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Abstract

Probabilistic forecasting consists in predicting a distribution of possible future
outcomes. In this paper, we address this problem for non-stationary time series,
which is very challenging yet crucially important. We introduce the STRIPE
model for representing structured diversity based on shape and time features,
ensuring both probable predictions while being sharp and accurate. STRIPE is
agnostic to the forecasting model, and we equip it with a diversification mechanism
relying on determinantal point processes (DPP). We introduce two DPP kernels
for modeling diverse trajectories in terms of shape and time, which are both
differentiable and proved to be positive semi-definite. To have an explicit control
on the diversity structure, we also design an iterative sampling mechanism to
disentangle shape and time representations in the latent space. Experiments carried
out on synthetic datasets show that STRIPE significantly outperforms baseline
methods for representing diversity, while maintaining accuracy of the forecasting
model. We also highlight the relevance of the iterative sampling scheme and the
importance to use different criteria for measuring quality and diversity. Finally,
experiments on real datasets illustrate that STRIPE is able to outperform state-of-
the-art probabilistic forecasting approaches in the best sample prediction.

1 Introduction

Time series forecasting consists in analysing historical signal correlations to anticipate future out-
comes. In this work, we focus on probabilistic forecasting in non-stationary contexts, i.e. we aim at
producing plausible and diverse predictions where future trajectories can present sharp variations.
This forecasting context is of crucial importance in many applicative fields, e.g. climate [62, 34, 15],
optimal control or regulation [66, 41], traffic flow [39, 38], healthcare [8, 1], stock markets [14, 7],
etc. Our motivation is illustrated in the example of the blue input in Figure 1(a): we aim at performing
predictions covering the full distribution of future trajectories, whose samples are shown in green.

State-of-the-art methods for time series forecasting currently rely on deep neural networks, which
exhibit strong abilities in modeling complex nonlinear dependencies between variables and time.
Recently, increasing attempts have been made for improving architectures for accurate predictions
[31, 53, 37, 42, 35] or for making predictions sharper, e.g. by explicitly modeling dynamics [9, 16, 50],
or by designing specific loss functions addressing the drawbacks of blurred prediction with mean
squared error (MSE) training [12, 47, 33, 58]. Although Figure 1(b) shows that such approaches
produce sharp and realistic forecasts, their deterministic nature limits them to a single trajectory
prediction without uncertainty quantification.
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(a) True predictive distribution (b) Sharp loss [33] (c) deep stoch model [65] (d) STRIPE (ours)

Figure 1: We address the probabilistic time series forecasting problem. (a) Recent deep learning
models include a specific loss enabling sharp predictions [12, 47, 33, 58] (b), but are inadequate
for producing diverse forecasts. On the other hand, probabilistic forecasting approaches based on
generative models [65, 46] loose the ability to generate sharp forecasts (c). The proposed STRIPE
model (d) produces both sharp and diverse future forecasts.

Methods targeting probabilistic forecasting enable to sample diverse predictions from a given input.
This includes deterministic methods that predict the quantiles of the predictive distribution or proba-
bilistic methods that sample future values from a learned approximate distribution, parameterized
explicitly (e.g. Gaussian [52, 45, 51]), or implicitly with latent generative models [65, 29, 46]. These
approaches are commonly trained using MSE or variants for probabilisting forecasts, e.g. quantile loss
[28], and consequently often loose the ability to represent sharp predictions, as shown in Figure 1(c)
for [65]. These generative models also lack an explicit structure to control the type of diversity in the
latent space.

In this work, we introduce a model for including Shape and Time diverRsIty in Probabilistic forEcast-
ing (STRIPE). As shown in Figure 1(d), this enables to produce sharp and diverse forecasts, which fit
well the ground truth distribution of trajectories in Figure 1(a).

STRIPE presented in section 3 is agnostic to the predictive model, and we use both deterministic or
generative models in our experiments. STRIPE encompasses the following contributions. Firstly,
we introduce a structured shape and temporal diversity mechanism based on determinantal point
processes (DPP). We introduce two DPP kernels for modeling diverse trajectories in terms of shape
and time, which are both differentiable and proved to be positive semi-definite (section 3.1). To have
an explicit control on the diversity structure, we also design an iterative sampling mechanism to
disentangle shape and time representations in the latent space (section 3.2).

Experiments are conducted in section 4 on synthetic datasets to evaluate the ability of STRIPE to
match the ground truth trajectory distribution. We show that STRIPE significantly outperforms
baseline methods for representing diversity, while maintaining the accuracy of the forecasting
model. Experiments on real datasets further show that STRIPE is able to outperform state-of-the-art
probabilistic forecasting approaches when evaluating the best sample (i.e. diversity), while being
equivalent based on its mean prediction (i.e. quality).

2 Related work

Deterministic time series forecasting Traditional time series forecasting methods, including linear
autoregressive models such as ARIMA [6] or exponential smoothing [27], handle linear dynamics
and stationary time series (or made stationary by modeling trends and seasonality). Deep learning has
become the state-of-the-art for automatically modeling complex long-term dependencies, with many
works focusing on architecture design based on temporal convolution networks [5, 53], recurrent
neural networks (RNNs) [31, 64, 44], or Transformer [57, 37]. Another crucial topic more recently
studied in the non-stationary context is the choice of a suitable loss function. As an alternative to the
mean squared error (MSE) largely used as a proxy, new differentiable loss functions were proposed
to enforce more meaningful criteria such as shape and time [47, 12, 33, 58], e.g. soft-DTW based on
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dynamic time warping [12, 4] or the DILATE loss with a soft-DTW term for shape and a smooth
temporal distortion index (TDI) [20, 56] for accurate temporal localization. These works toward
sharper predictions were however only studied in the context of deterministic predictions and not for
multiple outcomes.

Probabilistic forecasting For describing the conditional distribution of future values given an
input sequence, a �rst class of deterministic methods add variance estimation with Monte Carlo
dropout [67, 32] or predict the quantiles of this distribution [61, 21, 60] by minimizing the pinball
loss [28, 49] or the continuous ranked probability score (CRPS) [23]. Other probabilistic methods
try to approximate the predictive distribution,explicitly with a parametric distribution (e.g. Gaussian
for DeepAR [52] and variants [45, 51]), or implicitly with a generative model with latent variables
(e.g. with conditional variational autoencoders (cVAEs) [65], conditional generative adversarial
networks (cGANs) [29], normalizing �ows [46]). However, these methods lack the ability to produce
sharp forecasts by minimizing variants of the MSE (pinball loss, gaussian maximum likelihood),
at the exception of cGANs - but which suffer from mode collapse that limits predictive diversity.
Moreover, these generative models are generally represented by unstructured distributions in the
latent space (e.g. Gaussian), which do not allow to have an explicit control on the targeted diversity.

Diverse predictions For improving the diversity of predictions, several repulsive schemes were
studied such as the variety loss [26, 55] that consists in optimizing the best sample, or entropy
regularization terms [13, 59] that encourage a uniform distribution and thus more diverse samples.
Submodular distribution functions such as determinantal point processes (DPP) [30, 48, 40] are an
appealing probabilistic tool to enforce structured diversity via the choice of a positive semi-de�nite
kernel. DPPs has been successfully applied in various contexts, e.g. document summarization [24],
recommendation systems [22], object detection [2], and very recently to image generation [17] and
diverse trajectory forecasting [65]. GDPP [17] is based on matching generated and true sample
diversity by aligning the corresponding DPP kernels, and thus limits their use in datasets where the
full distribution of possible outcomes is accessible. In contrast, our approach is applicable in realistic
scenarii where only a single label is available for each training sample. Although we share with [65]
the goal to use DPP as diversi�cation mechanism, the main limitation in [65] is to use the MSE loss
for training the prediction and diversi�cation models, leading to blurred prediction, as illustrated in
Figure 1(c). Our approach is able to generate sharp and diverse predictions ; we also highlight the
importance in STRIPE to use different criteria for training the prediction model (quality) and the
diversi�cation mechanism in order to make them cooperate.

3 Shape and time diversity for probabilistic time series forecasting

We introduce the STRIPE model for including shape and time diversity for probabilistic time series
forecasting, which is depicted in Figure 2. Given an input sequencex1:T = ( x1; :::; xT ) 2 Rp� T , our
goal is to sample a set ofN diverse and plausible future trajectoriesŷ ( i ) = ( ŷT +1 ; :::; ŷT + � ) 2 Rd� �

from the data future distribution̂y ( i ) � p(:jx1:T ).

STRIPE builds upon a general Sequence To Sequence (Seq2Seq) architecture dedicated to multi-step
time series forecasting: the input time seriesx1:T is fed into an encoder that summarizes the input
into a latent vectorh. Note that our method is agnostic to the speci�c choice of the forecasting model:
it can be a deterministic RNN, or a probabilistic conditional generative model (e.g. cVAE [65], cGAN
[29], normalizing �ow [46]).

For training the predictor (upper part in Figure 2), we concatenateh with a vector0k 2 Rk (free
space left for the diversifying variables) and a decoder produces a forecasted trajectoryŷ (0) =
(ŷ (0)

T +1 ; :::; ŷ (0)
T + � ). The predictor minimizes a quality lossL quality (ŷ (0) ; y (0) ) between the predicted

ŷ (0) and ground truth future trajectoryy (0) . In our non-stationary context, we train the STRIPE
predictor withL quality based on the recently proposed DILATE loss [33], that has proven successful
for enforcing sharp predictions with accurate temporal localization.

For introducing structured diversity (lower part in Figure 2), we concatenateh with diversifying
latent variablesz 2 Rk and produceN future trajectories

�
ŷ ( i )

	
i =1 ;::;N . Our key idea is to augment

L quality (�) with a diversi�cation lossL diversity (�; K) parameterized by diversity kernelK and
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Figure 2: Our STRIPE model builds upon a Seq2Seq architecture trained with a quality lossL quality
enforcing sharp predictions. Our contributions rely on the design of a diversity lossL diversity based
on a speci�c Determinantal Point Processes (DPP). We design admissible shape and time DPP
kernels, i.e. positive semide�nite, and differentiable for end-to-end training with deep models (section
3.1). We also introduce an iterative DDP sampling mechanism to generate disentangled latent codes
between shape and time, supporting the use of different criteria for diversity and quality (section 3.2).

balanced by hyperparameter� 2 R, leading to the overall objective training function:

L ST RIP E (ŷ (0) ; :::; ŷ (N ) ; y (0) ; K) = L quality (ŷ (0) ; y (0) ) + � L diversity (ŷ (1) ; :::; ŷ (N ) ; K) (1)

We highlight that STRIPE is applicable with a single target trajectoryy (0) , i.e. we do not require the
full trajectory distribution. We now detail how theL diversity (�; K) loss is designed to ensure diverse
shape and time predictions.

3.1 STRIPE diversity module based on determinantal point processes

Our L diversity loss relies on determinantal point processes (DPP) that are a convenient probabilistic
tool for enforcing structured diversity via adequately chosen positive semi-de�nite kernels. For
comparing two time seriesy1 andy2, we introduce the two following kernelsK shape andK time , for
�nely controlling the shape and temporal diversity:

K shape (y1 ; y2 ) = e� 
 DTW
 (y 1 ;y 2 ) (2)

K time (y1 ; y2 ) = TDI 
 (y1 ; y2 ) =
1
Z

X

A 2A �;�

hA ; 
 i exp� hA ; � ( y 1 ; y 2 ) i

 (3)

where DTW
 (y1 ; y2 ) := � 
 log
� P

A 2A �;�
exp� hA ; � ( y 1 ; y 2 ) i




�
is a smooth relaxation of Dy-

namic Time Warping (DTW) [12], and K time corresponds to a smooth Temporal Distortion In-
dex (TDI) [20, 33]: 
 > 0 denotes the smoothing coef�cient,A � f 0; 1g� � � is a warping
path between two time series of length� , A �;� is the set of all feasible warping paths and
�( y1 ; y2 ) = [ � ((y1 ) i ; (y2 ) j )]1� i;j � � is a pairwise cost matrix between time steps of both se-
ries with similarity measure� : Rd � Rd ! R, 
 is a � � � matrix penalizing the deviation of
warping paths from the main diagonal andZ is the partition function. These kernels are derived from
the two components of the DILATE loss [33] ; however in contrast to the deterministic nature of
DILATE, they are used in a probabilistic context for producing sharp and diverse forecasts.

K shape andK time are differentiable by design1, making them suitable for end-to-end training with
back-propagation. We also derive the key following result for ensuring the submodularity properties
of DPPs, that we prove in supplementary 1:

1In the limit case
 ! 0, DTW
 (resp. TDI
 ) recovers the standard DTW (resp. TDI).
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Figure 3: At test time, STRIPE sequential shape and time sampling scheme that leverages the
disentangled latent space. STRIPE-shape �rst proposes diverse shape latent variables. For each
generated shape, STRIPE-time further enhances its temporal variability, leading to a �nal set of
accurate predictions with shape and time diversity.

Proposition 1. Providing that� is a positive semi-de�nite (PSD) kernel� such that �
1+ � is also

PSD, if we de�ne the cost matrix� with general term� (yi ; yj ) = � 
 log � (yi ; yj ), thenK shape and
K time de�ned respectively in Equations (2) and (3) are PSD kernels.

In practice, we choose� (u; v) = 1
2 e� ( u � v ) 2

� 2 (1 � 1
2 e� ( u � v ) 2

� 2 ) � 1 that full�lls Prop 1 requirements.

DPP diversity loss We combine the two differentiable PSD kernelsK shape andK time with the
DPP diversity loss from [65] de�ned as the negative expected cardinality of a random subsetY (of a
ground setY of N items) sampled from the DPP of kernelK (denoted asK in matrix form of shape
N � N ). This loss is differentiable and can be ef�ciently computed in closed-form:

L diversity (Y; K ) = � EY � DP P (K ) jY j = � T race(I � (K + I ) � 1) (4)

Intuitively, a larger expected cardinality means a more diverse sampled set according to kernelK.
We provide more details on DPPs and the derivation ofL diversity in supplementary 2.

3.2 STRIPE learning and sequential shape and temporal diversity sampling

To maximize shape and time diversity with Eq (1) and (4), a naive way is to consider the combined
kernelK shape + K time which is also PSD. However, this reduces to using the same criterion for
quality and diversity, i.e. DILATE [33]. This directly makesL diversity con�icts with L quality and
harms prediction performances, as shown in ablation studies (section 4.2). Another simple solution
is to diversify usingK shape andK time independently, which prevents from modeling joint shape
and time variations, and intrinsically limits the expressiveness of the diversi�cation scheme. In
contrast, we propose a sequential shape and temporal diversity sampling scheme, which enables to
jointly model variations in shape and time without altering prediction quality. We now detail how the
STRIPE models are trained and then used at test time.

STRIPE-shape and STRIPE-time learning We start by independently training two proposal
modules STRIPE-shape and STRIPE-time (and their respective encoders and decoders) by optimizing
Eq (1) with L ST RIP E (�; K shape ) (resp. L ST RIP E (�; K time )). To this end, we complement the
latent stateh of the forecaster with a diversifying latent variablez 2 Rk decomposed into shape
zs 2 Rk=2 and temporalzt 2 Rk=2 components:z = ( zs; zt ) 2 Rk . As illustrated in Figure 3,
STRIPE-shape (the description of STRIPE-time is symmetric) is a proposal neural network that
producesNs different shape latent codesz( i )

s (the output of the STRIPE-shape neural network is of
shapeNs � k). The decoder takes the concatenated state(h; z( i )

s ; zt ) for a �xed zt and producesNs

future trajectorieŝy ( i ) , whose diversity is maximized withL diversity (ŷ (1) ; :::; ŷ (N s ) ; K shape ) in Eq
(4). The architecture of STRIPE-time is similar to STRIPE-shape, except that the proposal neural
network is conditioned on a generated shape variablez( i )

s to produce temporal variability with respect
to a given shape.
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Sequential sampling at test time Once the STRIPE-
shape and STRIPE-time models (and their corresponding
encoders and decoders) are learned, test-time sampling (il-
lustrated in Figure 3 and detailed in Algorithm 1) consists in
sequentially maximizing the shape diversity with STRIPE-
shape (different guesses about the step amplitude in Figure
3) and the temporal diversity of each shape with STRIPE-
time (the temporal localization of the step).
Notice that the ordering shape+time is actually important
since the notion of time diversity between two time series
is only meaningful if they have a similar shape (so that
computing the DTW optimal path has a sense): the STRIPE-
time proposals are conditioned on the shape proposals from
the previous step. As shown in our experiments, this two-
steps scheme (denoted STRIPE S+T) leads to more diverse
predictions with both shape and time criteria compared to
using the shape or time kernels alone.

Algorithm 1: STRIPE S+T sam-
pling at test time

Sample an initialz(0)
t � N (0; I )

z(1)
s ; :::; z(N s )

s =
STRIPE-shape(x1:T )

for i=1..Ns do
z( i; 1)

t ; :::; z( i;N t )
t =

STRIPE-time(x1:T ; z( i )
s )

for j=1..N t do
ŷ ( i;j )

T +1: t + � =

Decoder(x1:T ; (z( i )
s ; z( i;j )

t ))
end

end

4 Experiments

To illustrate the relevance of STRIPE, we carry out experiments in two different settings: in the
�rst one, we compare the ability of forecasting methods to capture the full predictive distribution of
future trajectories on a synthetic dataset with multiple possible futures for each input. To validate our
approach in realistic settings, we evaluate STRIPE on 2 standard real datasets (traf�c & electricity)
where we evaluate the best (resp. the mean) sample metrics as a proxy for diversity (resp. quality).

Implementation details: To handle the inherent ambiguity of the synthetic dataset (multiple targets
for one input), our STRIPE model is based on a natively stochastic model (cVAE). Since this situation
does not arise exactly for real-world datasets, we choose in this case a deterministic Seq2Seq predictor
with 1 layer of 128 Gated Recurrent Units (GRU) [10]. In our experiments, all methods produce
N=10 future trajectories that are compared to the unique (or multiple) ground truth(s). For a fair
comparison, STRIPE S+T generatesNs � N t = 10 � 10 = 100 predictions and we randomly
sample N=10 predictions for evaluation. Further neural network architectures and implementation
details are described in supplementary 3.1. Our PyTorch code implementing STRIPE is available at
https://github.com/vincent-leguen/STRIPE .

4.1 Synthetic dataset with multiple futures

We use a synthetic dataset similar to [33] that consists in predicting step functions based on a two-
peaks input signal (see Figure 1). For each input series of 20 timesteps, we generate 10 different
future series of length 20 by adding noise on the step amplitude and localisation. The dataset is
composed of100� 10 = 1000time series for each train/valid/test split (further dataset description in
supplementary 3.1).

Metrics: In this multiple futures context, we de�ne two speci�c discrepancy measuresHquality (`)
andHdiversity (`) for assessing the divergence between the predicted and true distributions of futures
trajectories for a given loss̀(` = MSE or DILATE in our experiments):

Hquality (`) = Ex 2D test Eŷ

�
inf

y 2 F (x )
`(ŷ ; y )

�
Hdiversity (`) = Ex 2D test Ey 2 F (x )

�
inf
ŷ

`(ŷ ; y )
�

Hquality penalizes forecastŝy that are far away from a ground truth future ofx denotedy 2 F (x)
(similarly to the precision concept in pattern recognition) whereasHdiversity penalizes when a true
future is not covered by a forecast (similarly to recall). We also use the continuous ranked probability
score (CRPS)2 which is a standardproper scoring rule[23] for assessing probabilistic forecasts [21].

2An intuitive de�nition of the CRPS is the pinball loss integrated over all quantile levels. The CRPS is
minimized when the predicted future distribution is identical to the true future distribution.
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Table 1: Forecasting results on the synthetic dataset with multiple futures for each input, averaged
over 5 runs (mean� standard deviation). Best equivalent method(s) (Student t-test) shown in bold.
Metrics are scaled (MSE� 1000, DILATE� 100, CRPS� 1000) for readability.

Hquality (:)(#) Hdiversity (:) (#) CRPS (#)

Methods MSE DILATE MSE DILATE

Deep AR [52] 26.6� 6.4 67.0� 12.0 15.2� 3.4 45.4� 4.3 62.4� 9.9
cVAE MSE 11.8� 0.5 48.8� 3.2 20.0� 0.6 85.4� 7.0 76.4� 3.0

variety loss [55] MSE 13.1� 2.7 50.9� 4.7 19.6� 1.1 84.7� 2.2 80.1� 3.3
Entropy regul. [13] MSE 12.0� 0.7 51.5� 2.9 19.7� 0.7 89.5� 7.4 78.9� 2.9
Diverse DPP [65] MSE 15.9� 2.6 56.6� 2.8 16.5� 1.5 59.6� 5.6 80.5� 6.1
GDPP [17] kernel MSE 11.7� 1.3 47.5� 3.1 19.5� 0.4 82.3� 5.2 74.0� 4.5
STRIPE S+T (ours) 12.4� 1.0 48.7� 0.7 18.1� 1.6 62.0� 5.4 72.2� 3.1

cVAE DILATE 11.6 � 1.8 28.3� 2.9 22.2� 2.5 67.8� 7.8 62.2� 4.2
variety loss [55] DILATE 14.9� 3.3 33.5� 1.9 23.8� 3.9 61.6� 1.9 62.6� 3.0

Entropy regul. [13] DILATE 12.7� 2.6 29.9� 3.2 23.5� 2.6 65.1� 4.5 62.4� 3.9
Diverse DPP [65] DILATE 11.1� 1.6 30.2� 2.9 20.7� 2.3 62.6� 11.3 60.7� 1.6
GDPP [17] kernel DILATE 10.6� 1.6 28.7� 4.1 21.7� 2.1 47.7� 9.0 63.4� 6.4

STRIPE S+T (ours) 10.8� 0.4 30.7� 0.9 14.5� 0.6 35.5� 1.1 60.5� 0.4

Results We compare our method to 4 recent competing diversi�cation mechanisms (variety loss
[55], entropy regularisation [13], diverse DPP [65] and GDPP [17]) based two different forecasting
backbones: a conditional variational autoencoder (cVAE) trained with MSE and with DILATE. Results
in Table 1 show that our model STRIPE S+T based on a cVAE DILATE obtains the global best
performances by improving the diversity by a large margin (Hdiversity (DILATE) = 35.5 vs. 67.8),
signi�cantly outperforming other methods. This highlights the relevance of the structured shape and
time diversity in STRIPE. It is worth mentioning that STRIPE also presents the best performances in
quality. In contrast, other diversi�cation mechanisms (variety loss, entropy regularisation, diverse
DPP) based on the same backbone (cVAE DILATE) improve the diversity in DILATE but at the
cost of a loss in quality in MSE and/or DILATE. Although GDPP does not deteriorate quality, it
is signi�cantly worse than STRIPE in diversity, and the approach requires full future distribution
supervision, which it not applicable in in real dataset (see section 2).

Similar conclusions can be drawn for the cVAE MSE backbone: the different diversity mechanisms
improve the diversity but at the cost of a loss of quality. For example, Diverse DPP MSE [65] improves
diversity (Hdiversity (DILATE) = 59.6 vs. 85.4) but looses in quality (Hquality (DILATE) = 56.6
vs. 48.8). In contrast, STRIPE S+T again both improves diversity (Hdiversity (DILATE) = 62.0
vs. 85.4) with equivalent quality (Hquality (DILATE) = 48.7 vs. 48.8). We further highlight that
STRIPE S+T gets the best results evaluated in CPRS, con�rming its ability to better recover the true
future distribution.

4.2 Ablation study

To analyze the respective roles of the quality and diversity losses, we perform an ablation study on the
synthetic dataset with the cVAE backbone trained with the quality loss DILATE and different DPP
diversity losses. For a �ner analysis, we report in Table 2 the shape (DTW, computed with Tslearn
[54]) and time (TDI) components of the DILATE loss [33].

Table 2: Ablation study on the synthetic dataset. We train a backbone cVAE with the DILATE quality
loss and compare different DPP kernels for diversity. Metrics are scaled for readability. Results
averaged over 5 runs (mean� std). Best equivalent method(s) (Student t-test) shown in bold.

cVAE DILATE Hquality (:) (#) Hdiversity (:) (#) CRPS (#)

diversity MSE DILATE MSE DTW TDI DILATE
None 11.6� 1.8 28.3� 2.9 22.2� 2.5 18.8� 1.3 48.6� 2.2 67.8� 7.8 62.2� 4.2

DILATE 11.1� 1.6 30.2� 2.8 20.7� 2.3 18.6� 1.6 42.8� 10.2 62.6� 11.3 60.7� 1.7
MSE 10.9� 1.5 30.2� 2.9 20.1� 2.2 18.5� 1.3 41.9� 8.8 61.7� 9.5 62.1� 0.9

shape (ours) 11.0� 1.4 30.2� 1.2 15.5� 1.04 16.4� 1.5 15.4� 4.2 37.8� 3.7 63.2� 1.6
time (ours) 11.9� 0.5 31.2� 1.3 16.1� 0.70 17.6� 0.5 15.1� 3.1 38.9� 3.3 62.3� 1.4
S+T (ours) 10.8� 0.4 30.7� 0.9 14.5� 0.6 16.1� 1.1 13.2� 1.7 35.5� 1.1 60.5� 0.4
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