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Abstract

The sampling of probability distributions speci�ed up to a normalization constant
is an important problem in both machine learning and statistical mechanics. While
classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC)
or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing
interest in using normalizing �ows in order to learn the transformation of a simple
prior distribution to the given target distribution. Here we propose a generalized
and combined approach to sample target densities: Stochastic Normalizing Flows
(SNF) – an arbitrary sequence of deterministic invertible functions and stochastic
sampling blocks. We show that stochasticity overcomes expressivity limitations
of normalizing �ows resulting from the invertibility constraint, whereas trainable
transformations between sampling steps improve ef�ciency of pure MCMC/LD
along the �ow. By invoking ideas from non-equilibrium statistical mechanics
we derive an ef�cient training procedure by which both the sampler's and the
�ow's parameters can be optimized end-to-end, and by which we can compute
exact importance weights without having to marginalize out the randomness of the
stochastic blocks. We illustrate the representational power, sampling ef�ciency and
asymptotic correctness of SNFs on several benchmarks including applications to
sampling molecular systems in equilibrium.

1 Introduction

A common problem in machine learning and statistics with important applications in physics is the
generation of asymptotically unbiased samples from a target distribution de�ned up to a normalization
constant by means of an energy modelu(x):

� X (x) / exp(� u(x)) : (1)

Sampling of such unnormalized distributions is often done with Markov Chain Monte Carlo (MCMC)
or other stochastic sampling methods [13]. This approach is asymptotically unbiased, but suffers
from the sampling problem: without knowing ef�cient moves, MCMC approaches may get stuck in
local energy minima for a long time and fail to converge in practice.

Normalizing �ows (NFs) [41, 40, 5, 35, 6, 33] combined with importance sampling methods are
an alternative approach that enjoys growing interest in molecular and material sciences and nuclear
physics [28, 25, 32, 22, 1, 30]. NFs are learnable invertible functions, usually represented by a neural
network, pushing forward a probability density over a latent or “prior” spaceZ towards the target
spaceX . Utilizing the change of variable rule these models provide exact densities of generated
samples allowing them to be trained by either maximizing the likelihood on data (ML) or minimizing
the Kullback-Leibler divergence (KL) towards a target distribution.

Let FZX be such a map and its inverseFXZ = F � 1
ZX . We can consider it as composition ofT

invertible transformation layersF0; :::; FT with intermediate statesy t given by:

y t +1 = Ft (y t ) y t = F � 1
t (y t +1 ) (2)
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By calling the samples inZ andX alsoz andx, respectively, the �ow structure is as follows:

F0 FT � 1
z = y0 � y1 � � � � � yT � 1 � yT = x

F � 1
0 F � 1

T � 1

(3)

We suppose each transformation layer is differentiable with a Jacobian determinantjdet J t (y )j. This
allows to apply thechange of variablerule:

pt +1 (y t +1 ) = pt +1 (Ft (y t )) = pt (y t ) jdet J t (y t )j
� 1 : (4)

As we often work with log-densities, we abbreviate the log Jacobian determinant as:

� St = log jdet J t (y )j : (5)

The log Jacobian determinant of the entire �ow is de�ned by� SZX =
P

t � St (y t ) and correspond-
ingly � SXZ for the inverse �ow.

Unbiased sampling with Boltzmann Generators. Unbiased sampling is particularly important
for applications in physics and chemistry where unbiased expectation values are required [25, 32,
1, 30]. A Boltzmann generator [32] utilizing NFs achieves this by (i) generating one-shot samples
x � pX (x) from the �ow and (ii) using a reweighing/resampling procedure respecting weights

w(x) =
� X (x)
pX (x)

/ exp (� uX (x) + uZ (z) + � SZX (z)) ; (6)

turning these one-shot samples into asymptotically unbiased samples. Reweighing/resampling
methods utilized in this context are e.g.Importance Sampling[28, 32] orNeural MCMC[25, 1, 30].

Training NFs. NFs are trained in either “forward” or “reverse” mode, e.g.:

1. Density estimation – given data samplesx, train the �ow such that the back-transformed
samplesz = FXZ (x) follow a latent distribution� Z (z), e.g.� Z (z) = N (0; I ). This is done
by maximizing the likelihood – equivalent to minimizing the KL divergenceKL [� X kpX ].

2. Sampling of a given target density� X (x) – sample from the simple distribution� Z (z) and
minimize a divergence between the distribution generated by the forward-transformation
x = FXZ (z) and� X (x). A common choice is the reverse KL divergenceKL [pX k� X ].

We will use densities interchangeably with energies, de�ned by the negative logarithm of the density.
The exact prior and target distributions are:

� Z (z) = Z � 1
Z exp(� uZ (z)) � X (x) = Z � 1

X exp(� uX (x)) (7)

with generally unknown normalization constantsZZ andZX . As can be shown (Suppl. Material Sec.
1) minimizingKL [pX k� X ] or KL [� X kpX ] corresponds to maximizing the forward or backward
weights of samples drawn frompX or � X , respectively.

Topological problems of NFs. A major caveat of sampling with exactly invertible functions for
physical problems are topological constraints. While these can be strong manifold results, e.g.,
if the sample space is restricted to a non-trivial Lie group [11, 12], another practical problem are
induced Bi-Lipschitz constraints resulting from mapping uni-modal base distributions onto well-
separated multi-modal target distributions[4]. For example, when trying to map a unimodal Gaussian
distribution to a bimodal distribution with af�ne coupling layers, a connection between the modes
remains (Fig. 1a). This representational insuf�ciency poses serious problems during optimization
– in the bimodal distribution example, the connection between the density modes seems largely
determined by the initialization and does not move during optimization, leading to very different
results in multiple runs (Suppl. Material, Fig. S1). More powerful coupling layers, e.g., [9], can
mitigate this effect. Yet, as they are still diffeomorphic, strong Bi-Lipschitz requirements can make
optimization dif�cult. This problem can be resolved when relaxing bijectivity of the �ow by adding
noise as we show in our results. Other proposed solutions are real-and-discrete mixtures of �ows [7]
or augmentation of the bases space [8, 18] at the cost of losing asymptotically unbiased sampling.
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Figure 1: Deterministic versus stochastic normalizing �ow for the double well. Red arrows
indicate deterministic transformations, blue arrows indicate stochastic dynamics.a) 3 RealNVP
blocks (2 layers each).b) Same with 20 BD steps before or after RealNVP blocks.c) Unbiased
sample from true distribution.

Figure 2: Schematic for Stochastic Normalizing Flow (SNF). An SNF transforms a tractable prior
� Z (z) / exp(� u0(z)) to a complicated target distribution� X (x) / exp(� u1(x)) by a sequence of
deterministic invertible transformations (�ows, grey boxes) and stochastic dynamics (sample, ochre)
that sample with respect to a guiding potentialu� (x). SNFs can be trained and run in forward mode
(black) and reverse mode (blue).

Contributions. We show that NFs can be interwoven with stochastic sampling blocks into arbitrary
sequences, that together overcome topological constraints and improve expressivity over deterministic
�ow architectures (Fig. 1a, b). Furthermore, NSFs have improved sampling ef�ciency over pure
stochastic sampling as the �ow's and sampler's parameters can be optimized jointly.

Our main result is that NSFs can be trained in a similar fashion as NFs and exact importance weights
for each sample ending inx can be computed, facilitating asymptotically unbiased sampling from the
target density. The approach avoids explicitly computingpX (x) which would require solving the
intractable integral over all stochastic paths ending inx.

We apply the model to the recently introduced problem of asymptotically unbiased sampling of
molecular structures with �ows [32] and show that it signi�cantly improves sampling the multi-modal
torsion angle distributions which are the relevant degrees of freedom in the system. We further show
the advantage of the method over pure �ow-based sampling / MCMC by quantitative comparison on
benchmark data sets and on sampling from a VAE's posterior distribution.

Codeis available atgithub.com/noegroup/stochastic_normalizing_flows

2 Stochastic normalizing �ows

A SNF is a sequence ofT stochastic and deterministic transformations. We samplez = y0 from the
prior � Z , and generate a forward path(y1; : : : ; yT ) resulting in a proposalyT (Fig. 2). Correspond-
ingly, latent space samples can be generated by starting from a samplex = yT and invoking the
backward path(yT � 1; : : : ; y0). The conditional forward / backward path probabilities are

Pf (z= y0 ! yT = x) =
T � 1Y

t =0

qt (y t ! y t +1 ); Pb(x = yT ! y0 = z) =
T � 1Y

t =0

~qt (y t +1 ! y t ) (8)
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where
; y t +1 jy t � qt (y t ! y t +1 ) y t jy t +1 � ~qt (y t +1 ! y t ) (9)

denote the forward / backward sampling density at stept respectively. If stept is a deterministic
transformationFt this simpli�es as

y t +1 � � (y t +1 � Ft (y t )) ; y t � �
�
y t � F � 1

t (y t +1 )
�

:

In contrast to NFs, the probability that an SNF generates a samplex cannot be computed by Eq. (4)
but instead involves an integral over all paths that end inx:

pX (x) =
Z

� Z (y0)Pf (y0 ! yT ) dy0 � � � dyT � 1: (10)

This integral is generally intractable, thus a feasible training method must avoid using Eq. (10).
Following [31], we can draw samplesx � � X (x) by running Metropolis-Hastings moves in the
path-space of(z = y0; :::; yT = x) if we select the backward path probability� X (x)Pb(x ! z) as
the target distribution and the forward path probability� Z (z)Pf (z ! x) as the proposal density.
Since we sample paths independently, it is simpler to assign an unnormalized importance weight
proportional to the acceptance ratio to each sample path fromz = y0 to x = yT :

w(z ! x) = exp

 

� uX (x) + uZ (z) +
X

t

� St (y t )

!

/
� X (x)Pb(x ! z)
� Z (z)Pf (z ! x)

; (11)

where

� St = log
~qt (y t +1 ! y t )
qt (y t ! y t +1 )

(12)

denotes the forward-backward probability ratio of stept, and corresponds to the usual change of
variable formula in NF for deterministic transformation steps (Suppl. Material Sec. 3). These weights
allow asymptotically unbiased sampling and training of SNFs while avoiding Eq. (10). By changing
denominator and numerator in (11) we can alternatively obtain the backward weightsw(x ! z).

SNF training. As in NFs, the parameters of a SNF can be optimized by minimizing the Kullback-
Leibler divergence between the forward and backward path probabilities, or alternatively maximizing
forward and backward path weights as long as we can compute� St (Suppl. Material Sec 1):

JKL = E� Z (z)Pf (z! x ) [� logw(z ! x)] = KL ( � Z (z)Pf (z ! x)jj � X (x)Pb(x ! z)) + const:
(13)

In the ideal case ofJKL = 0 , all paths have the same weightw(z ! x) = 1 and the independent and
identically distributed sampling of� X can be achieved. Accordingly, we can maximize the likelihood
of the generating process on data drawn from� X by minimizing:

JML = E� X (x )Pb (x ! z) [� logw(x ! z)] = KL ( � X (x)Pb(x ! z)jj � Z (z)Pf (z ! x)) + const:
(14)

Variational bound. Minimization of the reverse path divergenceJKL minimizes an upper bound
on the reverse KL divergence between the marginal distributions:

KL ( pX (x) k � X (x)) � KL ( � Z (z)Pf (z ! x) k � X (x)Pb(x ! z)) (15)

And the same relationship exists between the forward path divergenceJML and the forward KL
divergence. While invoking this variational approximation precludes us from explicitly computing
pX (x) andKL ( pX (x) k � X (x)) , we can still generate asymptotically unbiased samples from the
target density� X , unlike in variational inference.

Asymptotically unbiased sampling. As stated in the theorem below (Proof in Suppl. Material.
Sec. 2), SNFs are Boltzmann Generators: We can generate asymptotically unbiased samples of
x � � X (x) by performing importance sampling or Neural MCMC using the path weightw(zk ! x k )
of each path samplek.
Theorem 1. LetO be a function overX . An asymptotically unbiased estimator is given by

Ex � � X [O(x)] �
P

k w(zk ! x k ) O(x k )
P

k w(zk ! x k )
; (16)

if paths are drawn from the forward path distribution� Z (z)Pf (z ! x).
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3 Implementing SNFs via Annealed Importance Sampling

In this paper we focus on the use of SNFs as samplers of� X (x) for problems where the target energy
uX (x) is known, de�ning the target density up to a constant, and provide an implementation of
stochastic blocks via MCMC / LD. These blocks make local stochastic updates of the current state
y with respect to some potentialu� (y ) such that they will asymptotically sample from� � (y ) /
exp(� u� (y )) . While such potentialsu� (y ) could be learned, a straightforward strategy is to
interpolate between prior and target potentials

u� (y ) = (1 � � )uZ (y ) + �u X (y ); (17)

similarly as it is done inannealed importance sampling[29]. Our implementation for SNFs is
thus as follows: deterministic �ow layers in-between only have to approximate the partial density
transformation between adjacent� steps while the stochastic blocks anneal with respect to the given
intermediate potentialu� . The parameter� could again be learned – in this paper we simply choose
a linear interpolation along the SNF layers:� = t=T.

Langevin dynamics. Overdamped Langevin dynamics, also known as Brownian dynamics, using
an Euler discretization with time step� t, are given by [10]:

y t +1 = y t � � t r u� (y t ) +
p

2� t =� � t ; (18)

where� t � N (0; I ) is Gaussian noise. In physical systems, the constant� t has the form� t = � t=m
with time step� t, friction coef�cient  and massm, and� is the inverse temperature (here set to1).
The backward stepy t +1 ! y t is realized under these dynamics with the backward noise realization
(Suppl. Material Sec. 4 and [31]):

~� t =

r
�� t

2
[r u� (y t ) + r u� (y t +1 )] � � t : (19)

The log path probability ratio is (Suppl. Material Sec. 4):

� St = �
1
2

�
k~� t k

2 � k � t k
2
�

: (20)

We also give the results for non-overdamped Langevin dynamics in Suppl. Material. Sec. 5.

Markov Chain Monte Carlo. Consider MCMC methods with a proposal densityqt that satis�es
the detailed balance condition w.r.t. the interpolated density� � (y ) / exp(� u� (y )) :

exp(� u� (y t ))qt (y t ! y t +1 ) = exp( � u� (y t +1 ))qt (y t +1 ! y t ) (21)

We show that for allqt satisfying (21), including Metropolis-Hastings and Hamiltonian MC moves,
the log path probability ratio is (Suppl. Material Sec. 6 and 7):

� St = u� (y t +1 ) � u� (y t ); (22)

if the backward sampling density satis�es~qt = qt .

4 Results

Representational power versus sampling ef�ciency. We �rst illustrate that SNFs can break topo-
logical constraints and improve the representational power of deterministic normalizing �ows at
a given network size and at the same time beat direct MCMC in terms of sampling ef�ciency. To
this end we use images to de�ne complex two-dimensional densities (Fig. 3a-c, “Exact”) as target
densities� X (x) to be sampled. Note that a benchmark aiming at generating high-quality images
would instead represent the image as a high-dimensional pixel array. We compare three types of �ows
with 5 blocks each trained by samples from the exact density (details in Suppl. Material Sec. 9):

1. Normalizing �ow with 2 swapped coupling layers (RealNVP or neural spline �ow) per block

2. Non-trainable stochastic �ow with 10 Metropolis MC steps per block

3. SNF with both, 2 swapped coupling layers and 10 Metropolis MC steps per block.
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Figure 3: Sampling of two-dimensional densities. a-c)Sampling of smiley, dog and text densities
with different methods. Columns: (1) Normalizing Flow with RealNVP layers, (2) Metropolis
MC sampling, (3) Stochastic Normalizing Flow combining (1+2), (4) neural spline �ow (NSF),
(5) Stochastic Normalizing Flow combining (1+4), (6) Unbiased sample from exact density.d-e)
Compare representative power and statistical ef�ciency of different �ow methods by showing KL
divergence (mean and standard deviation over 3 training runs) between �ow samples and true density
for the three images from Fig. 3.d) Comparison of deterministic �ows (black) and SNF (red) as a
function of the number of RealNVP or Neural Spline Flow transformations. Total number of MC
steps in SNF is �xed to 50.e) Comparison of pure Metropolis MC (black) and SNF (red, solid line
RealNVP, dashed line Neural spline �ow) as a function of the number of MC steps. Total number of
RealNVP or NSF transformations in SNF is �xed to 10.

The pure Metropolis MC �ow suffers from sampling problems – density is still concentrated in the
image center from the prior. Many more MC steps would be needed to converge to the exact density
(see below). The RealNVP normalizing �ow architecture [6] has limited representational power,
resulting in a “smeared out” image that does not resolve detailed structures (Fig. 3a-c, RNVP). As
expected, neural spline �ows perform signi�cantly better on the 2D-images than RealNVP �ows,
but at the chosen network architecture their ability to resolve �ne details and round shapes is still
limite (See dog and small text in Fig. 3c, NSF). Note that the representational power for all �ow
architectures tend to increase with depth - here we compare the performance of different architectures
at �xed depth and similar computational cost.

In contrast, SNFs achieve high-quality approximations although they simply combine the same
deterministic and stochastic �ow components that fail individually in the SNF learning framework
(Fig. 3a-c, RNVP+Metropolis and NSF+Metropolis). This indicates that the SNF succeeds in
performing the large-scale probability mass transport with the trainable �ow layers and sampling the
details with Metropolis MC.

Fig. 3d-e quanti�es these impressions by computing the KL divergence between generated densities
pX (x) and exact densities� X (x). Both normalizing �ows and SNFs improve with greater depth, but
SNFs achieve signi�cantly lower KL divergence at a �xed network depth (Fig. 3d). Note that both
RealNVP and NSFs improve signi�cantly when stochasticty is added.

Moreover, SNFs have higher statistical ef�ciency than pure Metropolis MC �ows. Depending on the
example and �ow architecture, 1-2 orders of magnitude more Metropolis MC steps are needed to
achieve similar KL divergence as with an SNF. This demonstrates that the large-scale probability
transport learned by the trainable deterministic �ow blocks in SNFs signi�cantly helps with the
sampling.

Importantly, adding stochasticity is very inexpensive. Although every MCMC or Langevin inte-
gration step adds a neural network layer, these layers are very lightweighted, and have only linear
computational complexity in the number of dimensions. As an example, for our SNF implementation
of the examples in Fig. 3 we can add 10-20 stochastic layers to each trainable normalizing �ow layer
before the computational cost increases by a factor of 2 (Suppl. Material Fig. S2).
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Figure 4: Reweighting results for the double well potential(see also Fig. 1). Free energy
alongx1 (negative log of marginal density) for deterministic normalizing �ows (RNVP, NSF) and
SNFs (RNVP+MC, NSF+MC). Black: exact energy, red: energy of proposal densitypX (x), green:
reweighted energy using importance sampling.

SNFs as asymptotically unbiased samplers.We demonstrate that SNFs can be used as Boltzmann
Generators, i.e., to sample target densities without asymptotic bias by revisiting the double-well
example (Fig. 1). Fig. 4 (black) shows the free energies (negative marginal density) along the
double-well coordinatex1. Flows with 3 coupling layer blocks (RealNVP or neural spline �ow)
are trained summing forward and reverse KL divergence as a joint loss using either data from a
biased distribution, or with the unbiased distribution (Details in Suppl. Material Sec. 9). Due to
limitations in representational power the generation probabilitypX (x) will be biased – even when
explicitly minimizing the KL divergence w.r.t. the true unbiased distribution in the joint loss. By
relying on importance sampling we can turn the �ows into Boltzmann Generators [32] in order to
obtain unbiased estimates. Indeed all generator densitiespX (x) can be reweighted to an estimate of
the unbiased density� X (x) whose free energies are within statistical error of the exact result (Fig. 4,
red and green).

We inspect the bias, i.e. the error of the mean estimator, and the statistical uncertainty (
p

var) of
the free energy inx1 2 f� 2:5; 2:5g with and without reweighting using a �xed number of samples
(100,000). Using SNFs with Metropolis MC steps, both biases and uncertainties are reduced by half
compared to purely deterministic �ows (Table 1). Note that neural spline �ows perform better than
RealNVP without reweighting, but signi�cantly worse with reweighting - presumably because the
sharper features representable by splines can be detrimental for reweighting weights. With stochastic
layers, both RealNVP and neural spline �ows perform approximately equally well.

The differences between multiple runs (see standard deviations of the uncertainty estimate) also
reduce signi�cantly, i.e. SNF results are more reproducible than RealNVP �ows, con�rming that the
training problems caused by the density connection between both modes (Fig. 1, Suppl. Material
Fig. S1) can be reduced. Moreover, the sampling performance of SNF can be further improved by
optimizing MC step sizes based on loss functionsJKL andJML (Suppl. Material Table S1).

Reweighting reduces the bias at the expense of a higher variance. Especially in physics applications,
a small or asymptotically zero bias is often very important, and the variance can be reduced by
generating more samples from the trained �ow, which is relatively cheap and parallel.

Table 1:Unbiased sampling for double well potential:mean uncertainty of the reweighted energy
alongx1 averaged over 10 independent runs (� standard deviation).

not reweighted reweighted
bias

p
var

p
bias2+var bias

p
var

p
bias2+var

RNVP 1:4 � 0:6 0:4 � 0:1 1:5 � 0:5 0:3 � 0:2 1:1 � 0:4 1:2 � 0:4
RNVP + MC 1:5 � 0:2 0:3 � 0:1 1:5 � 0:2 0:2 � 0:1 0:6 � 0:1 0:6 � 0:1
NSF 0:8 � 0:4 1:0 � 0:2 1:3 � 0:3 0:6 � 0:2 2:1 � 0:4 2:2 � 0:5
NSF + MC 0:4 � 0:3 0:5 � 0:1 0:7 � 0:2 0:1 � 0:1 0:6 � 0:2 0:6 � 0:2

Alanine dipeptide. We further evaluate SNFs on density estimation and sampling of molecular
structures from a simulation of the alanine dipeptide molecule in vacuum (Fig. 5). The molecule has
66 dimensions inx, and we augment it with 66 auxiliary dimensions in a second channelv , similar
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to “velocities” in a Hamiltonian �ow framework [42], resulting in 132 dimensions total. The target

density is given by� X (x ; v ) = exp
�

� u(x) � 1
2 kvk2

�
, whereu(x) is the potential energy of the

molecule and1
2 kvk2 is the kinetic energy term.� Z is an isotropic Gaussian normal distribution in

all dimensions. We utilize the invertible coordinate transformation layer introduced in [32] in order
to transformx into normalized bond, angle and torsion coordinates. RealNVP transformations act
between thex andv variable groups Details in Suppl. Material Sec. 9).

We compare deterministic normalizing �ows using 5 blocks of 2 RealNVP layers with SNFs that
additionally use 20 Metropolis MC steps in each block totalling up to 100 MCMC steps in one
forward pass. Fig. 5a shows random structures sampled by the trained SNF. Fig. 5b shows marginal
densities in all �ve multimodal torsion angles (backbone angles� ,  and methyl rotation angles 1,
 2,  3). While the RealNVP networks that are state of the art for this problem miss many of the
modes, the SNF resolves the multimodal structure and approximates the target distribution better, as
quanti�ed in the KL divergence between the generated and target marginal distributions (Table 2).

a b

Figure 5:Alanine dipeptide sampled with deterministic normalizing �ows and stochastic normaliz-
ing �ows. a) One-shot SNF samples of alanine dipeptide structures.b) Energy (negative logarithm)
of marginal densities in 5 unimodal torsion angles (top) and all 5 multimodal torsion angles (bottom).

Table 2:Alanine dipeptide: KL-divergences of RNVP �ow and SNF (RNVP+MCMC) between
generated and target distributions for all multimodal torsion angles. Mean and standard deviation
from 3 independent runs.

KL-div. �  1   2  3

RNVP 1.69±0.03 3.82±0.01 0.98±0.03 0.79±0.03 0.79±0.09
SNF 0.36± 0.05 0.21±0.01 0.27±0.03 0.12±0.02 0.15±0.04

Variational Inference. Finally, we use normalizing �ows to model the latent space distribution of
a variational autoencoder (VAE) , as suggested in [35]. Table 3 shows results for the variational bound
and the log likelihood on the test set for MNIST [23] and Fashion-MNIST [44]. For a 50-dimensional
latent space we compare a six-layer RNVP to MCMC using overdamped Langevin dynamics as
proposal (MCMC) and a SNF combining both (RNVP+MCMC). Both sampling and the deterministic
�ow improve over a naive VAE using a reparameterized diagonal Gaussian variational posterior
distribution, while the SNF outperforms both, RNVP and MCMC. See Suppl. Material Sec. 8 for
details.

Table 3:Variational inference using VAEs with stochastic normalizing �ows: JKL : variational
bound of the KL-divergence computed during training. NLL: negative log likelihood of test set.

MNIST Fashion-MNIST

JKL NLL JKL NLL

Naive (Gaussian) 108.4±24.3 98.1±4.2 241.3±7.4 238.0±2.9
RNVP 91.8±0.4 87.0±0.2 233.7±0.1 231.4±0.2
MCMC 102.1±8.0 96.2±1.9 234.7±0.4 235.2±2.4

SNF 89.7±0.1 86.8±0.1 232.4±0.2 230.9±0.2
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5 Related work

The cornerstone of our work is nonequilibrium statistical mechanics. Particularly important is
Nonequilibrium Candidate Monte Carlo (NCMC) [31], which provides the theoretical framework
to compute SNF path likelihood ratios. However, NCMC is for �xed deterministic and stochastic
protocols, while we generalize this into a generative model by substituting �xed protocols with
trainable layers and deriving an unbiased optimization procedure.

Neural stochastic differential equations learn optimal parameters of designed stochastic processes
from observations along the path [43, 19, 27, 26], but are not designed for marginal density esti-
mation or asymptotically unbiased sampling. It has been demonstrated that combining learnable
proposals/transformations with stochastic sampling techniques can improve expressiveness of the
proposals [36, 24, 39, 17, 16]. Yet, these contributions do not provide an exact reweighing scheme
based on a tractable model likelihood and do not provide ef�cient algorithms to optimize arbitrary
sequences of transformation or sampling steps end-to-end ef�ciently. These methods can be seen as
instances of SNFs with speci�c choice of deterministic transformations and / or stochastic blocks
and model-speci�c optimizations - see Suppl. Material Table S2) for a categorization. While our
experiments focus on nontrainable stochastic blocks, the proposal densities of MC steps can also be
optimized within the framework of SNFs as shown in Suppl. Material Table S1.

An important aspect of SNFs compared to trainable Monte-Carlo kernels such as A-NICE-MC [39]
is the use of detailed balance (DB). While Monte-Carlo frameworks are usually designed to use
DB in each step, SNFs rely on path-based detailed balance between the prior and the target density.
This means that SNFs can also perform nonequilibrium moves along the transformation, as done by
Langevin dynamics without acceptance step and by the deterministic �ow transformations such as
RealNVP and neural spline �ows.

More closely related is [37] which uses of stochastic �ows for density estimation and trains diffusion
kernels by maximizing a variational bound of the model likelihood. Their derivation using stochastic
paths is similar to ours and this work can be seen as a special instance of SNFs, but it does not
consider more general stochastic and deterministic building blocks and does not discuss the problem
of asymptotically unbiased sampling of a target density. Ref. [2] proposes a learnable stochastic
process by integrating Langevin dynamics with learnable drift and diffusion term. This approach is
in a spirit similar as our proposed method, but requires variational approximation of the generative
distribution and it has not been worked out how it could be used as a building block within a NF.
The approach of [14] combines NF layers with Langevin dynamics, yet approximates the intractable
integral with MC samples which we can avoid utilizing the path-weight derivation. Finally, [15]
propose a stochastic extension to neural ODEs [3] which can then be trained as samplers. This
approach to sampling is very general yet requires costly integration of a SDE which we can avoid by
combining simple NFs with stochastic layers.

6 Conclusions

We have introduced stochastic normalizing �ows (SNFs) that combine both stochastic processes and
invertible deterministic transformations into a single learning framework. By leveraging nonequilib-
rium statistical mechanics we show that SNFs can ef�ciently be trained to sample asymptotically
unbiased from target densities. This can be done by utilizing path probability ratios and avoiding
intractabe marginalization. Besides possible applicability in classical machine learning domains
such as variational and Bayesian inference, we believe that the latter property can make SNFs a key
component in the ef�cient sampling of many-body physics systems. In future research we aim to
apply SNFs with many stochastic sampling steps to accurate large-scale sampling of molecules.
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Broader Impact

The sampling of probability distributions de�ned by energy models is a key step in the rational design
of pharmacological drug molecules for disease treatment, and the design of new materials, e.g., for
energy storage. Currently such sampling is mostly done by Molecular Dynamics (MD) and MCMC
simulations, which is in many cases limited by computational resources and generates extremely high
energy costs. For example, the direct simulation of a single protein-drug binding and dissociation
event could require the computational time of an entire supercomputer for a year. Developing machine
learning (ML) approaches to solve this problem more ef�ciently and go beyond existing enhanced
sampling methods is therefore of importance for applications in medicine and material science and
has potentially far-reaching societal consequences for developing better treatments and reducing
energy consumption. Boltzmann Generators, i.e. the combination of Normalizing Flows (FNs) and
resampling/reweighting are a new and promising ML approach to this problem and the current paper
adds a key technology to overcome some of the previous limitations of NFs for this task.

A risk of the method is that �ow-based sampling bears the risk that non-ergodic samplers can be
constructed, i.e. samplers that are not guaranteed to sample from the target distribution even in the
limit of long simulation time. From such an incomplete sample, wrong conclusions can be drawn.
While incomplete sampling is also an issue with MD/MCMC, it is well understood how to at least
ensure ergodicity of these methods in the asymptotic limit, i.e. in the limit of generating enough data.
Further research is needed to obtain similar results with normalizing �ows.
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