
Supplementary Material

This supplementary material provides implementation details, hyper-parameters settings, additional
results and visualisations.

• Section A presents a focus on the design choices we use for IMGEP-HOLMES
• Section B provides implementation details for the main paper evaluation procedure

– B.1: Quantitative evaluation of diversity
– B.2: Quantitative evaluation of Representational Similarity
– B.3: Human-evaluator selection of the BC spaces for evaluating SLP and TLP diversity

• Section C provides all necessary implementation details for reproducing the main paper
experiments

– C.1: Lenia environment settings
– C.2: Parameter-sampling policy Π settings for Lenia’s initial state and update rule
– C.3: Settings for training the BC spaces in IMGEP-VAE and IMGEP-HOLMES

• Section D provides additional results that complete the ones from the main paper
– D.1: Complete RSA analysis of the hierarchy of behavioral characterizations learned

in HOLMES
– D.2: Additional IMGEP baselines with a monolithic BC space are compared
– D.3: Ablation study of the impact of the lateral connections in HOLMES

• Section E discusses the comparison of HOLMES with other model-expansion architectures
• Section F provides qualitative visualisations of the hierarchical trees that were autonomously

constructed by the different IMGEP-HOLMES variants.

Source code: Please refer to the project website http://mayalenE.github.io/holmes/ for
the source code and complete database of discoveries for our experiments.

1

http://mayalenE.github.io/holmes/

A Focus on IMGEP-HOLMES

Algorithm 1: IMGEP-HOLMES pseudo-code. Please refer to section 3 of the main paper for
the step-by-step implementation choices and to section C in apppendix for the implementation details.

Algorithm 1 IMGEP-HOLMES

Inputs: Parameter-sampling policy Π
Initialize root representationR = {R0}
for k ← 1 toN do

if k < Ninit then # initial random iterations
Sample θ ∼ U(Θ)

else # goal-directed iterations
Sample a target BC space B̂C ∼ Gs(H)

Sample a goal ĝ ∼ G(B̂C,H) in B̂C
Choose θ ∼ Π(B̂C, ĝ,H)

Rollout experiment with θ and observe o

Encode reached goals in the hierarchy
Start with root node i← 0, parent(i) = ∅
while i exists in the hierarchy (until leaf) do
ri = Ri(o,Rparent(i)(o))
Append (θ, o, ri) to the historyH
i← ic, c = Bi(ri) # go to left or right child

Augment representational capacity
if a BC space BCi is saturated then

FreezeRi weights

Define a boundary Bi : BCi → {0, 1}
Instantiate child modulesRi0 andRi1

Project past discoveries to children BCs
for (θ, o, r) ∈ H[BCi] do
Rj ←Ric, c = Bi(r)
Append (θ, o,Rj(o)) toH[j]

Periodically train HOLMES
if training requested then

for E epochs do
Train the hierarchyR on observations inH
with importance sampling

Update the database of reached goals
for i ∈ hierarchy do

for (θ, o, r) ∈ H[i] do
H[i][r]←Ri(o)

Ask for user feedback
if user feedback requested then

Ask user to score leaf BC spaces
Update Gs with assigned scores

A.1 Design choices in HOLMES

R0

R00 R01

BC0

BC00 BC01

R010 R011

BC010 BC011

R01

r01

Original image Learnable Lateral Connections

R011

r011

Local features

Global features

Embedding features

Local features

Global features

Representaiton

Reconstruction

Reconstructed image

D01

D011

lf_c

gfi_c

lfi_c

recon_c

Figure 6: Focus on the different design choices made for the HOLMES architecture. (Left) Each
module uses a VAE [33] as the base architecture, where the embedding Ri is coupled to a decoder
Di (Di is not shown on the left panel for readability). All non-leaf node VAEs are frozen as well as
their incoming lateral connections (light grey). The leaf nodes are incrementally trained on their own
niches of patterns (represented as colored squares above the embeddings) defined by the boundaries
fitted at each node split (curved dotted lines in each BC space, represented as clouds). (Right) R011

is trained to encode new information in a latent representation r011 (plain vertical arrow) by learning
to reuse its parent knowledge via the lateral connections (dotted arrows, denoted as l_f, gfi_c, lfi_c,
recon_c).

2

While the global architecture is generic and numerous design choices can be made, this section details
the practical implementation for the modules, connection scheme, and splitting criteria used in this
paper. We summarize those components in Figure 6.

Choice for the base module Each module has an embedding network Ri that maps an observation
o to a low-dimensional vector r = R(o). To learn such embedding, we rely on a variational
autoencoder network [33] for the base module. The encoder network Ri : qφ(r|x) is coupled with
a decoder network Di : pθ(x|r) that enables a generative process from the latent space, and the
networks are jointly trained to maximize the marginal log-likelihood of the training data with a
regularizer on the latent structure.
The training loss isLVAE(θ, φ; x, r) = Ep̂(x)

(
Eqφ(r|x) (− log pθ(x|r))

)︸ ︷︷ ︸
a

+Ep̂(x) (DKL (qφ(r|x)||p(r)))︸ ︷︷ ︸
b

,

where (a) represents the expected reconstruction error (computed with binary cross entropy) and
(b) is the regularizer KL divergence loss of the approximate diagonal Gaussian posterior qφ(r|x)
from the standard Gaussian prior p(z) = N (0, I). Please note that input observations are partitioned
between the different nodes in HOLMES, therefore each module VAE is trained only on its niche of
patterns. Only the encoder network Ri is kept in IMGEP-HOLMES (Algorihm 1), therefore other
choices for the base module and training strategy could be envisaged in future work, for instance
with contrastive approaches instead of generative approaches.

Choice for the connection scheme The connection scheme takes inspiration from Progressive
Neural Networks (PNN) [64]), where transfer is enabled by connecting the different modules via
learned lateral connections. To mitigate the growing number of parameters, we opted for a sparser
connection scheme that in [64]. The connection scheme is summarized in Figure 6. Connections are
only instantiated between a child and its parent (hierarchical passing of information). Connections
are only instantiated between a reduced number of layers (denoted as l_f, gfi_c, lfi_c, recon_c in
the figure). We hypothesize that transfer is beneficial in the decoder network so a child module
can reconstruct “as well as” its parent, however connections are removed between encoders as new
complementary type of features should be learned. We preserve the connections only at the local
feature level, as the CNN first layers tend to learn similar features [78]. Connections between linear
layers are defined as linear layers and connections between convolutional layers are defined as
convolutions with 1× 1 kernel. At each connection level, the output of the connection is summed to
the current feature map in the VAE. Other connection schemes could be envisaged in future work,
for instance with FiLM layers [55] (feature-wise affine transformation instead of sum) which have
recently been proposed for vision models.

Choice for the splitting criteria There are two main choices: when to split a node and how to
redirect the patterns toward either the left or right children. For both, we opted for simple design
choices that allow the split to be unsupervisedly and autonomously handled during the exploration
loop. We trigger a split in a node when the reconstruction loss of its VAE reaches a plateau, with
additional conditions to prevent premature splitting (minimal node population and minimal number
of training steps) or to limit the total number of splits. When splitting a node, we use K-means
algorithm in the embedding space to fit 2 clusters on the points that are currently in the node. This
generates a boundary in the latent space of the node, that we keep fixed for the rest of the exploration
loop. Again, many other choices could be envisaged in future work, for instance by including human
feedback to fit the boundary or with more advanced clustering algorithms.

3

B Complete Description of the Evaluation Procedure

B.1 Evaluation of diversity

B.1.1 Construction of 5 analytic BC spaces

This section details the 5 BC spaces introduced in section 4.1 of the main paper. Each set of BC
features relies either on engineered representation based on existing image descriptors from the
literature or on pretrained representations unsupervisedly learned on Lenia patterns. Those BCs were
constructed to characterize different types of diversities in the scope of evaluating meta-diversity as
defined in section 2, but obviously many others could be envisaged. The 5 BC models are provided
with the source code of this paper.

Each set of BC features is defined by a mapping function BCX : o ∈ [0, 1]256×256 7→ ẑ ∈ [0, 1]8

where X is the corresponding BC space, o is a Lenia pattern and ẑ represents its 8-dimensional
behavioral descriptor in the corresponding BC space.

We denote Dref an external dataset of 15000 Lenia patterns. The patterns in Dref were randomly
collected from prior exploration experiments in Lenia, experiments that include different random
seeds and different exploration variants and comport 50% SLPs and 50% TLPs. Dref is a large
database that is intended to cover a diversity of patterns orders of magnitude larger than what could
be found in any single algorithm experiment, and that we use as reference dataset to construct and
normalize the different evaluation BC spaces.

Spectrum-Fourier The 2-dimensional discrete Fourier transform is a mathematical method that
projects an image (2D spatial signal) into the frequency domain, from which frequency characteristics
can be extracted and used as texture descriptors [70]. Applications range from material descrip-
tion [50], leaf texture description in biology [13] and rule classification in cellular automata [47].

The construction of BCSPECTRUM-FOURIER is summarized in Figure 7 and follows the below procedure:

1. The 2D Fast Fourier Transform transforms the image o = f(x, y) into the u, v frequency
domain function F , the zero-frequency component is shifted to the center of the array and
the power specrum PS (or power spectral density) is computed:

F (u, v) =
1

256× 256

255∑
x=0

255∑
y=0

f(x, y) exp−j2π
ux
256

vx
256

F (u, v)← Roll(F (u, v), (
256

2
,

256

2
))

PS(u, v) = Real(F (u, v))2 + Imaginary(F (u, v))2

2. The power spectrum is filtered to keep only the lower half (symmetry property of the FFT)
and the significant values:

PS(u, v) = {PS(u, v), 0 ≤ u ≤ 256

2
,−256

2
≤ v ≤ 256

2
− 1}

PS(u, v) = 0 if PS(u, v) < mean(PS(u, v))

3. The power spectrum is partitioned into 20 ring-shaped sectors:[
Ri = {PS(u, v)|r2

1 ≤ u2 + v2 ≤ r2
2} with (r1, r2) = (

i

20
× 256

2
,
i+ 1

20
× 256

2
); for i ∈ [0..19]

]
4. A 40-dimensional feature vector (FV) representing radially-aggregating measures (mean µi

and standard deviation σi of each sector) is extracted:

FV (o) = [µ1, σ1, . . . , µ20, σ20],

where µi = mean(PS[Ri]), σi = std(PS[Ri])

5. The 40-dimensional feature vector FV is projected into a normalized 8-dimensional be-
havioral descriptor ẑ using a transformation T̂ : FV 7→ ẑ. T̂ is constructed with Principal

4

Component Analysis (PCA) [77] dimensionality reduction on Dref :

Xref = {FV (o), o ∈ Dref}
Fit a PCA with 8 components on Xref , PCA : FV ∈ R40 7→ z ∈ R8

zref = PCA(Xref), zmin = percentile(zref , 0.01), zmax = percentile(zref , 99.9))

T̂ : FV 7→ ẑ =
PCA(FV)− zmin
zmax − zmin

6. BCSPECTRUM-FOURIER(o) = T̂ ◦ FV (o)

4)	Extract	mean	and	
standard	deviation	
of	each	sector
(40	dims)

3)	Partition	the	Fourier	power
spectrum	into	20	ring	sectors

2)	a)	Consider	only	half
of	the	frequency	space

b)	Consider	only	pixels
with	significant	power
spectrum	values

1)	Apply	Fast	Fourier	Transform
to	get	the	centered
power	spectrum

original	image 5)	PCA	
dimensionality
reduction	on	Dref

(8	dims)

Figure 7: Construction of SPECTRUM-FOURIER analytic space. See text for details. Please note
that for visualisation purposes: (left) the original image is colorized but is originally a 256 × 256
grayscale image; (step 1-2-3) the power spectrum is depicted in logarithmic scale.

Elliptical-Fourier Elliptical Fourier analysis (EFA) [36] is a mathematical method for contour
description which has been widely-used for shape description in image processing [63]. These
descriptors have been applied to morphometrical analysis in biology [44], for instance to characterize
the phenotype of plants leaf and petal contours [52] or anatomical shape changes [10, 22].

A closed contour {xp, yp}Kp=1 (K points polygon) can be seen as a continuous periodic function of the
length parameter T =

∑K
p=1 ∆tp where tp is the distance from the p−1th to the pth point. Therefore

it can be represented as a sum of cosine and sine functions of growing frequencies (harmonics) under
Fourier approximation. Each harmonic is an ellipse which is defined by 4 coefficients a, b, c, d.

The construction of BCELLIPTICAL-FOURIER is summarized in Figure 8 and follows the below procedure:

1. Binarize the image obinary = o > 0.2 and extract the external contour as the a list of the
(x,y) positions of the pixels that make up the boundary using OpenCV function contour =
cv2.findContours(obinary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

2. Extract the set of {an, bn, cn, dn}Nn=1 coefficients for a series of N ellipses (N=25) from the
x- and y-deltas (∆xp and ∆yp) between each consecutive point p in the K points polygon:

an =
T

2n2π2

K∑
p=1

∆xp
∆tp

[
cos

2nπtp
T
− cos

2nπtp−1

T

]

bn =
T

2n2π2

K∑
p=1

∆xp
∆tp

[
sin

2nπtp
T
− sin

2nπtp−1

T

]

cn =
T

2n2π2

K∑
p=1

∆yp
∆tp

[
cos

2nπtp
T
− cos

2nπtp−1

T

]

dn =
T

2n2π2

K∑
p=1

∆yp
∆tp

[
sin

2nπtp
T
− sin

2nπtp−1

T

]
3. The coefficients are standardized (i.e. made invariant to size, rotation and shift):[

a∗n b∗n
c∗n d∗n

]
= 1

L

[
cosφ sinφ
− sinφ cosφ

] [
an bn
cn dn

] [
cosNθ sinNθ
− sinNθ cosNθ

]
, where L =√

[(A0 − xm)2 + (C0 − xm)2], (A0, C0) is the center of the 1st harmonic ellipse, (xm, ym)

5

is the location of the modified starting point (on the major axis of the ellipse), θ = 2πtm
T

and φ = tan−1 ym−C0

xm−A0
(angle between the major axis of the ellipse and xaxis).

4. The 100-dimensional feature vector FV = {a∗n, b∗n, c∗n, d∗n}25
n=1 is projected into a nor-

malized 8-dimensional behavioral descriptor using a transformation T̂ : FV 7→ ẑ. T̂ is
constructed with Principal Component Analysis (PCA) dimensionality reduction on Dref
(similar procedure as in point 5 of BCSPECTRUM-FOURIER).

5. BCELLIPTICAL-FOURIER(o) = T̂ ◦ FV (o)

3)	Compute	standardized
descriptors	per	harmonic

(100	dims)

4)	PCA	dimensionality
reduction	on	Dref

(8	dims)

1)	Binarize	the	image	and
extract	contour

Extracted	contour
(green)

original	image 2)	Elliptical	Fourier	Analysis:	express	the	contour	as	the
sum	of	N=25	harmonics		

...

Reconstructed	contour
(red)	with	first	harmonic

Reconstructed	contour
(red)	with	25	harmonics

Figure 8: Construction of ELLIPTICAL-FOURIER analytic space. See text for details. (step 1) The
contour depicted in green is extracted with OpenCV findContours() function (step 2) The contours
depicted in red are reconstructed from the EFA coefficients (like in other Fourier series transforms
the shape signal can be approximated by summing the harmonics [36]).

Lenia-Statistics The original Lenia paper proposes several measures for statistical analysis of the
Lenia patterns (section 2.4.2 in [6]), also defined in Reinke et al. (2020) (section B.3 in [62]).

BCLENIA-STATISTICS is constructed on top of these measures according to the below procedure:

1. Among all the statistical measures proposed in [6] we selected the 17 measures that are
time-independent, i.e. that can be computed from the final Lenia pattern o = I(x, y),
namely:
• the activation mass m = 1

256×256

∑
(x,y)∈I

I(x, y)

• the activation volume Vm = 1
256×256

∑
(x,y)∈I

δI(x,y)>ε (ε = 10−4)

• the activation density ρm = m
Vm

• the centeredness of the activation mass distribution
Cm = 1

m

∑
(x,y)∈I

wxy · I(x− x̄m, y − ȳm) where (x̄m, ȳm) is the activation centroid

and wx,y =

(
1− d(x,y)

max
x,y

d(x,y)

)2

with d(x, y) =
√

(x− x̄m)2 + (y − ȳm)2

• the 8 invariant image moments by Hu [30]
• the 5 extra invariant image moments by Flusser [20]

2. The 17-dimensional feature vectorFV = [m,Vm, ρm, Cm, hu1, . . . , hu7, f lusser8, . . . , f lusser13]
is projected into a normalized 8-dimensional behavioral descriptor using a transformation
T̂ : FV 7→ ẑ. T̂ is constructed with Principal Component Analysis (PCA) dimensionality
reduction on Dref (similarly than for BCSPECTRUM-FOURIER).

3. BCLENIA-STATISTICS(o) = T̂ ◦ FV (o)

BetaVAE Reinke et al. (2020) [62] propose to train a β-VAE [5] on a large database of Lenia
pattterns and to reuse the learned features as behavioral descriptors for the analytic BC space.

BCBETAVAE is constructed according to the below procedure :

1. A β-VAE with 8-dimensional latent space is instantiated with the architecture detailed in
table 1.

2. The construction of the training dataset, training procedure and hyperparameters fol-
lows [62]:

6

• The β-VAE is trained on an external database D(big)
ref of 42500 Lenia patterns (with

50% SLP and 50% TLP, 37500 as training set, 5000 as validation set) which were
randomly collected from independent previous experiments (with the same procedure
than Dref).

• The β-VAE is trained for more than 1250 epochs with hyperparameters β = 5, Adam
optimizer (lr = 1e−3, β1 = 0.9, β2 = 0.999, ε = 1e−8, weight decay=1e−5) and a
batch size of 64.

• The network weights which resulted in the minimal validation set error during the
training are kept.

3. The resulting pretrained encoder serves as mapping function from a Lenia pattern o to a
8-dimensional feature vector FV (o) = [z1, z2, z3, z4, z5, z6, z7, z8]

4. Similarly to the other analytic BC spaces in this paper, we use the reference dataset Dref to
normalize the 8-dimensional behavioral descriptors between [0, 1]:

zref = {FV (o), o ∈ Dref}, zmin = percentile(zref , 0.01), zmax = percentile(zref , 99.9))

T̂ : FV 7→ ẑ =
FV − zmin
zmax − zmin

5. BCBETAVAE(o) = T̂ ◦ FV (o)

Patch-BetaVAE Reinke et al. (2020) noticed that the β-VAE is not able to encode finer details
and texture of patterns as the compression of the images to a 8-dimensional vector results in a
general blurriness in the reconstructed patterns [62]. Therefore, we also implemented an additional
variant denoted as PATCH-BETAVAE where the β-VAE is trained on “zoomed” 32 × 32 patches.
A preprocessing step extracts the cropped patch around the image activation centroid P : o 7→
o[x̄m−16 : x̄m+16, ȳm−16 : ȳm+16]. Then, the construction of BCPATCH-BETAVAE follows exactly
the construction of BCBETAVAE, except that the network architecture has only 3 convolutional layers
instead of 6. Following the notations of the previous paragraph, BCPATCH-BETAVAE(o) = T̂ ◦FV ◦P (o)

with FV the pretrained model on image patches and T̂ a normalizing function computed on Dref .

B.1.2 Binning-based Diversity Metric

We follow existing approaches in the QD and IMGEP literature [55, 57] and use binning-based
measure to quantify the diversity of a set of explored instances into a predefined BC space. The entire
BC space is discretized into a collection of t bins N1, . . . , Nt and the diversity is quantified as the

number of bins filled over the course of exploration: D|BC =
t∑
i=1

δi where δi = 1 if the N th
i bin is

filled, δi = 0 otherwise.

We opt for a regular binning where each dimension of the BC space is discretized into equally sized
bins. For all the results in the main paper, 20 bins per dimension are used for the discretization of the
BC spaces. For recall, all the analytic BC spaces used in this paper are 8-dimensional and bounded in
[0, 1]8 (see previous section). This results in a total of 25.6× 109 bins. Note however that for a given
BC space, the maximum number of bins that can be filled by all possible Lenia patterns is unknown.

Because binning-based metrics directly depend on the choice of the bins discretization, we analyze in
Figure 9 the impact of the choice of the number of bins on the final diversity measure. As we can see,

Encoder Decoder
Input pattern A: 256× 256× 1 Input latent vector z: 8× 1
Conv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU FC layers : 256 + ReLU, 256 + ReLU, 4× 4× 32 + ReLU
Conv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 32 kernels 4× 4, stride 2, 1-padding + ReLU
FC layers : 256 + ReLU, 256 + ReLU, FC: 2× 8 TransposeConv layer: 32 kernels 4× 4, stride 2, 1-padding

Table 1: β-VAE architecture used for BCBETAVAE.

7

the ranking of the different IMGEP algorithms compared in Figure 5 of the main paper is invariant to
this choice.

(a) Diversity of SLP in BCELLIPTICAL-FOURIER (b) Diversity of TLP in BCLENIA-STATISTICS

5 10 15 20 25 30
0

500

1000

1500 Random Exploration

IMGEP-VAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

bins per dimension

nu
m

be
r

of
bi

ns

5 10 15 20 25 30
0

500

1000

1500

Random Exploration

IMGEP-VAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

bins per dimension

nu
m

be
r

of
bi

ns

Figure 9: Influence of the choice of the number of bins on the diversity measure presented in Figure
5 of the main paper. The final diversity (number of occupied bins at the end of exploration, as shown
in the y axis) is measured by varying the number of bins per dimension from 5 to 35. Results in the
main paper use n=20 bins. Mean and std-deviation shaded area curves are depicted.

B.2 Representational Similarity Analysis

We denote D(small)
ref an external dataset of 3000 Lenia patterns (50% SLPs and 50% TLPs) which

were collected with the same procedure than Dref .

Given two representations embedding networks Ri and Rj with 8-dimensional latent space, the RSA
similarity index RSAij is computed with the the linear Centered Kernel Alignment index (CKA) as
proposed in [34]:

1. Compute the matrix of behavioral descriptors responses from each representation
Zi = [Ri(o), o ∈ D(small)

ref] ∈ [0, 1]3000×8 and Zj = [Rj(o), o ∈ D(small)
ref] ∈ [0, 1]3000×8

2. Center the matrices responses:
Zi ← Zi −mean(Zi, axis = 0) and Zj ← Zj −mean(Zj , axis = 0)

3. RSAij = CKA(ZiZ
T
i , ZjZ

T
j) =

||Zi·ZTj ||
2
F

||Zi·ZTi ||F ||Zj ·ZTj ||F
where || · ||F represents the Frobenius norm

Representation Similarity Analysis (RSA) is used in Figure 3 of the main paper in two ways:

• To compare representations in time, i.e. where the the embedding networks Ri and Rj come
from the same network but from different training stages

• To compare representations from different modules in HOLMES where the the embedding
networksRi andRj are taken from the same time step (end of exploration) but from different
networks.

B.3 Human-Evaluator Selection of a proxy-BC for Evaluation of SLP and TLP Diversity

Relying on the external database Dref of 15000 Lenia patterns (50% SLP - 50% TLP) and the
SLP/TLP classifiers, we conducted an experiment with a human evaluator to select the analytic BC
space that correlates the most with human judgement of what represents a diversity of SLP and a
diversity of TLP.

The experiment consisted in repeatedly showing the human with two sets of patterns (as shown in
Figure 10) and asking the human to click on the set that he considers is the more diverse, according
to its intuitive notion of diversity. If the human cannot choose between the two sets, he can click on
the “pass” button. In background, the procedure to generate the sets is the following:

1. Randomly select a (BC, category) pair, where BC ∈ {SPECTRUM-FOURIER, ELLIPTICAL-
FOURIER, LENIA-STATISTICS, BETAVAE, PATCH-BETAVAE} and category ∈ {SLP,TLP}.

8

Figure 10: Interface used for selecting of the best proxy-BC analytic space that correlates with human
judgement of what represents a diversity of SLP and a diversity of TLP.

2. Randomly draw 750 candidate sets of 6 images among the 7500 patterns of the current
category.

3. Select the most similar set and the most dissimilar (i.e. diverse) set among those 750
sets. The (di-)ssimilarity of a set of 6 images is measured as a function of all the distances
between each pair of images in the set, with distances being computed in the current
BC space. This distance-based measure of diversity D, proposed in [65], measures the
magnitude M (dispersion) and variability E (equability) of the set of S=6 points in the
BC [65]:

M =
S

S − 1

S∑
i=1

S∑
j=1

dij
S2
, where dij is the pairwise euclidean distance

E =
1 +
√

1 + 4H

2S
, where H =

 S∑
i=1

S∑
j=1

(
dij∑S

i=1

∑S
j=1 dij

)2
 1

1−2

D = 1 + (S − 1)× E ×M,M ∈ [0, 1]andE ∈ [0, 1]

This measure replaces the binning-based measure which can hardly be used here (as they
are only 6 images most candidate sets are likely to fall in the same number of bins and be
equally diverse).

4. The sets are displayed to the human in random presentation order.

This experiment was conducted with one human evaluator which performed a total of 500 clicks, i.e
50 times per (BC, category) pair. For each click per (BC,category) pair, the agreement score is 0 if the
human selected the opposite set that the one considered as diverse by the BC, 0.5 is the human selected
the “pass” button and 1 if the human selected the set considered as diverse by the BC. Table 2 reports
the mean and standard deviation agreement scores of the human evaluator for each (BC, category)

pair. The agreement score is significant at level α = 5% if it is above 0.64 = 0.5 + 1.96×
√

0.25
50 .

Table 2: Human-evaluator agreement scores (mean ± std). Best scores are shown in bold.
Spectrum-Fourier Elliptical-Fourier Lenia-Statistics BetaVAE Patch-BetaVAE

SLP 0.5± 0.18 0.98± 0.04 0.59± 0.12 0.1± 0.06 0.89± 0.08
TLP 0.2± 0.13 0.47± 0.1 0.92± 0.07 0.75± 0.08 0.38± 0.08

As we can see, the human evaluator designated BCELLIPTICAL-FOURIER as the best proxy space for
evaluating the diversity of SLP (98% agreement score) and BCLENIA-STATISTICS as the best proxy space
for evaluating the diversity TLP (92% agreement score). This is why those BCs are used in Figure 5
of the main paper.

9

C Experimental Settings

C.1 Environment Settings

All experiments are done in the Lenia environment, as described in [6, 62]. As stated in the main
paper, we use a 256× 256 state size (A ∈ R256×256) and a number of T = 200 steps for each run.

The 256× 256 Lenia grid is a torus where the neighborhood is circular (i.e pixels on the top border
are neighbors of the pixels on the bottom border and same between the left and right borders).

Lenia’s update rule (At → At+1) is defined as At+1 = At + ∆TG(K ∗At), where:

• G defines a parametrized growth mapping function: exponential with G(u;µ, σ) =

2 exp
(
− (u−µ)2

2σ2

)
− 1

• K defines a parametrized concentric-ring Kernel with:

KC(r) = exp

(
α− α

4r(1− r)

)
, with α = 4 (Kernel core)

KS(r;β) = βbBrcKC(Br mod 1), with β = (β1, β2, β3) (Kernel shell)

K =
KS

|KS |

The update rule is therefore determined with 7 parameters:

• R: radius of the Kernel (i.e. radius of the local neighborhood that influences the evolution
of each cell in the grid),

• T = 1
∆T

: fraction of the growth update that is applied per time step,

• µ, σ: growth center and growth width,

• β1, β2, β3: concentring rings parameters that control the shape of the kernel.

See the project website http://mayalenE.github.io/holmes/ for videos of the Lenia dynamics.

C.2 Sampling of parameters θ

The set of controllable parameters θ of the artificial agent include:

• The update rules parameters [R, T , µ, σ, β1, β2, β3]

• CPPN-parameters that control the generation of the initial state At=1

For each exploration run, the IMGEP agent samples a set of parameters θ ∈ Θ that generates a rollout
At=1 → · · · → At=200.

Following the notations of Algorithm 1, there are two ways parameters θ ∈ Θ are sampled:

1. During the Ninit initial runs, parameters are randomly sampled θ ∼ U(Θ)

2. During the goal-directed exploration runs, parameters are sampled from a policy θ ∼
Π(ˆBCi, ĝ,H). The Π policy operates in two steps:

(a) given a goal g ∈ ˆBCi, select parameters θ̂ ∈ H whose corresponding outcome is
closest to g in ˆBCi

(b) mutate the parameters by a random process θ = MUTATION(θ̂)

We therefore need to define 1) the random process U used to randomly initialize the parameters θ and
2) the random MUTATION process used to mutate an existing set of parameters θ̂.

Please note that for both we follow exactly the implementation proposed in Reinke et al. (2020) [62].
We therefore refer to section B.4 of their paper for a complete description of the implementation of
the random initialization process and random mutation process. This includes the procedure used

10

http://mayalenE.github.io/holmes/

for parameters that control the generation of the initial pattern At=1 and for parameters that control
Lenia’s update rule.

In this paper, we use the exact same hyperparameters as in [62] for initialization U and MUTATION
of the CPPN-parameters that control the generation of the initial state At=1. We use slightly different
hyper-parameters for the MUTATION of the parameters that control the generation of the update rule
[R, T , µ, σ, β1, β2, β3], as detailed in table 3.

Table 3: Sampling of parameters for the update rule. The random initialization process U uses uniform
sampling in an interval [a, b]. The random MUTATION is a Gaussian process θ = [θ̂ +N (σM)]ba.

R T µ σ (β1, β2, β3)

[a, b] [2, 20] [1, 20] [0, 1] [0.001, 0.3] [0, 1]

σM 0.5 0.5 0.1 0.05 0.1

C.3 Incremental Training of the BC Spaces

Training Procedure The networks are trained 100 epochs every 100 runs of exploration (resulting
in 50 training stages and 5000 training epochs in total). The networks are initialized with kaiming
uniform initialization. We used the Adam optimizer (lr = 1e−3, β1 = 0.9, β2 = 0.999, ε = 1e−8,
weight decay=1e−5) with a batch size of 128.

Training Dataset The datasets are incrementally constructed during exploration by gathering the
discovered patterns. One pattern every ten is added to the validation set (10%) and the rest is used in
the training set (the validation dataset only serves for checking purposes and has no influence on the
learned BC spaces). Importance sampling is used to give the newly-discovered patterns more weights.
A weighted random sampler is used as follow: at each training stage t, there areX patterns discovered
so far among which Xnew have been discovered during the last 100 steps, we create a dataset Dt of
X images that we construct by sampling 30% among the Xnew lastly discovered images and 70%
among the X −Xnew old patterns. We also use data-augmentation, i.e at each training stage t, the
images in Dt are augmented online by random x and y translations (up to half the pattern size and
with probability 0.6), rotation (up to 20 degrees and with probability 0.6), horizontal and vertical
flipping (with probability 0.2), zooming (up to factor 3 with probability 0.6). The augmentations are
preceded by spherical padding to preserve Lenia spherical continuity.

IMGEP-VAE The monolithic VAE architecture used in the IMGEP-VAE baseline is detailed in
table 4. It has a total neural capacity of 2258657 parameters.

Encoder Decoder
Input pattern A: 256× 256× 1 Input latent vector z: 16× 1
Conv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU FC layers : 512+ ReLU, 512+ ReLU, 4× 4× 64 + ReLU
Conv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU TransposeConv layer: 64 kernels 4× 4, stride 2, 1-padding + ReLU
FC layers : 512+ ReLU, 512+ ReLU, FC: 2× 16 TransposeConv layer: 1 kernels 4× 4, stride 2, 1-padding

Table 4: VAE architecture used for IMGEP-VAE.

IMGEP-HOLMES For the IMGEP-HOLMES variant, the hierarchical representation starts with
a single root module R0 at the beginning of exploration. During each training stage, one node is split
if it meets the following conditions:

• the reconstruction loss for that node reaches a plateau (running average over the last 50
training epochs is below ε = 20)

• at least 500 patterns populate the node

11

• the node has not just been created (must has been trained for at least 200 epochs)
• it is not too early in the exploration loop (there must be at least 2000 patterns are explored)
• the total number of nodes in the hierarchy is below the maximum number allowed (we stop

the expansion after 11 splits i.e. 23 modules)

Each time a split is triggered in a BC space node of the hierarchy BCi, the boundary Bi is fitted in
the latent space as follows: K-Means algorithm with 2 clusters is ran on the patterns that currently
populate the node. The resulting clusters are kept fixed for the rest of the exploration, therefore when
a pattern is projected in the split node, it is sent to the left children if it belongs to the first cluster on
the latent space and to the right children otherwise.
For the IMGEP-HOLMES variant, the final hierarchy has a total of 23 VAE modules. The architecture
is identical for each module and is detailed in table 5. At the end of exploration, HOLMES has a total
neural capacity of 2085981 parameters. Each base module VAE has a capacity of 86225 parameters
and connections of 4673 parameters (2085981 = 23× 86225 + 22× 4673).

Encoder
Input pattern A: 256× 256× 1
Conv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU lf_c: 16 kernels 1× 1, stride 1, 1-padding
Conv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
Conv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
FC layers : 64+ ReLU, 64+ ReLU, FC: 2× 16

Decoder
Input latent vector z: 16× 1
FC layers : 64+ ReLU, gfi_c: 64+ReLU
FC layers: 64+ ReLU, 4× 4× 16 + ReLU
TransposeConv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
TransposeConv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
TransposeConv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU lfi_c: 16 kernels 1× 1, stride 1, 1-padding
TransposeConv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
TransposeConv layer: 16 kernels 4× 4, stride 2, 1-padding + ReLU
TransposeConv layer: 1 kernel 4× 4, stride 2, 1-padding recon_c: 1 kernel 1× 1, stride 1, 1-padding

Table 5: Module architecture used for IMGEP-HOLMES. All the modules Ri have this architecture
for the base VAE network as well as the connections (exceptR0 which does not have the connections).

12

D Additional Results

D.1 RSA complete temporal analysis and statistics

Figure 11 shows how HOLMES is able to progressively builds a hierarchy of behavioral characteriza-
tion spaces from the incoming data. The data is here collected by the IMGEP-HOLMES algorithm,
with 50 training stages occurring each 100 steps. At start (stage 0), the hierarchy contains only the
root node at the top of the figure (BC 0). Node saturation occurs at training stages where the RSA
similarity index between the representation at that stage and the representations at all subsequent
stages is high (yellow). For example, we see on the figure that the root node saturates after approx-
imately 15-20 training stages. When a node saturates, HOLMES splits it in two child nodes (see
section A.1 for details on the splitting procedure). For example, the root node BC 0 is split into the
child nodes BC 00 and BC 01 at training stage 21, as indicated by the fact that the RSA plots of

10 20 30 40

10

20

30

40

BC 0

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 00

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 01

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 000

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 001

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 010

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 011

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 0000

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 0001

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 0110

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 0111

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 00000

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 00001

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 00010

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 00011

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 01100

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 01101

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 01110

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 01111

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 011110

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 011111

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 0111100

training stages

tr
ai

ni
ng

 s
ta

ge
s

10 20 30 40

10

20

30

40

BC 0111101

training stages

tr
ai

ni
ng

 s
ta

ge
s

Figure 11: Example of a hierarchy of behavioral characterization spaces learned by HOLMES. It
starts with a root node (BC 0, top) and iteratively splits the learned latent spaces, resulting in a tree
structure (with leaf nodes at the bottom). In each node, we display the RSA similarity index between
0 (dark blue, not similar at all) and 1 (yellow, identical), where representations are compared in time
between the different training stages.

13

these child nodes start at that stage. When a node is split, the parent node is frozen and learning
only continues in leaf nodes (as indicated by the RSA indexes of a parent node being all at 1 after
a split). We observe that some child nodes saturate much more quickly than others. For example,
node BC 000 saturates only a few training stages after its split from BC 00, while its sibling BC 001
never saturates until the end of the training at stage 50. The RSA analysis of node BC 001 indeed
shows that the learned representation continues to evolve as training occurs. This means that this
node corresponds to a part of the BC space constituting a rich progress niche for the base module
VAE associated with that node. In contrast, node BC 000 will require further splitting to discover
such progress niches in its child nodes. The reader can refer to Figure 15 in section F for visualizing
discovered patterns in each nodes of the hierarchy.

VAE HOLMES

10 20 30 40

5

10

15

20

25

30

35

40

45

training stages

tra
in

in
g

st
ag

es

5 10 15 20 25 30 35 40 45

0.75

0.8

0.85

0.9

0.95

1

RSA Similarity Before and After
 Training Stage

training stage

R
SA

 si
m

ila
rit

y

B
C

 0
B

C
 00

B
C

 01
B

C
 010

B
C

 011
B

C
 000

B
C

 001
B

C
 0110

B
C

 0111
B

C
 0000

B
C

 0001
B

C
 01110

B
C

 01111
B

C
 011110

B
C

 011111
B

C
 01100

B
C

 01101
B

C
 00010

B
C

 00011
B

C
 00000

B
C

 00001
B

C
 0111100

B
C

 0111101

BC 0
BC 00
BC 01

BC 010
BC 011
BC 000
BC 001

BC 0110
BC 0111
BC 0000
BC 0001

BC 01110
BC 01111

BC 011110
BC 011111
BC 01100
BC 01101
BC 00010
BC 00011
BC 00000
BC 00001

BC 0111100
BC 0111101

0

0.2

0.4

0.6

0.8

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150

RSA Similarity Between
 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

Figure 12: RSA similar-
ity index between 0 (dark
blue, not similar at all)
and 1 (yellow, identical).
(Top) RSA matrix for
one experiment as shown
in Figure 3 of main pa-
per. (Bottom) statistics
over the 10 repetitions:
(bottom-VAE) RSA in-
dex similarity between
representations coming
from two consecutive
training stages (mean and
std); (bottom-HOLMES):
histogram of RSA in-
dex similarity between
all pairs of modules
in HOLMES (aggregated
over the 10 repetitions).

Figure 12 complements Figure 3 of the main paper with statistical results over 10 repetitions. The
statistical results (bottom row) confirm our analysis: the VAE representation saturates quite early in
the exploration loop and the representations learned by HOLMES modules are dissimilar from one
module to another. Indeed we can see that the VAE representations of all experiments saturate after
15 training stages (high RSA ≈ 1 between remaining consecutive training stages). The histogram of
similarity index between all pairs of modules in HOLMES (for all experiments) show a concentration
between [0,0.3] (i.e. very low similarity).

D.2 Additional IMGEP baselines with a monolithic BC space

In section 4.2 of the main paper, we compared the incremental training of behavioral training between
an IMGEP equipped with a monolithic VAE (IMGEP-VAE) and an IMGEP equipped with the
hierarchy of VAEs (IMGEP-HOLMES).

Baselines In this section, we consider different baselines for the training strategy of the monolithic
architecture: BetaVAE [5], BetaTCVAE [9], TripletCLR [8, 67], SimCLR [11] and BigVAE. All
the baselines have the same encoder architecture and training procedure than the main baseline
IMGEP-VAE (as detailed in section C.3). The baselines differ in their approach to train the encoder
network, including several variants of variational-autoencoders and contrastive approaches.

The first two variants BetaVAE [5] and BetaTCVAE [9] build on the VAE framework and augment
the VAE objective with the aim to enhance interpretability and disentanglement of the latent variables.
Therefore only the training loss of the VAE (see section A.1) differs:

• The BetaVAE objective re-weights the b term by a factor β > 1:
LBETAVAE(θ, φ; x, r) = Ep̂(x)

(
Eqφ(r|x) (− log pθ(x|r))

)︸ ︷︷ ︸
a

+β × Ep̂(x) (DKL (qφ(r|x)||p(r)))︸ ︷︷ ︸
b

Our baseline uses β = 10.

14

• The BetaTCVAE objective augments the VAE objective with an additional regularizer that
penalizes the total correlation (dependencies between the dimensions of the representation):

LBETATCVAE(θ, φ; x, r) = Ep̂(x)

(
Eqφ(r|x) (− log pθ(x|r))

)
+

α× Iqφ(x|r)︸ ︷︷ ︸
mutual information

+ β × TC(qφ(r))︸ ︷︷ ︸
total correlation

+γ ×
∑
j

DKL(qφ(zj)||p(zj))︸ ︷︷ ︸
elementwise KL

Because TC is not tractable, they [9] propose two methods based on importance sampling to
estimate it: minibatch weighted sampling (mws) and minibatch stratified sampling (mss).
Our baselines uses α = 1, β = 10, γ = 1 and mss importance sampling.

The second two variants TripletCLR [8, 67] and SimCLR [11] use contrastive approaches as training
strategy for the encoder. Contrary to the VAE variants, these approaches drop the decoder networks
and pixel-wise reconstruction as their training objective operates directly in the latent space. The
encoders are trained to maximize agreement between differently augmented versions of the same
observation o. We used to 2 variants for the contrastive loss:

• Triplet Loss: LTRIPLETCLR(A,P,N) = max (d(R(A), R(P))− d(R(A), R(N)) + α, 0)
where R is the embedding network, A is an anchor input (pattern o in the training dataset),
P is the positive input (augmented version of o), N is the negative input (other pattern o′
randomly sampled in the training dataset), d(·, ·) is the distance in the latent space (we use
cosine similarity) and α is a margin between positive and negative pairs (we use α = 1)

• SimCLR Loss: LSIMCLR(A,P) = − log exp sim(zA,zP)/τ∑
N 1[N 6=A] exp sim(zA,zN)/τ where τ denotes the

temperature parameter (we use τ = 0.1); sim the similarity distance (we use cosine
similarity); and z represent the latent features onto which operates the contrastive loss.
Please note that for this variant the encoder is coupled to a projection head network g(·)
such that o R→ r

g→ z (We use g: FC 16→16 + RelU, FC 16→16). Here the positive pair
(A, P) is contrasted with all negative pairs (A, N) in the current batch. The final loss is
computed across all positive pairs in a mini-batch.

Finally the BigVAE baseline uses the same architecture and training strategy than the main VAE
baseline, but with a much larger embedding capacity (368 dims instead of 16 dims) corresponding to
the total embedding capacity of HOLMES if we would concatenate its 23 BC latent spaces.

Results The results are summarized in Figure 13 and corroborate with the insights in the main
paper.

• Lack of plasticity for the all VAE variants, i.e. inability to adapt the learned features to novel
niches of patterns. The bias that we observed in the main paper is confirmed in the RSA
analysis, even when changing the training objective or the encoding capacity. Interestingly,
IMGEP-BetaVAE and IMGEP-BetaTCVAE show the same profile of discovered diversities
than VAE (good at finding a diversity of SLPs but bad for TLPs) whereas the IMGEP-
BigVAE seems to have a reversed bias (good at finding a diversity of TLPs but bad for SLPs).
We attribute this effect to the difficulty of VAEs with low embedding capacity to capture
textures with fine-grained structures (i.e. TLPs) whereas when given a higher encoding-
capacity they can more accurately represent TLPs. Therefore the variants with small capacity
representations seem better suited for exploring diverse SLPs (to the detriment of TLPs)
whereas BigVAE seem better suited for exploring diverse TLPs (to the detriment of SLPs).
• Lack of stability for all the contrastive variants, where features are drastically different from

one training stage to the other. Contrary to the VAE variants, those approaches do not exhibit
a strong bias in their BC and therefore do not seem to differ much from the default diversity
found in Lenia (represented with the black curve), at least for the two types of diversity
measured in Figure 13.

15

RSA Analysis Diversity of SLP
in BCELLIPTICAL-FOURIER

Diversity of TLP
in BCLENIA-STATISTICS

IMGEP-
BetaVAE

10 20 30 40

5

10

15

20

25

30

35

40

45

training stages

tra
in

in
g

st
ag

es

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

Random Exploration

IMGEP-BetaVAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

0 1000 2000 3000 4000 5000

0

200

400

600

800

Random Exploration

IMGEP-BetaVAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

IMGEP-
BetaTCVAE

10 20 30 40

5

10

15

20

25

30

35

40

45

training stages

tra
in

in
g

st
ag

es

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

1200
Random Exploration

IMGEP-BetaTCVAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

0 1000 2000 3000 4000 5000

0

200

400

600

800

Random Exploration

IMGEP-BetaTCVAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

IMGEP-
TripletCLR

10 20 30 40

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

Random Exploration

IMGEP-TripletCLR

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

0 1000 2000 3000 4000 5000

0

200

400

600

800

Random Exploration

IMGEP-TripletCLR

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

IMGEP-
SimCLR

10 20 30 40

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

Random Exploration

IMGEP-SimCLR

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

0 1000 2000 3000 4000 5000

0

200

400

600

800

Random Exploration

IMGEP-SimCLR

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

IMGEP-
BigVAE

10 20 30 40

5

10

15

20

25

30

35

40

45

training stages

tra
in

in
g

st
ag

es

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

Random Exploration

IMGEP-BigVAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

0 1000 2000 3000 4000 5000

0

200

400

600

800

Random Exploration

IMGEP-BigVAE

IMGEP-HOLMES

IMGEP-HOLMES (SLP)

IMGEP-HOLMES (TLP)

explorations

di
ve

rs
ity

Figure 13: This figure complements the results presented in the main paper, where we replace
the baseline with the monolithic BC space (IMGEP-VAE) with different architectures and training
strategies. Each row is a baseline denoted as IMGEP-X (where X represents the training strategy
used for training the monolithic representation). For each row, we display: (left) RSA matrix where
representations are compared in time between the different training stages, as shown in Figure 3 of
the main paper; (middle-right) exact same plots than Figure 5 of the main paper where we replace the
monolithic IMGEP-VAE baseline (pink curve) by the other baseline (of the current row). Therefore
only the pink curve vary between the different graphs of one column.

16

D.3 Ablation Study: Impact of the Lateral Connections

RSA Matrix RSA Statistics

no connection

B
C

 0
B

C
 00

B
C

 01
B

C
 010

B
C

 011
B

C
 000

B
C

 001
B

C
 0110

B
C

 0111
B

C
 01110

B
C

 01111
B

C
 011110

B
C

 011111
B

C
 0111110

B
C

 0111111
B

C
 0000

B
C

 0001
B

C
 0010

B
C

 0011
B

C
 0100

B
C

 0101
B

C
 01111110

B
C

 01111111

BC 0
BC 00
BC 01

BC 010
BC 011
BC 000
BC 001

BC 0110
BC 0111

BC 01110
BC 01111

BC 011110
BC 011111

BC 0111110
BC 0111111

BC 0000
BC 0001
BC 0010
BC 0011
BC 0100
BC 0101

BC 01111110
BC 01111111

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60 RSA Similarity Between
 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

only lf_c

B
C

 0
B

C
 00

B
C

 01
B

C
 000

B
C

 001
B

C
 010

B
C

 011
B

C
 0110

B
C

 0111
B

C
 01110

B
C

 01111
B

C
 011110

B
C

 011111
B

C
 0111110

B
C

 0111111
B

C
 0000

B
C

 0001
B

C
 01111110

B
C

 01111111
B

C
 0010

B
C

 0011
B

C
 011111110

B
C

 011111111

BC 0
BC 00
BC 01

BC 000
BC 001
BC 010
BC 011

BC 0110
BC 0111

BC 01110
BC 01111

BC 011110
BC 011111

BC 0111110
BC 0111111

BC 0000
BC 0001

BC 01111110
BC 01111111

BC 0010
BC 0011

BC 011111110
BC 011111111

0.5

0.6

0.7

0.8

0.9

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100 RSA Similarity Between
 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

only gfi_c

B
C

 0
B

C
 00

B
C

 01
B

C
 010

B
C

 011
B

C
 000

B
C

 001
B

C
 0110

B
C

 0111
B

C
 01110

B
C

 01111
B

C
 011110

B
C

 011111
B

C
 0000

B
C

 0001
B

C
 0111110

B
C

 0111111
B

C
 0100

B
C

 0101
B

C
 0010

B
C

 0011
B

C
 01100

B
C

 01101

BC 0
BC 00
BC 01

BC 010
BC 011
BC 000
BC 001

BC 0110
BC 0111

BC 01110
BC 01111

BC 011110
BC 011111

BC 0000
BC 0001

BC 0111110
BC 0111111

BC 0100
BC 0101
BC 0010
BC 0011

BC 01100
BC 01101

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80
RSA Similarity Between

 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

only lfi_c

B
C

 0
B

C
 00

B
C

 01
B

C
 010

B
C

 011
B

C
 000

B
C

 001
B

C
 0110

B
C

 0111
B

C
 0100

B
C

 0101
B

C
 0000

B
C

 0001
B

C
 00000

B
C

 00001
B

C
 01110

B
C

 01111
B

C
 000000

B
C

 000001
B

C
 011110

B
C

 011111
B

C
 01100

B
C

 01101

BC 0
BC 00
BC 01

BC 010
BC 011
BC 000
BC 001

BC 0110
BC 0111
BC 0100
BC 0101
BC 0000
BC 0001

BC 00000
BC 00001
BC 01110
BC 01111

BC 000000
BC 000001
BC 011110
BC 011111
BC 01100
BC 01101

0

0.2

0.4

0.6

0.8

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70 RSA Similarity Between
 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

only recon_c

B
C

 0
B

C
 00

B
C

 01
B

C
 000

B
C

 001
B

C
 010

B
C

 011
B

C
 0110

B
C

 0111
B

C
 01100

B
C

 01101
B

C
 011010

B
C

 011011
B

C
 0000

B
C

 0001
B

C
 0110110

B
C

 0110111
B

C
 01101110

B
C

 01101111
B

C
 0010

B
C

 0011
B

C
 011000

B
C

 011001

BC 0
BC 00
BC 01

BC 000
BC 001
BC 010
BC 011

BC 0110
BC 0111

BC 01100
BC 01101

BC 011010
BC 011011

BC 0000
BC 0001

BC 0110110
BC 0110111

BC 01101110
BC 01101111

BC 0010
BC 0011

BC 011000
BC 011001

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50
RSA Similarity Between

 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

lf_c + gfi_c +
lfi_c + recon_c

(used in the
main paper)

B
C

 0
B

C
 00

B
C

 01
B

C
 010

B
C

 011
B

C
 000

B
C

 001
B

C
 0110

B
C

 0111
B

C
 0000

B
C

 0001
B

C
 01110

B
C

 01111
B

C
 011110

B
C

 011111
B

C
 01100

B
C

 01101
B

C
 00010

B
C

 00011
B

C
 00000

B
C

 00001
B

C
 0111100

B
C

 0111101

BC 0
BC 00
BC 01

BC 010
BC 011
BC 000
BC 001

BC 0110
BC 0111
BC 0000
BC 0001

BC 01110
BC 01111

BC 011110
BC 011111
BC 01100
BC 01101
BC 00010
BC 00011
BC 00000
BC 00001

BC 0111100
BC 0111101

0

0.2

0.4

0.6

0.8

1

modules

m
od

ul
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

70
RSA Similarity Between

 Pairs of Goal Spaces

RSA similarity

go

al
 sp

ac
e

pa
irs

Figure 14: RSA Analysis of the effect of the lateral connections on the ability for HOLMES to learn
diverse module BCs. Each row is an ablation experiment with the corresponding connection scheme.
(Left) RSA matrix for one experiment repetition (seed 0), with similarity index between 0 (dark blue,
not similar at all) and 1 (yellow, identical). Representations are compared at the end of exploration
between the different modules (ordered by their creation time on the left-to-right x-axis). (Right)
Histogram of RSA index similarity between all pair of modules (aggregated over the 10 repetitions).

17

We conducted 5 ablation experiments of the IMGEP-HOLMES variant presented in the main paper,
each has 3 repetitions with different seeds. Each ablation experiment considered a different connection
scheme with either zero or only one connection among lf_c, gfi_c, lfi_c and recon_c (proposed
connections in HOLMES, see Figure 6 and Table 5). As shown in Figure 14, the lateral connections
are essential to learn diverse behavioral characterizations among the different modules of the hierarchy.
Indeed we can see that IMGEP-HOLMES without any connection (first row in the figure) learns BCs
that are highly similar from one module to another (histogram concentrated around [0.8, 1] RSA
indexes, i.e. very similar). We can also see that connections toward the last layers of the decoder
are seemingly the more important (lfi_c and recon_c) as IMGEP-HOLMES with only one of such
connection succeeds to learn dissimilar BCs per module (the histogram is shifted toward lower RSA
indexes). However, the connection at the encoder level (lf_c) and close to the embedding level (gfi_c)
seem less necessary, or at least alone are not sufficient to allow HOLMES modules escaping the
bias inherent to the VAE learning (show a similar histogram of RSA indexes than the no-connection
variant). The connection scheme used in the main paper (last row in the figure) seems to be the best
suited to learn diverse BCs (histogram concentrated around [0.8, 1] RSA indexes, i.e. very dissimilar).

18

E Comparison of HOLMES with Related Methods

In this section we provide a comparison of HOLMES with recent work in the literature: CURL [61],
CN-FPM [40] and pro-VLAE [45]. Those approaches also propose to dynamically expand the
network capacity of a VAE in the context of continual representation learning, and therefore share
similarities with HOLMES. In table 6, we provide a high-level comparison of the proposed approaches
which compare the different architectures according to their structural bias, handling of catastrophic
forgetting, architecture for dynamic expansion, handling of transfer between the different group of
features, criteria for the expansion trigger, and if they are performing data partitioning (i.e. learn
different set of features for different niches of observations).

Table 6: High-level comparison of the general choices of HOLMES with those of previous methods:
CURL [61], CN-FPM [40] and pro-VLAE [45]. Please refer to the original papers for more details.

CURL CN-DPM pro-VLAE HOLMES
Structural

Bias
Mixture of Gaussians

(in a single VAE latent space)
Dirichlet Process Mixture
(flat set of VAE modules)

Hierarchical Levels
(in a single VAE)

Hierarchical Mixture
(binary tree of VAE modules)

Catastrophic
Forgetting Generative Replay Freeze “fade-in” coefficient

(same network) Freeze

Dynamic
Expansion

New component
in the MoG

New module
VAE

New feature layer
in the VAE

New module
VAE

Transfer Single Shared Network
with several “heads”

Lateral connections
(exhaustive as in PNN [64]))

Single Shared Network
with several “levels”

Lateral connections
(parent-to-children only)

Expansion
Trigger

Short-Term
Memory Size

Short-Term
Memory Size Predetermined Node

Saturation

Data
Partitioning Soft partitioning Soft partitioning

(coupling of each VAE with discriminator)
None

(same network)
Hard Partitionning
(boundary in BCi)

As we can see, while HOLMES shares conceptual ideas with those approaches, our approach has key
differences:

1. It uses a hierarchy of different latent spaces whereas CURL uses a single latent space,
CN-DPM uses a flat set of different latent spaces and pro-VLAE uses a fixed-set of latent
spaces (different levels in one network)

2. CURL and CN-DPM show results in the context of continual multi-task classification
and demonstrate that their modular architecture can separate well the latents allowing to
unsupervisedly discriminate between the different input observations / tasks (eg: discriminate
digits in MNIST at test time when they have been sequentially observed at train time).
However, CURL does not use different features for the different niches of observations and
it is not clear if the flat approach of CN-DPM does learn different features between the
different modules. However HOLMES targets to learn dissimilar set of features per BC in
order to achieve meta-diversity.

3. Pro-VLAE is not applied in the context of continual learning but rather proposes to progres-
sively learn features at different levels in the VAE layers, showing that it can successfully
disentangle the features. Even though disentanglement is a key property to avoid redundant
features, we believe that it is also key to have diverse set of features for the different niches
of observed instances.

19

F Additional Visualisations

Figure 15 shows examples of patterns discovered by IMGEP-HOLMES (non-guided) within the
learned tree hierarchy. The patterns shown in the root node are representative of the diversity of all
the discovered patterns in that particular run (100% of the patterns). The boundaries fitted when
splitting each non-leaf node (see procedure in section A.1) makes each pattern follow a particular
path in the hierarchy, from the root node to a leaf node. Goals are sampled by the IMGEP by first
sampling a leaf uniformly among all existing leafs, then sampling uniformly in the hypercube fitted
around currently reached goals within that leaf (see section 3.2 of the main paper). However, we
observe that the percentage indicated in each node does not reflect this uniformity (for example, only
5.7% of the patterns fall in the leaf BC 001). The interpretation is that leafs with low percentages
correspond to unstable niches: when a goal is sampled in such a leaf, the small mutation applied in
the parameter-sampling policy is sufficient to produce a pattern which is different enough to fall in
another leaf.

We qualitatively observe in Figure 15 that the boundaries fitted during the splitting procedure tend to
separate the patterns into visually distinct categories. For example, the proportion of TLPs is much
higher in BC 01 compared to BC 00 ; the leaf BC 00000 contains only blank patterns while its sibling
BC 00001 contains only SLPs ; the nodes below BC 01111 (bottom-right of the tree) contains only
TLPs.

Figures 16 and 17 show discovered patterns when IMGEP-HOLMES is guided towards SLPs or
TLPs, respectively, through simulated user feedback as described in section 4.3 of the main paper.
We observe that the user guidance is able to dramatically affect both the diversity of the discovered
patterns and the structure of the hierarchy . When guided towards SLPs, most of the discovered
patterns are SLPs (most TLPs in Figure 16 are concentrated in the leafs BC 01110 and BC 01111
which represent approximately 15% of the discovered patterns). On the contrary, when guided
towards TLPs, most of the discovered patterns are TLPs (most SLPs in Figure 17 are concentrated
in the leafs BC 000 and BC 001 which represent approximately 34% of the discovered patterns).
As a consequence of this bias toward either SLPs or TLPs, we observe that HOLMES has created
more branches in the direction of the desired patterns (either SLPs or TLPs) in order to enrich their
corresponding representations.

Additional visualisations can be found on the project website http://mayalenE.github.io/
holmes/.

20

http://mayalenE.github.io/holmes/
http://mayalenE.github.io/holmes/

BC 0: 100.0%

BC 00: 52.0% BC 01: 48.0%

BC 000: 46.3% BC 001: 5.7% BC 010: 11.2% BC 011: 36.8%

BC 0000: 34.9% BC 0001: 11.5% BC 0110: 11.2% BC 0111: 25.5%

BC 00000: 28.5% BC 00001: 6.4% BC 00010: 5.7%BC 00011: 5.8% BC 01100: 3.8%BC 01101: 7.4%BC 01110: 5.1% BC 01111: 20.5%

BC 011110: 12.3% BC 011111: 8.1%

BC 0111100: 10.8% BC 0111101: 1.6%

Figure 15: Examples of patterns discovered by IMGEP-HOLMES (non-guided) within the learned
tree hierarchy. The hierarchy is the same as in Figure 11. In each node is displayed the percentage of
discovered patterns directed through that node, as well as a set of pattern images representative of the
diversity within that node (the set is built with the procedure described in section B.3). The number
of patterns per node reflects the indicated percentage.

21

BC 0: 100.0%

BC 00: 72.2% BC 01: 27.8%

BC 000: 10.7% BC 001: 61.5% BC 010: 8.3% BC 011: 19.5%

BC 0000: 4.3% BC 0001: 6.4% BC 0010: 53.4% BC 0011: 8.1%BC 0110: 4.3%BC 0111: 15.2%

BC 00100: 49.7% BC 00101: 3.7% BC 01110: 3.4% BC 01111: 11.8%

BC 001000: 49.1% BC 001001: 0.6%

BC 0010000: 38.3% BC 0010001: 10.8%

BC 00100010: 8.6% BC 00100011: 2.2%

Figure 16: Examples of patterns discovered by IMGEP-HOLMES within the learned tree hierarchy,
when guided towards SLPs through simulated user feedback as described in section 4.3 of the main
paper. Same convention as in Figure 15.

22

BC 0: 100.0%

BC 00: 34.2% BC 01: 65.8%

BC 000: 4.1% BC 001: 30.1% BC 010: 10.8% BC 011: 55.1%

BC 0110: 20.2% BC 0111: 34.9%

BC 01100: 1.0% BC 01101: 19.2% BC 01110: 7.1% BC 01111: 27.8%

BC 011110: 7.4% BC 011111: 20.4%

BC 0111110: 0.5%BC 0111111: 20.0%

BC 01111110: 1.2% BC 01111111: 18.8%

BC 011111110: 7.8%BC 011111111: 10.9%

BC 0111111110: 4.8% BC 0111111111: 6.2%

Figure 17: Examples of patterns discovered by IMGEP-HOLMES within the learned tree hierarchy,
when guided towards TLPs through simulated user feedback as described in section 4.3 of the main
paper. Same convention as in Figure 15.

23

