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1 Do-calculus for cyclic graphs

For completeness, we here repeat the rules of do-calculus for cyclic graphs, in the notation of the
generalized ID algorithm of [2], which generalizes [5]. We are given a causal graph G. To each
node Xi which is intervened upon, we add an ‘intervention node’ IXi , with a directed edge from IXi

to Xi that we clamp to the value xi. The corresponding graph is called Ĝ+. Ĝdo(W) is now obtained
by removing from Ĝ+ all incoming edges to variables that are part of W, except those from the
corresponding intervention nodes IW. We use shorthand

Y
σ
y
G

X | Z, do(W)

to indicate that Y and X are σ-separated by Z in the graph Ĝdo(W). σ-separation is a generalization of
standard d-separation (see [2] for details).

Do-calculus now consists of the following three inference rules that can be used to map interventional
and observational distributions.

1. Insertion/deletion of observation:

P(Y|X,Z, do(W)) = P(Y|Z, do(W)) if Y
σ
y
G

X | Z, do(W) .

2. Action/observation exchange:

P(Y|do(X),Z, do(W)) = P(Y|X,Z, do(W)) if Y
σ
y
G

IX | X,Z, do(W) .

3. Insertion/deletion of actions:

P(Y|do(X),Z, do(W)) = P(Y|Z, do(W)) if Y
σ
y
G

IX | Z, do(W) .

Through consecutive application of these rules, we can try to turn any interventional probability of
interest into an observational probability.
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Figure 1: Three causal models with the same observational distribution over features, yet a different
causal structure. To connect to the models in the main text, we set β1 = 0 and β2 = β, except that for
the ‘fork’ we set β2 = 0, β1 = β, and then swap the indices.

2 Shapley values for linear models

We will make use of the do-calculus rules above to derive the causal Shapley values for the four
different models in Figure 1 in the main text. To this end, we consider the three models in Figure 1
that predict f (x1, x2) = β1x1 + β2x2 for general values of β1 and β2. All three models have the same
observational probability distribution, with E[Xi] = x̄i and E[X3−i|Xi = xi] = αixi, for i = 1, 2, yet
different causal structures. We will arrive at the main text’s results for the ‘chain’, ‘confounder’, and
‘cycle’ by setting β1 = 0, whereas for the ‘fork’ we set β2 = 0 and swap the two indices. We then
further need to take x̄1 = x̄2 = 0, and α = α2.

Following the definitions in the main text, the contribution of feature i given permutation π is the
difference in value function before and after setting the feature to its value:

φi(π) = v({ j : j �π i}) − v({ j : j ≺π i}) , (1)

with value function

v(S ) = E
[
f (X)|do(XS = xS )

]
=

∫
dXS̄ P(XS̄ |x̂S ) f (XS̄ , xS ) , (2)

where we use shorthand x̂ for do(X = x). Combining these two definitions and substituting f (x) =∑
i βixi, we obtain

φi(π) = βi

(
xi − E[Xi|x̂ j: j≺πi]

)
+

∑
k�πi

βk

(
E[Xk |x̂ j: j�πi] − E[Xk |x̂ j: j≺πi]

)
.

The first term corresponds to the direct effect, the second one to the indirect effect. Symmetric causal
Shapley values will follow by averaging these contributions for the two possible permutations π =
(1, 2) and π = (2, 1). Conditional Shapley values result when replacing conditioning by intervention
with conventional conditioning by observation, marginal Shapley values by not conditioning at all.

To start with the latter, we immediately see that for marginal Shapley values the indirect effect
vanishes and the direct effect simplifies to

φi = φi(π) = βi(xi − E[Xi]) = βi(xi − x̄i) ,

as also derived in [1].

For symmetric conditional Shapley values, we do get different contributions for the two different
permutations, but by definition still the same for the three different models:

φ1(1, 2) = β1(x1 − E[X1]) + β2(E[X2|x1] − E[X2]) = β1(x1 − x̄1) + β2α1(x1 − x̄1)
φ2(1, 2) = β2(x2 − E[X2|x1]) = β2(x2 − x̄2) − β2α1(x1 − x̄1) . (3)

Here the first term in the contribution for the first feature corresponds to the direct effect and the
second term to the indirect effect. The contribution for the second feature only consists of a direct
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expectation chain confounder cycle

E[X1|x̂2] E[X1] E[X1] E[X1|x2]
E[X2|x̂1] E[X2|x1] E[X2] E[X2|x1]

Table 1: Turning expectations under conditioning by intervention into expectations under conventional
conditioning by observation for the three models in Figure 1.

effect. The contributions for the other permutation follow by swapping the indices and the final
Shapley values by averaging to arrive at the symmetric conditional Shapley values

φ1 = β1(x1 − x̄1) −
1
2
β1α2(x2 − x̄2) +

1
2
β2α1(x1 − x̄1)

φ2 = β2(x2 − x̄2) −
1
2
β2α1(x1 − x̄1) +

1
2
β1α2(x2 − x̄2) , (4)

where now the first two terms constitute the direct effect and the third term the indirect effect.

The asymmetric conditional Shapley values consider both permutations for the confounder and the
cycle, and hence are equivalent to the symmetric Shapley values for those models. Yet for the chain,
they only consider the permutation π(1, 2) and thus yield φ = φ(1, 2) from (3).

To go from the symmetric conditional Shapley values to the causal symmetric Shapley values, we
follow the same line of reasoning, but have to replace E[X2|x1] by E[X2|x̂1] and E[X1|x2] by E[X1|x̂2].
Table 1 tells whether the expectations under conditioning by intervention reduce to expectations
under conditioning by observation (because of the second rule of do-calculus above) or to marginal
expectations (because of the third rule). For the chain we have

P(X2|x̂1) = P(X2|x1) since X2
σ
y
G

IX1 | X1 (rule 2), yet P(X1|x̂2) = P(X1) since X1
σ
y
G

IX2 (rule 3),

for the confounder

P(X2|x̂1) = P(X2) since X2
σ
y
G

IX1 and P(X1|x̂2) = P(X1) since X1
σ
y
G

IX2 (rule 3),

and for the cycle

P(X2|x̂1) = P(X2|x1) since X2
σ
y
G

IX1 | X1 and P(X1|x̂2) = P(X1|x2) since X1
σ
y
G

IX2 | X2 (rule 2).

Consequently, for the confounder the symmetric and asymmetric causal Shapley values coincide with
the marginal Shapley values (consistent with [4]) and for the cycle with the symmetric conditional
Shapley values from (4). For the chain, the causal symmetric Shapley values become

φ1(1, 2) = β1(x1 − x̄1) +
1
2
β2α1(x1 − x̄1)

φ2(1, 2) = β2(x2 − x̄2) −
1
2
β2α1(x1 − x̄1) , (5)

where the asymmetric causal Shapley values coincides with the asymmetric conditional Shapley
values from (5).

Collecting all results and setting x̄1 = x̄2 = β1 = 0, β2 = β, and α1 = α (after swapping the indices for
the ‘fork’), we arrive at the Shapley values reported in Figure 1 in the main text. Note that for most
Shapley values, the indirect effect for the second feature vanishes because we chose to set β1 = 0.
The exceptions, apart from the marginal Shapley values, are the causal Shapley values for the chain
and the confounder, as well as the asymmetric conditional Shapley values for the chain: these show
no indirect effect for the second feature even for nonzero β1.

3 Proofs and corollaries on causal chain graphs

In this section we expand on the proof of Theorem 1 in the main text and add some corollaries to link
back to other approaches for computing Shapley values.

The probability distribution for a causal chain graph boils down to a directed acyclic graph of chain
components:

P(X) =
∏
τ∈T

P(Xτ|Xpa(τ)) . (6)
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For each (fully connected) chain component, we further need to specify whether (surplus) depen-
dencies within the component are due to confounding or due to mutual interactions. Given this
information, we can turn any causal query into an observational distribution with the following
interventional formula.
Theorem 1. For causal chain graphs, we have the interventional formula

P(XS̄ |do(XS = xS )) =
∏

τ∈Tconfounding

P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S ) ×

∏
τ∈Tconfounding

P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S , xτ∩S ) . (7)

Proof. Plugging in (6) and using shorthand x̂ = do(X = x), we obtain

P(XS̄ |x̂S ) = P(X|x̂S ) =
∏
τ∈T

P(Xτ|Xτ′≺Gτ, x̂S )
(1)
=

∏
τ∈T

P(Xτ|Xpa(τ), x̂S ) =
∏
τ∈T

P(Xτ∩S̄ |Xpa(τ)∩S̄ , x̂S ) ,

where in the second step we made use of do-calculus rule (1): the conditional independencies in the
causal chain graph G are preserved when we intervene on some of the variables. Now rule (3) tells us
that we can ignore any interventions from nodes in components further down the causal chain graph
as well as those from higher up that are shielded by the direct parents:

P(Xτ∩S̄ |Xpa(τ)∩S̄ , x̂S )
(3)
= P(Xτ∩S̄ |Xpa(τ)∩S̄ , x̂pa(τ)∩S , x̂τ∩S ) .

Rule (2) then states that conditioning by intervention upon variables higher up in the causal chain
graph is equivalent to conditioning by observation:

P(Xτ∩S̄ |Xpa(τ)∩S̄ , x̂pa(τ)∩S , x̂τ∩S )
(2)
= P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S , x̂τ∩S ) .

For a chain component with dependencies induced by a common confounder, rule (3) applies once
more and makes that we can ignore the interventions:

P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S , x̂τ∩S ) = P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S ) .

For a chain component with dependencies induced by mutual interactions, rule (2) again applies and
allows us to replace conditioning by intervention with conditioning by observation:

P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S , x̂τ∩S ) = P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S , xτ∩S )) .

�

Algorithm 1 provides pseudocode on how to estimate the value function v(S ) by drawing samples
from the interventional probability (7). It assumes that a user has specified a partial causal ordering
of the features, which is translated to a chain graph with components T , and for each (non-singleton)
component τ whether or not surplus dependencies are the result of confounding. Other prerequisites
include access to the model f (), the feature vector x, (a procedure to sample from) the observational
probability distribution P(X), and the number of samples Nsamples.

Theorem 1 connects to observations made and algorithms proposed in recent papers.
Corollary 1. With all features combined in a single component and all dependencies induced by
confounding, as in [4], causal Shapley values are equivalent to marginal Shapley values.

Proof. With just a single confounded component τ, pa(τ) = ∅ and (7) reduces to P(XS̄ ). �

Corollary 2. With all features combined in a single component and all dependencies induced by
mutual interactions, causal Shapley values are equivalent to conditional Shapley values as proposed
in [1].

Proof. With just a single non-confounded component τ, pa(τ) = ∅ and (7) reduces to P(XS̄ |xS ). �

Corollary 3. When we only take into account permutations that match the causal ordering and
assume that all dependencies within chain components are induced by mutual interactions, the
resulting asymmetric causal Shapley values are equivalent to the asymmetric conditional Shapley
values as defined in [3].
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Algorithm 1 Compute the value function v(S ) under conditioning by intervention.

1: function ValueFunction(S )
2: for k ← 1 to Nsamples do
3: for all j← 1 to |T | do . run over all chain components in their causal order
4: if confounding(τ j) then
5: for all i ∈ τ j ∩ S̄ do
6: Sample x̃(k)

i ∼ P(Xi|x̃(k)
pa(τ j)∩S̄

, xpa(τ j)∩S̄ ) . can be drawn independently
7: end for
8: else
9: Sample x̃(k)

τ j∩S̄
∼ P(Xτ j∩S̄ |x̃

(k)
pa(τ j)∩S̄

, xpa(τ j)∩S̄ , xτ j∩S ) . e.g., Gibbs sampling
10: end if
11: end for
12: end for

13: v←
1

Nsamples

Nsamples∑
k=1

f (xS , x̃(k)
S̄

)

14: return v
15: end function

Proof. Following [3], asymmetric Shapley values only include those permutations π for which i ≺π j
for all known ancestors i of descendants j in the causal graph. For those permutations, we are
guaranteed to have τ ≺G τ′ for all τ, τ′ ∈ T such that τ ∩ S , ∅, τ′ ∩ S̄ , ∅. That is, the chain
components that contain features from S are never later in the causal ordering of the chain graph G
than those that contain features from S̄ . We then have

P(XS̄ |xS ) =
∏
τ∈T

P(Xτ∩S̄ |Xpa(τ)∩S̄ , xS ) =
∏
τ∈T

P(Xτ∩S̄ |Xpa(τ)∩S̄ , xpa(τ)∩S , xτ∩S ) = P(XS̄ |x̂S ) ,

where in the last step we used interventional formula (7) in combination with the fact thatTconfounding =
∅. �

4 Additional illustrations on the bike rental data

Figure 2 shows sina plots for asymmetric conditional Shapley values (left) and marginal Shapley
values (right), to be compared with the sina plots for symmetric causal Shapley values in Figure 3
of the main text. In this case, the sina plots for asymmetric causal Shapley values are virtually
indistinguishable from those for the asymmetric conditional Shapley values.

It can be seen that the marginal Shapley values strongly focus on temperature, largely ignoring the
seasonal variables. The asymmetric Shapley values do the opposite: they focus on the seasonal
variables, in particular cosyear and put much less emphasis on the temperature variables.

5 Comparing symmetric and asymmetric Shapley values on the XOR
problem

We consider the standard XOR problem with binary features X1 and X2 and binary output Y:

X1 X2 Y
0 0 0
0 1 1
1 0 1
1 1 0

We generate a dataset of n samples by drawing features and corresponding outputs with probabilities
pi j = P(X1 = i, X2 = j). We will choose p00 = p11 = 1

4 (1 + ε) and p01 = p10 = 1
4 (1 − ε). With

ε > 0, the probability of the two features having the same values is larger than the probability of them
having different values. p̂i j is the same probability estimated from the data, e.g., by computing the
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Figure 2: Sina plots of asymmetric (conditional) Shapley values (left) and marginal Shapley values
(right). See Figure 3 in the main text for further details.

frequencies of the four input combinations. We train a neural network on the generated data, which
yields a function f̂ (X1, X2) hopefully closely approximating the correct XOR function. The parameter
ε captures the dependency between the two features and can be interpreted as a measure of the causal
strength when the two features are causally related.

We will now compute the various Shapley values for the data point (X1, X2) = (0, 0). The value
functions with all features either ‘out-of-coalition’ or ‘in-coalition’ are the same for all Shapley
values:

ν({}) = E
[
f (X)

]
=

∑
i, j

p̂i j f̂ (i, j) ≈
1
2

(1 − ε)

ν({1, 2}) = f̂ (0, 0) ≈ 0 ,

where we use the convention that the Shapley values computed from the fitted probabilities and
learned neural network appear before the ≈-sign, and those that we obtain when the fitted probabilities
equal the probabilities used to generate the data and when the learned neural network equals the XOR
function after the ≈-sign.

The value functions for the case that one input is ‘in-coalition’ and the other ‘out-of-coalition’ does
depend on the type of Shapley value under consideration. For the marginal Shapley values we get

ν({1}) = E
[
f (0, X2)

]
=

∑
j

∑
i

p̂i j

 f̂ (0, j) ≈
1
2

ν({2}) = E
[
f (X1, 0)

]
=

∑
i

∑
j

p̂i j

 f̂ (i, 0) ≈
1
2
, (8)

yet for the conditional Shapley values

ν({1}) = E
[
f (0, X2)|X1 = 0

]
=

∑
j

p̂0 j∑
i p̂i j

f̂ (0, j) ≈
1
2

(1 − ε)

ν({2}) = E
[
f (X1, 0)|X2 = 0

]
=

∑
i

p̂i0∑
j p̂i j

f̂ (i, 0) ≈
1
2

(1 − ε) . (9)

The value functions for the causal Shapley values depend on the presumed causal model that generates
the dependencies. In case the dependencies are assumed to be the result of confounding, we get the
value functions in (8) as for the marginal Shapley values and when the dependencies are assumed to
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Figure 3: The conditional symmetric, causal symmetric and (causal/conditional) asymmetric Shapley
values of data point (X1, X2) = (0, 0) under the assumption of a causal chain X1 → X2 for different
causal strengths ε. The bars indicate the mean Shapley value and standard deviation of 100 runs with
a neural network trained on 100 data points generated according to a particular causal strength ε.
Red lines give the theoretical Shapley values, to be expected for an infinite amount of samples and
when the neural networks would have perfectly learned to represent the XOR function. The third row
gives the difference between the Shapley values for X1 and X2 and clearly shows the discontinuity of
asymmetric Shapley values for ε = 0.

be the result of mutual interaction the value functions in (9) as for the conditional Shapley values.
The more interesting case is when we assume a causal chain, e.g., X1 → X2:

ν({1}) = E
[
f (0, X2)|do(X1 = 0)

]
= E

[
f (0, X2)|X1 = 0

]
=

∑
j

p̂0 j∑
i p̂i j

f̂ (0, j) ≈
1
2

(1 − ε)

ν({2}) = E
[
f (X1, 0)|do(X2 = 0)

]
= E

[
f (X1, 0)

]
=

∑
i

∑
j

p̂i j

 f̂ (i, 0) ≈
1
2
, (10)

and the same with indices 1 and 2 interchanged for the causal chain X2 → X1.

Given these value functions, we can now compute the various Shapley values. For marginal and
symmetric Shapley values we have

φ1 =
1
2

[ν({1}) − ν({})] +
1
2

[ν({1, 2}) − ν({2})]

φ2 =
1
2

[ν({2}) − ν({})] +
1
2

[ν({1, 2}) − ν({1}]) ,

whereas for asymmetric Shapley values, assuming the causal chain X1 → X2,

φ1 = ν({1}) − ν({})
φ2 = ν({1, 2}) − ν({1}) ,

and the same with indices 1 and 2 interchanged for the causal chain X2 → X1.

With the expressions above, we can compute the various Shapley values based on a learned neural
network and the actual frequencies of the generated feature combinations and compare those with the
theoretical values obtained when the estimated frequencies equal the probabilities used to generate the
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data and the neural network indeed managed to learn the XOR function. For the latter we distinguish
the following cases.

identical: φ1 = φ2 ≈
1
4 ε −

1
4 . This applies to marginal, symmetric conditional, symmetric causal

assuming confounding, symmetric causal assuming mutual interaction.
symmetric causal: φ1 ≈ −

1
4 and φ2 ≈

1
2 ε −

1
4 assuming the causal chain X1 → X2 and vice versa for

X1 → X2.
asymmetric: φ1 ≈ 0 and φ2 ≈

1
2 ε −

1
2 assuming the causal chain X1 → X2 and vice versa for

X1 → X2. These apply both to asymmetric conditional and asymmetric causal.

In this example, symmetric causal Shapley values are clearly to be preferred over asymmetric
causal Shapley values for small causal strengths. Inserting a causal link with zero strength (ε = 0),
asymmetric Shapley values jump from the symmetric φ1 = φ2 ≈ −

1
4 to the completely asymmetric

φ1 ≈ 0 and φ2 ≈ −
1
2 , assigning all credit to the second feature, even though the first feature in reality

does not affect the second feature at all. Symmetric Shapley values, on the other hand, are insensitive
to the insertion of a causal link with zero strength: in the limit ε → 0 symmetric causal Shapley
values correctly converge to marginal Shapley values.

Figure 3 shows the results of a series of simulations, computing different Shapley values for trained
neural networks and comparing these to the theoretical values. The discontinuity of asymmetric
Shapley values (conditional and causal asymmetric Shapley values are identical in this example) is
most clearly seen in the third row, showing the difference between the Shapley values for X1 and X2.
Symmetric conditional Shapley values do not distinguish between the Shapley values for X1 and X2
for any causal strength ε, whereas the symmetric causal Shapley values are identical for ε = 0 and
then slowly start to deviate for larger values of ε.
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