
Supplementary Material:
Neural Dynamic Policies

for End-to-End Sensorimotor Learning

Shikhar Bahl
CMU

Mustafa Mukadam
FAIR

Abhinav Gupta
CMU

Deepak Pathak
CMU

1 Appendix

1.1 Qualitative Video Results

Please look at the qualitative difference between NDPs and PPO-multi in generated robot motions in
videos/ folder of supplementary zip file. We found that NDP results look slightly dynamically

more stable and smooth in comparison to the baselines. For instance, PPO-multi generates shaky
trajectories as can be seen in ppo_multi_pick.mp4 and ppo_multi_push.mp4 , while the

corresponding NDP (ours) videos in ndp_pick.mp4 and ndp_push.mp4 are smoother. This is
perhaps due to the embedded dynamical structure in NDPs as all other aspects in PPO-multi and NDP
(ours) are compared apples-to-apples. These videos can also be found at: https://shikharbahl.
github.io/neural-dynamic-policies/.

1.2 Implementation Details

Hyper-parameters and Design Choices

We use default parameters and stick as closely as possible to the default code. In multi-action cases
(for PPO-multi and NDP), we kept rollout length k fixed for training and at inference time, one can
sample arbitrarily high value for k as demanded by the task setup. For reinforcement learning, we
kept k = 5 because the reward becomes too sparse if k is very large. For imitation learning, this is
not an issue, and hence, k = 300 for learning from demonstration.

In reinforcement learning setup for NDP, we tried number of basis functions in [4, 5, 6, 7, 10] for each
RL task. We fixed the number of integration steps per NDP rollout to 35. We also tried α (as described
in Section 2) values in [10, 15, 25]. NDP (ours), PPO [4], PPO-Multi, VICES [3] all use a similar
3-layer fully-connected network of hidden layer sizes of [100, 100] with tanh non-linearities. All
these use PPO [4] as the underlying RL optimizer. For Dyn-E [5], we used off-the-shelf architecture
because it is based on off-policy RL and doesn’t use PPO.

Hyper-parameters for underlying PPO optimization use off-the-shelf without any further tuning from
PPO [4] implementation in Kostrikov [2] as follows:

Environments

For Picking and Throwing, we adapted tasks from Ghosh et al. [1] (https://github.com/
dibyaghosh/dnc. We modified these tasks to enable joint-angle position control. For other RL
tasks, we used the Meta-World environment package [6] (https://github.com/rlworkgroup/
metaworld). Since VICES [3] operates using torque control, we modified Meta-World environments
to support torque-based Impedance control.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://shikharbahl.github.io/neural-dynamic-policies/
https://shikharbahl.github.io/neural-dynamic-policies/
https://github.com/dibyaghosh/dnc
https://github.com/dibyaghosh/dnc
https://github.com/rlworkgroup/metaworld
https://github.com/rlworkgroup/metaworld


Hyperparameter Value

Learning Rate 3× 10−4

Discount Factor 0.99
Use GAE True
GAE Discount Factor 0.95
Entropy Coefficient 0
Normalized Observations True
Normalized Returns True
Value Loss Coefficient 0.5
Maximum Gradient Norm 0.5
PPO Mini-Batches 32
PPO Epochs 10
Clip Parameter 0.1
Optimizer Adam
Batch Size 2048
RMSprop optimizer epsilon 10−5

Further, as mentioned in the Section 3.4 and 4, NDP and PPO-multi are able to operate the robot
at a higher frequency than the world. Precisely, frequency is k-times higher where k = 5 is the
NDP rollout length (described in Section 3.2). Even though the robot moves at higher frequency, the
environment/world state is only observed at normal rate, i.e., once every k robot steps and the reward
computation at the intermediate k steps only use stale environment/world state from the first one of
the k-steps. For instance, if the robot is pushing a puck, the reward is function of robot as well as
puck’s location. The robot will knows its own position at every policy step but will have access to
stale value of puck’s location only from actual environment step (sampled at a lower frequency than
policy steps, specifically 5x less). We implemented this for all 50 Meta-World environments as well
as Throwing and Picking.

Codebases: NDPs (ours) and Baselines

Our code can be found at: https://shikharbahl.github.io/neural-dynamic-policies/.
Our algorithm is based on top of Proximal Policy Optimization (PPO) [4] from https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail [2]. Additionally, we use code from Whitney
et al. [5] (DYN-E): https://github.com/willwhitney/dynamics-aware-embeddings. For
our implementation of VICES [3], we use the controllers provided them in https://github.com/
pairlab/robosuite/tree/vices_iros19/robosuite and overlay those on our environments.

1.3 Differentiability Proof of Dynamical Structure in NDPs

In Section 3.2, we provide an intuition for how NDP is incorporates a second order dynamical
system (based on the DMP system, described in Section 2) in a differentiable manner. Let us start by
observing that, when implementing our algorithm, y0, ẏ0 are known and ÿ0 = 0, as well as x0 = 1.
Assuming that the output states of NDP are y0, y1, ..., yt, ... and assuming that there exists a loss
function L which takes in yt, we want partial derivatives with respect to DMP weights wi and goal g:

∂L(yt)

∂wi
,

∂L(yt)

∂wi
(1)

∂L(yt)

∂yt

∂yt
∂wi

(2)

Starting with wi, using the Chain Rule we get that

∂L(yt)

∂wi
=
∂L(yt)

∂yt

∂yt
∂wi

(3)

Hence, we want to be able to calculated ∂yt
∂wi

. For simplicity let:

2

https://shikharbahl.github.io/neural-dynamic-policies/
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/willwhitney/dynamics-aware-embeddings
https://github.com/pairlab/robosuite/tree/vices_iros19/robosuite
https://github.com/pairlab/robosuite/tree/vices_iros19/robosuite


Wt =
∂yt
∂wi

(4)

Ẇt =
∂ẏt
∂wi

(5)

Ẅt =
∂ÿt
∂wi

(6)

From section 3.2 we know that:

ÿt = α(β(g − yt−1)− ẏt−1 + f(xt, g) (7)

and, the discretization over a small time interval dt gives us:

ẏt = ẏt−1 + ÿt−1dt, yt = yt−1 + ẏt−1dt (8)

From these and the fact that y0, ẏ0 are known and ÿ0 = 0, as well as x0 = 1, we get that y1 =
y0 + ẏ0dt and ẏ1 = ẏ0 + 0dt = ẏ0, as well as ÿ1 = α(β(g − y0)− ẏ0 + f(x1, g).

Using Equations (7) and (8) we get that:

Wt =
∂

∂wi
(yt−1 + ẏt−1dt) (9)

Wt =Wt−1 + Ẇt−1dt (10)

and

Ẇt−1 = Ẇt−2 + Ẅt−1dt (11)

In turn,

Ẅt−1 =
∂

∂wi
(α(β(g − yt−2)− ẏt−2) + f(xt−1, g)) (12)

From section 3.2, we know that

∂f(xt−1, g)

∂wi
=

ψi∑
j ψj

(g − y0)xt−1 (13)

Hence:

Ẅt−1 = α(β(−Wt−2)− Ẇt−2) +
ψi∑
j ψj

(g − y0)xt−1 (14)

Plugging equations the value of Ẅt−1 into Equation (11):

Ẇt−1 = Ẇt−2 + (α(β(−Wt−2)− Ẇt−2) +
ψi∑
j ψj

(g − y0)xt−1)dt (15)

Now plugging the value of Ẇt−1 in Equation (10):

Wt =Wt−1 + (Ẇt−2 + (α(β(−Wt−2)− Ẇt−2) +
ψi∑
j ψj

(g − y0)xt−1)dt)dt (16)

3



We see that the value of Wt is dependent on Wt−1, Ẇt−2,Wt−2. We can now show that we can ac-
quire a numerical value for Wt by recursively following the gradients, given that Wt−1, Ẇt−2,Wt−2

are known. Since we showed that y0, ẏ0, y1,ẏ1 do not requirewi in their computation,W1, Ẇ0,W0 =
0. Hence by recursively following the relationship defined in Equation (16), we achieve a solution for
Wt.

Similarly, let:

Gt =
∂

∂g
(yt−1 + ẏt−1dt) (17)

Gt = Gt−1 + Ġt−1dt (18)

and

Ġt−1 = Ġt−2 + G̈t−1dt (19)

Using section 3.2, we get that

∂f(xt−1, g)

∂g
=

ψjwj∑
j ψj

xt−1 (20)

Hence:

G̈t−1 = α(β(1−Gt−2)− Ġt−2) +
ψjwj∑
j ψj

xt−1 (21)

and we get a similar relationship as Equation (16):

Gt = Gt−1 + (Ġt−2 + (α(β(1−Gt−2)− Ġt−2) +
ψjwj∑
j ψj

xt−1)dt)dt (22)

Hence, Gt, similarly is dependent on Gt−1, Ġt−2, Gt−2. We can use a similar argument as with
wi to show that Gt is also numerically achievable. We have now shown that yt, the output of the
dynamical system defined by a DMP, is differentiable with respect to wi and g.

1.4 Ablations

We present ablations similar to Figure ??, using the Throwing task. The results are showin in Figure 1.
We see that NDPs show similar robustness across all variations. Secondly, we ran ablations with
the forcing term set to 0 and found it variant to be significantly less sample efficient than NDPs
while converging to a slightly lower asymptotic performance. Finally, we ran ablation where α is
also learned by the policy while setting β = α

4 for critical damping. We see in Figure 2 that NDPs
outperforms both settings where α is learnt and where the the forcing term f is set to 0.

Additionally, we ran multiple ablations for the VICES baseline. We present a version of VICES for
throwing and picking tasks that acts in end-effector space instead of joint-space (we call this ‘vices-
pos‘)., as well e ran another version of VICES where the higher level policy runs at similar frequency
as NDP which we call ‘vices-low-freq‘. The results are presented in Figure 2a and Figure 2b. We
found it to be less sample efficient and have a lower performance than NDP.

References

[1] D. Ghosh, A. Singh, A. Rajeswaran, V. Kumar, and S. Levine. Divide-and-conquer reinforcement
learning. arXiv preprint arXiv:1711.09874, 2017. 1

[2] I. Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018. 1, 2

4

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail


0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

Multiquadric
Linear
Gaussian
Inv. Quadric
Inv. Multiquadric

(a) RBF Kernels

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

N=2
N=5
N=10
N=15
N=20

(b) # of basis functions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

Int-steps=15
Int-steps=25
Int-steps=35
Int-steps=45

(c) Integration steps

0.0 0.5 1.0 1.5 2.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

ate

T=3
T=5
T=7
T=10
T=15

(d) Rollout length
Figure 1: Ablation of NDPs with respect to different hyperparameters in the RL setup (throw). We ablate
different choices of radial basis functions in (a). We ablate across number of basis functions, integration steps,
and length of the NDP rollout in (b,c,d). Plots indicate that NDPs are fairly stable across a wide range of choices.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

throw
only-g
learn-a_z
vices-low-freq
vices-pos
ours

(a) Throwing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

ate

push
only-g
learn-a_z
ours

(b) Push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

soccer
only-g
learn-a_z
ours

(c) Soccer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

−0.2

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

ate

faucet
only-g
learn-a_z
ours

(d) Faucet Open

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Samples 1e5

0.0

0.1

0.2

0.3

0.4
Su

cc
es

s R
ate

pick
only-g
learn-a_z
vices-low-freq
ours

(e) Picking

Figure 2: Ablations for learning α (az) as well, only learning g (only-g), VICES at a lower control frequency
(vices-lower-freq)and VICES for Throw in end-effector space (vices-pos)

[3] R. Martin-Martin, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space: An action space for reinforcement learning in contact-rich tasks.
IROS, 2019. 1, 2

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017. 1, 2

[5] W. Whitney, R. Agarwal, K. Cho, and A. Gupta. Dynamics-aware embeddings. arXiv preprint
arXiv:1908.09357, 2019. 1, 2

[6] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. arXiv preprint
arXiv:1910.10897, 2019. 1

5


