Appendix
Certifying Confidence via Randomized Smoothing

Aounon Kumar Alexander Levine Soheil Feizi
University of Maryland University of Maryland University of Maryland
aounon@umd. edu alevineO@cs.umd.edu sfeizi@cs.umd.edu
Tom Goldstein
University of Maryland

tomg@cs.umd.edu

A Proof of Theorem

We first prove a slightly modified version of the Neyman-Pearson lemma.

Lemma 1 (Neyman & Pearson, 1933). Let X and Y be random variables in R? with densities j1x
and jiy. Let h : R — (a,b) be a function. Then:

1. IfS = {z eR?| “y—(z)) < t}forsomet > 0and E[h(X)] > (b—a)P(X € S) + a, then

px (2

E[R(Y)] > (b— a)P(Y € S) +a.

2. IfS = {z € R% | ny(z) > t}forsomet > 0and E[h(X)] < (b— a)P(X € S) + a, then

px(2)

E[h(Y)] < (b— a)P(Y € S) +a.

Proof. Let S€ be the complement set of .S.

E[h(Y)] - (b— a)B(Y € S) —a = E[h(Y)] — bP(Y € S) — a(1 - P(Y € 8))
= E[h(Y)] - bP(Y € S) — aP(Y ¢ S)

= [ nny @z b [ vz —a [ s

= | [ pwras s [ ez <o [ a [ v
= [ ) = (2)az = [ (b= ey ()0

21| [0 - ax(itz - [0- s ]

(since a < h(z) < b)

— | [ neux@iz -0 [z —a [ pxtaas]

¢[E[R(X)] — bP(X € S) — aP(X ¢ S)]
t[E[h(X)] — bP(X € S) — a(1 — P(X € 8))]
t[E[R(X)] — (b— a)P(X € S) —a] > 0

The second statement can be proven similarly by switching > and <. [
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In the first statement of the lemma, set h to fi, px to N(z,02I) and py to N'(z',021), and find
a t, such that, P(X € S) = p;(x). Now, since x and py are isometric Gaussians with the same
variance,
py (2)
px(2)
for some 8 € R. Therefore, the set S is a half-space defined by a hyper-plane orthogonal to the
perturbation 2’ — z. So, if ||z’ — z|, < R, then P(Y € S) > ®,(®, ' (p;(z)) — R).

fi(z") =E[fi(Y)]
>b—-—a)PY eS)+a (from the above lemma)
> (b= )@y (2, (pi(=)) — R) +a
= b, (0, (pi(2)) — R) + a(l — @o(; " (pi(2)) — R))

<t = ('—2)T2<p

The upper bound on f; (') can be derived similarly by applying the second statement of the above
lemma.

A.1 Alternate proof

Theorem I|can also be proved for o = 1 usmg Lemma 2 from|Salman et al in [25]). This lemma states
that for any function g : R — (0, 1), ®71(g) is 1- L1psch1tz where ® 1 is the inverse CDF of the
standard Gaussian distribution. Set g(.) to be £ ( ) < for an arbitrary class i. Then, g(x) = Li gm)a “
is upper and lower bounded by p;(x) and p;(x) respectlvely Due to the Lipschitz condition, we have,

o~ (g(x)) —

~(g") < Hx -2l <R
1( (@) =2 @7 (g(a") - R = @ (pi(w) — R
g(a') = <I>(¢’ Hpi(2)) - R)

Substituting g(z) = fi l()w_);a and rearranging terms appropriately gives us the first bound in theorem

The second bound can be derived similarly.

B Proof of Lemmal[3

Let S¢ be the complement set of S.

PAY) = 5) =BV €8) = [ 1(h(a) > shuy )z = [ v (2)dz
= | [ 1006 = v+ [ 1006) 2 v (az] - [ v ra:
= [ 1) = s )z = [ (1= 1000 > shy ()

>t | [ 106 = Shusats - [ 0= 1006 > x|
(since 0 < 1{h(z) > s} <1)

=t l:/]Rd 1{h(z) > stux(z)dz — /S,ux(z)dz}

— {[B(H(X) > 5) ~ B(X € 5)] > 0

The second statement of the lemma can be proven similarly by switching > and <.

C Additional Experiments

In section [5.2] we compared the two methods, using Hoeffding’s inequality and Dvoret-
zky—Kiefer—Wolfowitz inequality to derive the required lower bounds, for the certificates. We
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Figure 1: Certified accuracy vs. radius (CIFAR-10 & ImageNet) at different cutoffs for average
confidence score with ¢ = 0.50. Solid and dashed lines represent certificates computed with and
without CDF bound respectively.

repeat the same experiments in figure[T|for o = 0.50. Then, in figure 2} we show that the CDF-based
method (using the DKW inequality) outperforms the baseline approach regardless of how tight a
lower-bound for e;(x) is used in the baseline certificate . We replace e;(x) with the empirical
estimate of the expectation é;(x) = Z;"zl fi(x + d;)/m, which is an upper bound on e;(x). And
since bound (I} is an increasing function of e;(z), any valid lower bound ¢;(x) on the expectation
cannot yield a certified accuracy better than that obtained using é;(x). We compare our certificate
with the best-possible baseline certificate for some of Cohen et al.s ResNet-110 models trained on
the CIFAR-10 dataset using the same value of « as in section [5.2] The baseline mostly stays below
the CDF-based method for both types of confidence measures under the noise levels considered.
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Figure 2: Certified accuracy vs. radius (CIFAR-10 only) at different cutoffs for average confidence
score. Solid lines represent certificates computed with the CDF bound and dashed lines represent the
best-possible baseline certificate.
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