Supplementary Material for
Self-supervised Co-Training for Video Representation Learning

Tengda Han, Weidi Xie, Andrew Zisserman
VGG, Department of Engineering Science
University of Oxford
{htd, weidi, az}@robots.ox.ac.uk

1 More Implementation Details

1.1 Encoder Architecture

We use the S3D architecture for all experiments. At the pretraining stage (including InfoNCE and CoCLR), S3D is followed by a non-linear projection head. Specifically, the project head consists of two fully-connected (FC) layers. The projection head is removed when evaluating downstream tasks. The detailed dimensions are shown in Table 1.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Detail</th>
<th>Output size: T×HW×C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3D</td>
<td>followed by average pooling</td>
<td>1 × 1² × 1024</td>
</tr>
<tr>
<td>Projection head</td>
<td>FC-1024→ReLU→FC-128</td>
<td>1 × 1² × 128</td>
</tr>
</tbody>
</table>

Table 1: Feature encoder architecture at the pretraining stage. ‘FC-1024‘ and ‘FC-128’ denote the output dimension of each fully-connected layer respectively.

1.2 Classifier Architecture

When evaluating the pretrained representation for action classification, we replace the non-linear projection head with a single linear layer for the classification tasks. The detailed dimensions are shown in Table 2.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Detail</th>
<th>Output size: T×HW×C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3D</td>
<td>followed by average pooling</td>
<td>1 × 1² × 1024</td>
</tr>
<tr>
<td>Linear layer</td>
<td>one layer: FC-num_class</td>
<td>1 × 1² × num_class</td>
</tr>
</tbody>
</table>

Table 2: Classifier architecture for evaluating the representation on action classification tasks. ‘FC-num_class’ denotes the output dimension of fully-connected layer is the number of action classes.

1.3 Momentum-updated History Queue

To cache a large number of features, we adopt a momentum-updated history queue as in MoCo [1]. The history queue is used in all pretraining experiments (including both InfoNCE and CoCLR). For the pretraining on UCF101, we use softmax temperature $\tau = 0.07$, momentum $m = 0.999$ and queue size 2048; for the pretraining on K400, we use softmax temperature $\tau = 0.07$, momentum $m = 0.999$ and queue size 16384.

2 Example Code for CoCLR

In this section, we give an example implementation of CoCLR in PyTorch-like style for training L_1 in Eq.2, including the use of a momentum-updated history queue as in MoCo, selecting the topK nearest neighbours in optical flow in Eq.3, and computing a multi-instance InfoNCE loss. We will release all the source code later.

Algorithm 1: Pseudocode for CoCLR in PyTorch-like style.

```plaintext
# f_q, f_k: encoder networks for query and key, for RGB input
# g: frozen encoder network for Flow input
# f_q, g are initialized with InfoNCE weights
# queue_rgb: dictionary as a queue of K keys (CxK), for RGB feature
# queue_flow: dictionary as a queue of K keys (CxK), for Flow feature
# topk: number of Nearest-Neighbours in Flow space for CoCLR training
# m: momentum
# t: temperature
f_k.params = f_q.params  # initialize
g.requires_grad = False  # g is not updated by gradient

for rgb, flow in loader:  # load a minibatch of data with N samples
    rgb_q, rgb_k = aug(rgb), aug(rgb)  # two randomly augmented versions
    z1_q, z1_k = f_q.forward(rgb_q), f_k.forward(rgb_k)  # queries and keys: NxC
    z1_k = z1_k.detach()  # no gradient to keys
    z2 = g.forward(flow)  # feature for Flow: NxC

    # compute logits for rgb
    l_current = torch.einsum('nc,nc->n', [z1_q, z1_k]).unsqueeze(-1)
    l_history = torch.einsum('nc,ck->nk', [z1_q, queue_rgb])
    logits = torch.cat([l_current, l_history], dim=1)  # logits: Nx(1+K)
    logits /= t  # apply temperature

    # compute similarity matrix for flow, Eq(3)
    flow_sim = torch.einsum('nc,ck->nk', [z2, queue_flow])
    _, topkidx = torch.topk(flow_sim, topk, dim=1)
    # convert topk indexes to one-hot format
    topk_onehot = torch.zeros_like(flow_sim)
    topk_onehot.scatter_(1, topkidx, 1)
    # positive mask (boolean) for CoCLR: Nx(1+K)
    pos_mask = torch.cat([torch.ones(N, 1), topk_onehot], dim=1)

    # Multi-Instance NCE Loss, Eq(2)
    loss = -torch.log((F.softmax(logits, dim=1) * mask).sum(1))
    loss = loss.mean()

    # optimizer update: query network
    loss.backward()
    update(f_q.params)

    # momentum update: key network
    f_k.params = m*f_k.params+(1-m)*f_q.params

    # update dictionary for both RGB and Flow
    enqueue(queue_rgb, z1_k)  # enqueue the current minibatch
    dequeue(queue_rgb)  # dequeue the earliest minibatch
    enqueue(queue_flow, z2)  # enqueue the current minibatch
    dequeue(queue_flow)  # dequeue the earliest minibatch
```

3 Qualitative Results for Video Retrieval

Figure 1: Nearest neighbour retrieval results with CoCLR representations. The left side is the query video from the UCF101 testing set, and the right side are the top 3 nearest neighbours from the UCF101 training set. CoCLR is trained only on UCF101. The action label for each video is shown in the upper right corner.

References