our argument will hinge on the
minimal ratio based inference dimension bound of [5]. Let k denote inference dimension of (X,Hd,η). We
begin by drawing a sample S of size n, and set our goal minimal-ratio η such that k = n/3. In particular, it
is sufficient to let

η = 2−θ(
n

d log(d) ).

We will now prove that for all hyperplanes, removing the closest and furthest k points from S leaves the
remaining points with minimal-ratio η with high probability.

To begin, we will show that with high probability, n− k points lie inside the ball B of radius r = 2θ(
n

d log(d) )

about the origin. By condition 1 on our distribution D, we know that the probability any k = n/3 size

subset lies outside radius r is ≤
(
c1d
r

)k
. Union bounding over all possible size k subsets then gives:

Pr[∃S′ ⊆ S, |S′| = n/3 : ∀x ∈ S′, ||x|| ≥ r] ≤
(
n

n/3

)
2
−Ω

(
n2

d log(d)

)
+O(n log(dc1))

≤ 2
−Ω

(
n2

d log(d)

)
,

where the last step follows with n = Ω(d log2(d)) and a large enough constant. Assume then that no such
subset exists. What implication does this have for the distance of the k furthest points from any given
hyperplane? For a given hyperplane h, denote the shortest distance between h and any point in B to be L.
By removing the furthest k points from h, we are guaranteed that the maximum distance is 2r+L. We will
separate our analysis into two cases: L ≤ r and L > r.

In the case that L ≤ r, our problem reduces to classifiers which intersect the ball B2 of radius 2r. This
further allows us to reduce our question from one of minimal-ratio to margin, as the minimal-ratio is bounded
by:

η ≥ γ/(4r).

Then with the correct parameter setting, it is enough to show that γ ≤ r−2 with high probability for all
hyperplanes with L ≤ r. We will inflate our margin to γ by removing the n/3 points closest to h. It is
enough to show that ∀h no subset of n/3 points lies in {x : h(x) ∈ [−γ, γ]}, which we will call the γ-strip,
or strip of height γ, about h. Condition 2 gives a bound on this occurring for a given subset of k points and
hyperplane h, but in this case we must union bound over both subsets and hyperplanes.

Naively, this is a problem, since the set of possible hyperplanes is infinite. However, as we have reduced
to hyperplanes intersecting the ball, each is defined by a unit vector v ∈ Sd and a shift b ∈ [−2r, 2r] =
[−γ−1/2, γ−1/2]. Our strategy will be to build a finite γ-net N over these strips and show that each point in
the net has O(γ1/2) measure.

Consider the space of normal vectors to our strips, which for now we assume are homogeneous. This is
a d-unit sphere, which can be covered by at worst (3γ−1)d γ-balls. We can extend this γ-cover to non-
homogeneous strips by placing 4γ−3/2 of these covers at regular intervals along the segment [−2r, 2r]. For-
mally, each point in this cover N corresponds to some hyperplane h = 〈v, ·〉 + b, and is comprised of the
union γ-strips nearby h:

Nv,b =
⋃

||v−v′||≤γ
|b−b′|≤γ

γ − strip about 〈v′, ·〉+ b′.

What is the measure of Nv,b? Note that
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Figure 2: The above image is the γ-ball N(1,0) in the simplified homogeneous case. The black strip corre-
sponds to the central hyperplane, and the blue areas denote the strips with close normal vectors. The red
dotted line denotes the larger strip in which the γ-ball lies.

Nv,b = (Nv,b ∩B2) ∪ (Nv,b ∩ (Rd \B2)).

We can immediately bound the measure of latter portion by
c1d
√
γ

2 due to concentration. For the former, we
will show that Nv,b ∩ B2 is contained in a small strip with measure bounded by anti-concentration. For a
visualization of this, see Figure 2. Since the height of a strip is invariant upon translation, we will let b = 0
for simplicity. Consider any x′ in the γ-strip about some hyperplane 〈v′, ·〉+ b′ ∈ Nv,0. Since v is the center
of our ball, by definition we have ||v − v′|| ≤ γ, and |b′| ≤ γ. Then for x′ in strip v′, we can bound 〈v, x′〉:

|〈v, x′〉| = |〈v′, x′〉+ 〈v − v′, x′〉|
≤ 2γ + |〈v − v′, x′〉|
≤ 2γ + ||v − v′|| · ||x′||
≤ 2γ + γ · 2r
= 2(γ +

√
γ)

In other words, this neighborhood of strips lies entirely within the strip about v of height 2(γ +
√
γ), which

in turn by condition 2 has measure at most 2c2(γ +
√
γ).

Finally, note that if no subset of n/3 points lies in any Nv,b, then certainly no such subset lies in a sin-
gle strip, as N covers all strips. Now we can union bound over subsets and N :

Pr[∃Nv,b ∈ N,S′ ⊆ S, |S′| = n/3 : ∀x ∈ S′, x ∈ Nv,b] ≤
(
n

n/3

)(
4(c1 + c2)dγ1/2

)n/3
(4γ−1)d+5/2.

Recall that γ = 2−θ(
n

d log(d) ). The only term contributing an n2 to the exponent is γn/6, and thus plugging
in γ gives:

Pr[∃Nv,b ∈ N,S′ ⊆ S, |S′| = n/3 : ∀x ∈ S′, x ∈ Nv,b] ≤ 2
−Ω

(
n2

d log(d)

)
.

The argument for L > r is much simpler. By assuming at least n− k points lie in B, removing the closet k
points gives a margin of at least L, and removing the furthest a maximum value of at most 2r+L. Because
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L > r, the minimal ratio is bounded by:

η ≥ r + L

2r + L
≥ 1/3.

Then in total, assuming |S ∩B| ≥ 2n/3, the probability over samples S that the subsample S′ created from
removing the closest and furthest k points has minimal-ratio less than η is:

Pr[∃h ∈ Hd : minimal-ratio of S′ < η] ≤ 2
−Ω

(
n2

d log(d)

)
.

Since the probability that |S ∩ B| ≥ 2n/3 is at least 1 − 2
−Ω

(
n2

d log(d)

)
, the above bound holds with no as-

sumption on |S ∩B| as well.

Combining this result together with Theorem 4.9 completes the proof. Let S′h be the remaining n/3 points
when the furthest and closest n/3 are removed, and assume S′h has minimal ratio η. S′h may thus be viewed
as a sample of size n/3 from (S′h, Hd,η). Since (S′h, Hd,η) has inference dimension n/3 for our choice of η by
Theorem 4.9, ∀h there must exist x s.t. Q(S′h − {x}) infers x. Thus the probability that we cannot infer a

point is upper bounded by 2
−Ω

(
n2

d log(d)

)

Plugging this result into Corollary 4.7 gives our desired guarantee on Comparison-Pool-RPU learning
query complexity.

Theorem 4.11 (Restatement of Theorem 1.8). Let D be a distribution on Rd which satisfies the conditions
of Theorem 4.10. Then the sample complexity of Comparison-Passive-RPU learning (D,Rd, Hd) is

n(ε, δ) ≤ O
(
d log(d) log(d/ε) log(1/δ)

ε

)
.

The query complexity of Comparison-Pool-RPU learning (D,Rd, Hd) is

q(ε, δ) ≤ O
(
d log2(d/ε) log(d) log(d log log(1/ε)) log(1/δ)

)
.

Proof. Recall from Corollary 4.7 that with n samples we can build an RPU learner A with expected coverage:

E[C(A)] ≥
(

1−
(
n

k

)
g(k)

)
n− k
n

.

By Theorem 4.10, letting k = O(d log(d) log(n)) simplifies this to

E[C(A)] ≥
(

1− 1

n

)
n− k
n

as long as n ≥ Ω(max(c1 + c2, k)). Setting the right hand side to 1− ε and solving for n gives

n = O

(
d log(d) log(d/ε)

ε

)
,

and a Chernoff bound gives the desired dependence on δ.

Bounding the query complexity is a bit more nuanced. Since the above analysis requires knowing both
comparisons and labels for all sampled points, we cannot simply draw n(ε, δ) points and actively learn their
labels as we would do in the PAC case. Instead, consider the following algorithm for learning a finite sample
S of size n drawn from D.

1. Subsample S′ ⊂ S, |S′| = O(d log(d) log(n)).

2. Query labels and comparisons on S′.
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3. Infer4 labels in S implied by Q(S′).

4. Restrict to the set of uninferred points, and repeat T = O(log(n/ε)) times.

KLMZ [5] proved that if S has inference dimension at most O(d log(d) log(n)), with the right choice of
constants each round of the above algorithm infers half of the remaining points with probability at least a
half. Since we repeat the process T times, a Chernoff bound gives that all of S is learned with probability
at least 1− ε/3. Further, notice that if n is sufficiently large:

n = O

(
d log(d) log2(d/ε)

ε

)
,

Theorem 4.10 and Observation 4.6 imply S has inference dimension at most O(d log(d) log(n)) with proba-
bility at least 1− ε/3, and further the algorithm queries only a ε/3 fraction of points in the sample.

We argue that any algorithm with such guarantees is sufficient to learn the entire distribution. A vari-
ation of this fact is proved in [13], but we repeat the argument here for completeness. Notice that the
expected coverage of A over the entire distribution may be rewritten as the probability that A infers some
additionally drawn point, that is:

E
S∼Dn

[C(A)] = Pr
x1,...,xn+1∼Dn+1

[A(x1, . . . xn)→ xn+1]

We argue that the righthand side is bounded by the probability that a point is inferred but not queried
by A across samples of size n + 1. To see this, recall that A operates on S′ = {x1, . . . , xn+1} by querying
a set of subsets S′1, . . . , S

′
T ⊂ S′, where each S′i+1 is drawn uniformly at random from points not inferred

by S′1, . . . , S
′
i. If xn+1 is learned but not queried by A, it must be inferred by some subset Si. Such a

configuration of subsets is only more likely to occur when running A(S′ \ {xn+1}), since the only difference
is that at any step where xn+1 has not yet been inferred, A(S′) might include xn+1 in the next sample.
Finally, recall that our algorithm infers all of S′ in only ε|S′|/3 queries with probability at least 2ε/3. Since
xn+1 is just an arbitrary point from D, the probability it is inferred but not queried is then at least 1 − ε,
which gives the desired coverage.

All that remains is to analyze the query complexity. The total number of queries made is O(Tk log(k)),
and repeating this process log(1/δ) times returns the desired RPU learner by a Chernoff bound. Thus the
total query complexity is:

q(ε, δ) ≤ O
(
d log2(d/ε) log(d) log(d log log(1/ε)) log(1/δ)

)

The necessary conditions in Theorem 4.10 are satisfied by a wide range of distributions. The concentration
bound is satisfied by any distribution whose norm has finite expectation, and the anti-concentration bound
is satisfied by many continuous distributions. Log-concave distributions, for instance, easily satisfy the
conditions.

Proposition 4.12. log-concave distributions satisfy the conditions of Theorem 4.10 with c1 = c2 = O(1).

Proof. Any log-concave distribution D is affinely equivalent to an isotropic log-concave distribution D′.
Isotropic log-concave distributions have the following properties [2]:

1. ∀a > 0, Px∈D′ [||x|| ≥ a] ≤ e−a/
√
d+1

2. All marginals of D′ are isotropic log-concave.

3. If d = 1, Px∈D′ [x ∈ [a, b]] ≤ |b− a|
4As in [5]’s core algorithm, inference is computed via a linear programm with constraints given solely by query responses.

No knowledge of minimal-ratio is required.
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We want to show that these three properties satisfy the two conditions of Theorem 4.10. Property 1 satisfies
condition 1 with constant c1 = 1. Properties 2 and 3 imply condition 2 with constant c2 = 2, as the
probability mass of a strip is equivalent to the probability mass of the one dimensional marginal along the
normal vector.

With significant additional work, Balcan and Zhang [3] show that an even more general class of distri-
butions satisfies these properties, s-concave distributions.

Proposition 4.13 (Theorems 5,11 [3]). s-concave distributions satisfy the conditions of Theorem 3.105 for
s ≥ − 1

2d+3 and:

c1 =
4
√
d

c
, c2 = 4

for some absolute constant c > 0.

Theorem 4.10 provides a randomized comparison LDT for solving the point location problem. Because
our method involves reducing to worst case inference dimension, we may use the derandomization technique
(Theorem 1.8) of [24] to prove the existence of a deterministic LDT.

Corollary 4.14 (Restatement of Theorem 1.9). Let D be a distribution satisfying the criterion of Theo-
rem 1.8, x ∈ Rd, and h1, . . . , hn ∼ Dn. Then for n ≥ Ω(d log2(d)) there exists an LDT using only label and
comparison queries solving the point location problem with expected depth

O(d log(d) log(d log(n)) log2(n)).

5 Experimental Results

To confirm our theoretical findings, we have implemented a variant of our reliable learning algorithm for
finite samples. For a given sample size or dimension, the query complexity we present is averaged over 500
trials of the algorithm.

5.1 Algorithm

We first note a few practical modifications. First, our algorithm labels finite samples drawn from the uni-
form distribution over the unit ball in d-dimensions. Second, to match our methodology in lower bounding
Label-Pool-RPU learning, we will draw our classifier uniformly from hyperplanes tangent to the unit ball.
Finally, because the true inference dimension of the sample might be small, our algorithm guesses a low
potential inference dimension to start, and doubles its guess on each iteration with low coverage.

Our algorithm will reference two sub-routines employed by the original inference dimension algorithm in
[5], Query(Q,S), and Infer(S,C). Query(Q,S) simply returns Q(S), the oracle responses to all queries on
S of type Q. Infer(S,C) builds a linear program from constraints C (solutions to some Query(Q,S)), and
returns which points in S are inferred.

5Condition 1, however, must be changed to ∀α > 16... rather than 0, which does not affect the proof.
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Algorithm 2: Perfect-Learning(N,Q, d, c)

Result: Labels all points in sample S ∼ (Bd)N using query set Q
9 S ∼ (Bd)N ; Classifier ∼ Sd, B1;

10 Subsample Size = d+ 1; Uninferred = S; Subsample List = [];
11 while size(Uninferred) > c · size(Subsample Size) do
12 Subsample ∼ Uninferred[Subsample Size];
13 Subsample List.extend(Subsample);
14 Inferred Points = Infer(Uninferred, Query(Q, Subsample List));
15 if size(Inferred Points) < size(Uninferred)/2 then
16 Subsample Size ∗ = 2;
17 end
18 Uninferred.remove(Inferred Points)

19 end
20 Query(Label,Uninferred)

Note that this algorithm is efficient. The while loop runs at most log(N) times, and each loop solves
at most N linear programs with O(fQ(N)) constraints in d + 1 dimensions. Thus the total running time
of Algorithm 2 is Poly(N, d). Further note for simplicity we have chosen c = 1 for labels and c = 2 for
comparisons and will drop this parameter in the following.

5.2 Query Complexity

Our theoretical results state that for an adversarial choice of classifier, the number of queries Perfect-
Learning(N , Comparison, d) performs is logarithmic compared to Perfect-Learning(N , Labels, d). The left
graph in Figure 3 shows this correspondence for uniformly drawn hyperplanes tangent to the unit ball and
sample values ranging from 1 to 210 in log-scale. In particular, it is easy to see the exponential difference
between the Label query complexity in blue, and the Comparison query complexity in orange. Further, our
results suggest that Perfect-Learning(N , Comparison, d) should scale near linearly in dimension. The right
graph in Figure 3 confirms that this is true in practice as well.

Figure 3: The left graph shows a log-scale comparison of Perfect-Learning(N , Label, 3) and Perfect-
Learning(N , Comparison, 3). The right graph shows how Perfect-Learning(256, Comparison, d) scales
with dimension.
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6 Further Directions

6.1 Average Inference Dimension and Enriched Queries

KLMZ [5] propose looking for a simple set of queries with finite inference dimension k for d-dimensional
linear separators. In particular, they suggest looking at extending to t-local relative queries, questions which
ask comparative questions about t points. Unfortunately, simple generalizations of comparison queries seem
to fail, but the problem of analyzing their average inference dimension remains open. When moving from
1-local to 2-local queries, our average inference dimension improved from:

2−Õ(n) → 2−Õ(n2)

If there exist simple relative t-local queries with average inference dimension 2−Õ(nt) over some distribution
D, then it would imply a passive RPU-learning algorithm over D with sample complexity

n(ε, δ) = O

(
log
(

1
ε

)1/(t−1)

ε
log

(
1

δ

))

and query complexity

q(ε, δ) ≤ O
(

2fQ

(
4 log1/(t−1)(n)

)
log

(
1

δ

)
log(n)

)
One such candidate 3-local query given points x1, x2, and x3 is the question: is x1 closer to x2, or x3? KLMZ
suggest looking into this query in particular, and other similar types of relative queries are studied in [37–43].

6.2 Average Inference Dimension =⇒ Lower Bounds

We showed in this paper that average inference dimension provides upper bounds on passive and active RPU-
learning, but to show average inference dimension characterizes the distribution dependent model, we would
need to show it provides a matching lower bound. The first step in this process would require examining the
tightness of our average to worst case reduction.

Observation 6.1. Let (D,X,H) have average inference dimension ω(g(k)). Then the probability that a
random sample S ∼ Dn has inference dimension ≤ k is:

1− g(k)

(
n

k

)
≤ Pr[inference dimension of S ≤ k] ≤ (1− g(k))n/k

Even with a tight version of Observation 6.1, it is an open problem to apply such a result as a lower
bound technique for the PAC or RPU models.

6.3 Noisy and Agnostic Learning

The models we have proposed in this paper are unrealistic in the fact that they assume a perfect oracle.
RPU-learning in particular must be noiseless due to its zero-error nature. This raises a natural question:
can inference dimension techniques be applied in a noisy or non-realizable setting? Hopkins, Kane, Lovett,
and Mahajan [13] recently made progress in this direction, introducing a relaxed version of RPU-learning
called Almost Reliable and Probably Useful learning. They are able to provide learning algorithms under
the popular [7, 2, 44–48] Massart [49] and Tsybakov noise [50, 51] models.

However, many problems in this direction remain completely open, such as agnostic or more adversarial
settings. It remains unclear whether inference based techniques are robust to these settings, since small
adversarial adjustments to the inference LP can cause substantial corruption to its output.
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6.4 Further Applications of RPU-learning

In this paper we offer the first set of positive results on RPU-learning since the model was introduced by Sloan
and Rivest [8]. RPU-learning has potential for both practical and theoretical applications. On the practical
side, positive results on RPU-learning, or a slightly relaxed noisy model, may allow us to build predictors
with better confidence levels. On the theoretical side efficient RPU-learners have potential applications for
circuit lower bounds [52].
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