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A Proof of Theorem 1

According to Theorem 4.1 in [1], the convergence rate of Adam is
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Therefore, the above bound can be rewritten as
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where
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Proof.
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we could get the following theorem for the convergence of Adam with sampling with replacement
with batch size K.
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Proof. Since Ĝt = 1
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From previous step, we know
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B Proof of Theorem 2

Theorem 2 follows from Theorem 1 and Lemma 1. Therefore, we focus on the proof of Lemma 1
here. We prove Lemma 1 using the framework of online learning with bandit feedback.

Online optimization is interested in choosing pt to solve the following problem

min
pt∈P,1≤t≤T

T∑
t=1

Lt(p
t) (9)

where Lt(pt) is the loss that incurs at each iteration. Equivalently, the goal is the same as minimizing
the pseudo-regret:

R̄T = E
T∑
t=1

Lt(p
t)−min

p∈P
E

T∑
t=1

Lt(p) (10)

The following Algorithm 1 similar to EXP3 could be used to solve the above problem.

To be clear, the Bregman divergence Bφ(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉. Note that, the
updating step of Algorithm 1 is equivalent to

wt+1 = ∇φ∗(∇φ(pt)− αpĥt)
pt+1 = argmin

y∈P
Bφ(y, wt+1) (11)

We have the following convergence result for Algorithm 1.
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Algorithm 1 Online optimization
1: Input: stepsize αp
2: Initialize x1 and p1.
3: for t = 1, · · · , T do
4: Play a perturbation p̃t of pt and observe ∇Lt(p̃t)
5: Compute an unbiased gradient estimate ĥt of ∇Lt(pt), i.e. as long as E[ĥt] = ∇Lt(pt)
6: Update pt: pt+1 ← argminp∈P

{
〈ĥt, p〉+ 1

αp
Bφ(p, pt)

}
.

7: end for

Proposition B.1. The Algorithm 1 has the following convergence result
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+

T∑
t=1

E
[
‖pt − p̃t‖‖ĥt‖∗
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If Lt(pt) is linear (i.e. Lt(pt) = 〈lt, pt〉), then we have
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For example, let φ(p) =
∑n
j=1 pj log pj . Then its convex conjugate is φ∗(u) =

∑n
j=1 exp(uj − 1).

In this case, due to Equation (11), the updating step of Algorithm 1 becomes

wt+1
j = ptj exp(−αpĥt,j),∀1 ≤ j ≤ n (14)

The convergence result can also be simplified because

Bφ∗(∇φ(pt)− αpĥt,∇φ(pt))

=

n∑
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ptj

(
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≤
α2
p

2

n∑
j=1

ptj ĥ
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Linear Case: Let’s consider a special case where Lt(pt) is linear, i.e. Lt(pt) = 〈lt, pt〉. Assume pt
is a probability distribution, i.e. P = {p :

∑n
i=1 pi = 1, 0 ≤ pi ≤ 1,∀i}. In this case,∇Lt(pt) = lt.

At iteration t, assume that we can’t get the whole vector of lt. Instead, we can get only one coordinate
lt,Jt , where Jt is sampled according to the distribution pt. This is equivalent to p̃tj = 1(j = Jt).
Obviously,

E[p̃tj ] = E[1(j = Jt)] =

n∑
i=1

pti1(j = i) = ptj (16)
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Furthermore, to get the unbiased estimate of gradient, we set ĥt,j =
lt,j1(j=Jt)

ptj
. To verify ĥt,j is

indeed unbiased w.r.t. lt,j ,
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For sampling multiple actions It, we have the following
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(18)

And its convergence result is
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We want to apply online optimization/bandit to learn ptj , in which case the loss at t-th iteration is

lt(p
t) =

∑n
j=1

‖gj(xt)‖2∗
ptj

. Because the loss lt(pt) is a nonlinear function, we could use nonlinear
bandit as a general approach to solve this. However, another simpler approach is to convert it to linear
problem, where linear bandit could be used. Specifically, we have
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This is equivalent to online linear optimization setting where lt,j(x) = −‖gj(x)‖
2
j,∗

(ptj)
2 + L2

p2min
. And it’s

easy to see that 0 ≤ lt,j ≤ L2

p2min
. Then the convergence result is
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C Proofs about Comparison with Uniform Sampling

C.1 Proof of Lemma 2

Proof.
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C.2 Proof of Theorem 3

Proof. By plugging Lemma 2 into Theorem 2, we have
T∑
t=1

[ft(θt)− ft(θ∗)]

≤ρ1d
√
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C.3 Proof of Lemma 3

Proof.
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From Proposition 5 in [2], we know

min
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n∑
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j−γ

pj
= O(log2 n) (25)

Thus, we have

min
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n∑
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(26)

C.4 Proof of Theorem 4

Proof. It follows simply by plugging Lemma 3 into Theorem 2.

D AMSGrad with Bandit Sampling

We can also use bandit sampling to endow AMSGrad [3] with the ability to adapt to different training
examples. Analogous to Theorem 1 in the main text, we have the following theorem regarding
AMSGrad with Bandit Sampling.
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Theorem D.1. Assume the gradient Ĝt is bounded, ‖Ĝt‖∞ ≤ G∞, and αt = α/
√
t, β1 = β11, and

γ = β1/
√
β2 < 1, β1t = β1λ

t−1. Then, AMSGrad with Bandit Sampling achieves the following
convergence rate
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Proof. According to Corrollary 1 from [3], we have
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Simiarly, we could derive theorems about AMSGrad with Bandit Sampling that are analogous to
Theorem 2, 3, 4 for ADAMBS. We omit the details here.

E Additional Experiments

E.1 Comparison with Basic SGD Variants

In the main paper, we compared our method with Adam and Adam with importance sampling. Here,
we compare with some basic SGD variants (e.g., SGD, Momentum, Adagrad and RMSprop). As
shown in Figure 1, these basic SGD variants have worse performance than Adam-based methods.
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(b) RCNN on IMDB

Figure 1: Experiments comparing with SGD variants.

E.2 Comparison on Error Rate

In the main paper, we have shown the plots of loss value vs. wall clock time. Some might also be
interested in the convergence curves of loss values. Here, we include some plots of error rate vs. wall
clock time, as shown in Figure 2 and Figure 3. They demonstrated the faster convergence of our
method in terms of the error rate.
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Figure 2: Error Plot of CNN models
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Figure 3: Error Plot of RNN and RCNN models
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