Appendix

The Appendix contains proofs of results in the main paper ordered as they appear. Auxiliary results
needed for some of the proofs are stated in Appendix F.

A Proof of Proposition 1

The ‘if” part of the theorem is due to Vaicenavicius et al. [44, Proposition 1]; we reproduce it for
completeness. Let o(g), o(f) be the sub o-algebras generated by g and f respectively. By definition
of f, we know that f is o(g)-measurable and, hence, o(f) < o(g). We now have:

EY [f(X)]=E[E[Y [g(X)]] f(X)] (by tower rule since o (f) < o(g))
=E[f(X) | f(X)] (by property (5))
= f(X).

The ‘only if” part can be verified for g = f. Since f is perfectly calibrated,

E[Y [ f(X) = f(2)] = f(),

almost surely Py.

B Proofs of results in Section 3

B.1 Proof of Theorem 1

Assume that one is given a predictor f that is (¢, «)-approximately calibrated. Then the assertion
follows from the definition of (e, v)-approximate calibration since:

E | F(XO)] - f(X)] <e(f(X)) = E[Y | f(X)] € C(f(X)).

Now we show the proof in the other direction. If m¢ was injective, E[Y | ma(f(X))] =
E[Y | f(X)] and thusif E[Y | f(X)] € C(f(X)) (which happens with probability at least 1 — ),
we would have E [Y | me(f(X))] € C(f(X)) and so

[E[Y [ me(f(X)] =me(f(X)[ < sup ){IC(Z)\/2}:&

z€Range(f

This serves as an intuition for the proof in the general case, when m¢ need not be injective. Note
that,

E[Y | me(f(X))] —me(F(X))] = [E[Y | me(f(X))] —E [me(£(X)) | me(f(X))]]
YEEY | £X)] ] me(f(X)] - E [me(f(X)) | me(f(X))]]

= =

Y EEY | £(X)] - me(f(X)) | me(f(X)]]
CEIEY | £CO] - mo(fCO)] | me(F(X))], (20)

where we use the tower rule in (1) (since m¢ is a function of f), linearity of expectation in (2) and
Jensen’s inequality in (3). To be clear, the outermost expectation above is over f(X) (conditioned
onme(f(X))). Consider the event

AE[Y | f(X)] e C(f(X)).
On A, by definition we have:

uc (f(X)) = le(f(X))
2

<

~x

E[Y | £(X)] = me(F(X))] = 'C<Z>> .

sup <
zeRange(f) 2
By monotonicity property of conditional expectation, we also have that conditioned on A,
E[E[Y [ f(X)] = mc(f(X)] | me(f(X)] <E[e | me(f(X))] =,
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with probability 1. Thus by the relationship proved in the series of equations ending in (20), we have
that conditioned on A, with probability 1,

E[Y | mo(f(X))] = me(f(X))]

Since we are given that C'is a (1 — «)-CI with respect to f, P(A) > 1 — a. For any event B, it holds
that P (B) = P (B|A) P(A). Setting

B:EY | me(f(X)] —me(f(X)] <e,

N

E.

we obtain:
PE[Y | mc(f(X)] —me(f(X)]<e)>1-a

Thus, we conclude that mc(f(+)) is (e, «)-approximately calibrated. O

B.2 Proof of Corollary 1

Let {fn}nen be asymptotically calibrated sequence with the corresponding sequence of functions
{en}nen that satisfy e, (f,(X,+1)) = op(1l). From Theorem 1, we can construct corresponding
functions C,, that are (1 — «)-CI with respect to f,, and satisfy

|Cn(fn(Xn+l))| = 25n(fn(Xn+l)) = OP(D'
This concludes the proof. O

B.3 Proof of Theorem 2

In the proof we write the test point as (X,,41, Yy,+1). Suppose C,isa (1 — a)-CI with respect to

~

f for all distributions P. We show that C,, covers the label Y, ;1 itself for distributions P such that

A~

Py (x is nonatomic (and thus disc(C},) would also cover the labels).

Let P be any distribution such that Py x is nonatomic. Fix a set of m > n+1 samples from the dis-
tribution P denoted as 7 = {(A“W), BUY))} ... Given T, consider a distribution () corresponding
to the following sampling procedure for (X,Y) ~ Q:

sample an index j uniformly at random from [rn] and set (X,Y) = (AY), BU)),

The distribution function for @ is given by
m
m~! Z d(AW,BG)Y-

Jj=1

where 4, 1) denotes the points mass at (a,b). Note that @ is only defined conditional on 7. Observe
the following facts about Q:

® Supp(Q) = {(A(j)>B(j))}je[m]-
e Consider any (z,%) € supp(Q). Let (z,y) = (AU), BU)) for some j € [m]. Then
Eq[Y | f(X) = f(a)] = Eq Y | /(X) = f(4Y)]
SR, [Y | X = AU’)]
&2 BU = Y.

Above &; holds since Pf(x is nonatomic so that the f(X (1))’s are unique almost surely.
Note that Py is nonatomic only if Px itself is nonatomic. Thus the AU)’s are unique
almost surely, and & follow. In other words, if (X,Y) ~ @, then we have

Y =EqlY [ f(X)]. @21
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Suppose the data distribution was Q, that is {(X;, Y;) }ie[n11] ~ Q" "". Define the event that the CI
guarantee holds as

By :E[Yor | f(Xne1)] € Col(f(Xns)), (22)
and the event that the PS guarantee holds as
Byt Yoin € Co(f(Xna1))- (23)

Then due to (21), the events are exactly the same under ):

K= E2 (24)

In particular, this means

Bgeos (Bq [Yuer | F(Xur1)] € Culf(Xur1)) = Pous (Vs € Culf(Xurn)).  (25)

If C,, is a distribution-free CI, then Pgn+1(£1) = 1 — a and thus Pgn+1(E>) = 1 — a. This shows

that for @, disc(C},) is a (1 — «)-PI. Note that @) corresponds to sampling with replacement from
a fixed set 7 where each element is drawn with respect to P. Although Q # P, we expect that
as m — oo (while n is fixed), ¢ and P coincide. This would prove the result for general P. To
formalize this intuition, we describe a distribution which is close to @) but corresponds to sampling
without replacement from T instead.

For this, now suppose that {(X;, Y;)}se[n+1] ~ R™"! where R"*! corresponds to sampling without
replacement from 7. Formally, to draw from R™*1, we first draw a surjective mapping \ : [n+1] —

[m] as
A ~ Unif (n-sized ordered subsets of [m]),
and set (X;,Y;) = (ACE) B fori e [n + 1].

First we quantify precisely the intuition that as m — 0o, Q"' and R™*! are essentially identical.
Consider the event T' := no index is repeated in Q" *!. Let P(T) = 7, for some m and note that
lim,, o T, = 1. Now consider any probability event £ over {(X;, Y;)}ic[n+1] (Such as £ or Ey).
We have

Pgn+1(E) = Pgn+1 (E|T) - P(T) + Pgn+1 (E|T€) - P(T€)
€ [Pon+1(E|T) - P(T), Pon+1 (E|T) - P(T) + P(T°)].
Now observe that Pgn+1 (E|T) = Pga+1(E) to conclude
Pgrss (E) € [P (B) - P(T), Pross () - B(T) + B(T°)].
Since m = n + 1, P(T) # 0 so we can invert the above and substitute 7,,, = P(T’) to get

Pro+1(E) € [1,,  (Bgn+1(E) — (1 — 7)), T Pgn+1(E)] . (26)
Consider I = [ defined in equation (23). We showed that Pgn+1(E2) = 1 — a. Thus from (26),
Proii (Bz) = 7,0 (1 —a— (1 —1p)).

The above is with respect to R"*! which is conditional on a fixed draw 7. However since the right
hand side is independent of 7, we can also include the randomness in 7 to say:

Proir 7(B2) = 7, (1 —a — (1 — 7). (27)
Observe that if we consider the marginal distribution over R"*! and 7 (that is we include the

randomness in 7" as above), {(X;, Y;) }ie[n+1] “ P This is not true if we do not marginalize over

T, in particular since the (X;,Y;)’s are not independent (due to sampling without replacement).
Thus equation (27) can be restated as

Ppnii(Eo) = 7, (1 —a— (1 — 1)),
Since m can be set to any number and lim,,, o, 7, = 1, we can indeed conclude
PPn+1(E2) =>1—a.

Recall that Fs is the event that Y,,,; € CA’n(X,LH); equivalently Y,,,1 € discén(XnH). Thus
disc(C',) provides a (1 — a)-PI for P such that Py x is nonatomic. O
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B.4 Proof of Corollary 2
Let P be any distribution such that Py x) is nonatomic. By Theorem 2, CA’n must provide both a

prediction set and a confidence interval for P:

P(E [Yit1 | f(Xns1)] € Cu(f(Xn41))) = 1 —a,
and N
P(Yni1 € Cu(f(Xnt1))) 21—
Thus by a union bound

Ppost ({(Yns 1, B [Yos1 | F(Xns1)]} € Cu(f(Xni1)) > 1 - 200 (28)

Now consider a distribution P such that Py y) is nonatomic and P(Y = 1| X) = 0.5 a.s. Px so
that E [V, 1 | f(X)] = 0.5 as. Py(x). The inequality (28) is true for this P as well. If

Vi1, B [Yosr | F(Xns)]} € Cu(f(Xnt1)),
then |Cp(Xpi1)| = [Yos1 — B [Yos1 | f(Xns1)]| = 0.5. Thus

Ppnis (|Cn(f (Xns))| = 0.5) > 1 - 20
Consequently we have

Eprss |Cu(f (Xns1))| = 0.5(1 — 20)
=0.5—a.
This concludes the proof. O

B.5 Proof of Theorem 3

Suppose that { f,,} nen is asymptotically calibrated and satisfies
lim sup ’X(f”)

n—0o0

> No,

that is, for every m € N, there exists n > m such that X (f2) is an uncountable set. We will show a
contradiction using Corollary 2 for f,, and a certain C,, to be defined shortly.

First, we verify the condition of Corollary 2 for f,, if X{/») is uncountable: we construct a distribu-
tion P such that Py, (x)) is nonatomic. Let the range of f,, acting on X’ be denoted as f,, ('), and

for z € f,,(X) let the level set at value z be denoted as Xz(f ") Since the sets X'/+) are measurable,
we can define P(X) as follows:

P(fa(X)) = Unif(fo(2));  P(X | fu(X)) = Unif (X7))). (29)

P(X) along with any conditional probability function P(Y | X) constitutes a valid probability
distribution P. Further, from the construction, since X'/ n) is uncountable, an( X) is guaranteed to
be nonatomic.

Next, since {f,, }nen is asymptotically calibrated, by Corollary 1, one can construct a sequence of
functions {C), } ,en such that each C,, is a (1 — «)-CI with respect to f,, for any distribution @, and

|Cn(fn(Xni1))| = 0@ (1)
Thus there exists a constant m such that for n > m and any distribution @),
Egn+1 |Cn(fn(Xn+1))| < 0.5 — . (30)

However, since lim sup|X (/)| > Ry, there exists an n > m such that X/») is uncountable. Hence
n—0o0

the requirements of Corollary 2 are satisfied by CA’,L and f,: namely CA’n is a (1 — «)-CI with respect
to f for all distributions P, and there exists a P such that an( X) is nonatomic. Thus Corollary 2
yields that we can construct a distribution ) such that

EQn+1 ‘Cn(fn<Xn+1))| > 0.5 —aq,
which is a contradiction to (30). Hence our hypothesis that lim sup|X (fn)

n—o0

concluding the proof. O

> Ny must be false,
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C Proofs of results in Section 4 (other than Section 4.4)

C.1 Proof of Theorem 4

Let Ep(,) be the event that (B(X1),...,B(X,)) = (B(x1),...,B(z,)). On the event Ep(,),
within each region &}, the number of point from the calibration set is known and the Y;’s in each bin
represent independent Bernoulli random variables that share the same mean 7, = E[Y | X € A}].
Consider any fixed region Xj, b € [B]. Using Theorem 10, we obtain that:

2V, In(3B/a) , 3 1n(3B/a
Ny

P |7Tb—7?b‘ > )EB(I <Oz/B.

Applying union bound across all regions of the sample-space partition, we get that:

2V, In(3B/a) 31n(?>B/a

P|Vbe [B]: |mp — 7| < N,

‘EB(¢) =1-a.

Because this is true for any Fp(,), we can marginalize to obtain the assertion of the theorem in
unconditional form. O

C.2 Proof of Corollary 4

We show a calibration guarantee by using Theorem 1. Consider the scoring function as B with
Z = [B]. Then by Theorem 4, C' : [B] — Z given by

2V, In(3B/a) | 3n(3B/a) -~ 2V, In(3B/a) _ 3In(3B/a)

be (B
N, N, ' N, N, »be[B],

provides a (1 — a)-CI with respect to B. Let b* = minycp] Ny. To apply Theorem 4, we define

2V In(3B In(3B
e = sup [C() /2 = | BB | SmsB/a)
be[B] N Ny

and the mid-point function m¢ for C'is given by m¢(b) = 7. Applying Theorem 1 gives the first
part of the result.

Next, suppose some bin b has P(B(X) = b) = 0. Then, a test point X, almost surely does not
belong to the bin, and the bin can be ignored for our calibration guarantee. Thus without loss of
generality, suppose every b € [ B] satisfies

P(B(X) = b) > 0.

Let minyep) P(B(X) = b) = 7 > 0. Then for a fixed number of samples n, any particular bin b,
and any constant « € (0, 1) we have by Hoeffding’s inequality with probability 1 — o/ B

nln(B/a) .

Ny = nt —
b = NT 9

Taking a union bound, we have with probability 1 — «, simultaneously for every b € [ B],

nln(B/a)

Ny = -
b nrt 9

- (),

and in particular Ny = Q(n) where b* = arg min,e[p; Np. Thus by the first part of this corollary,
fn is €y, calibrated where €,, = O(v/n~1) = o(1). This concludes the proof. O
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C.3 Proof of Theorem 5

Denote |D? ;| = n. Let p; = P(g(X) € I;) be the true probability that a random point falls into
partition X;. Assume c is such that we can use Lemma 11 to guarantee that with probability at least
1 — a/2, uniform mass binning scheme is 2-well-balanced. Hence, with probability at least 1 — a/2:

1 2 .
— <p; < = .
5 SPiS g Vi€ [B] (31)

Moreover, by Hoeffding’s inequality we get that for any fixed region of sample-space partition, with
probability at least 1 — /2B, for a fixed j € [B],

nln(2B/«a
Ny = mp; — [ "REE) (32)

Hence, by union bound across applied accross all regions and using (31), we get that with probability
atleast 1 — a/2:
n nln(2B/a)
Npe =2 — —A| —————,
"~ 2B 2
where the first term dominates asymptotically (for fixed B). Hence, we get that with probability at
least 1 — o, Np» = Q (n/B). By invoking the result of Corollary 4 and observing that V, < 1, we

conclude that uniform mass binning is (£, ) approximately calibrated with e = O(+/BIn(B/a)/n)
as desired. This also leads to asymptotic calibration by Corollary 4.

C.4 Proof of Theorem 6

The proof is based on the result for an empirical-Bernstein confidence sequences for bounded
observations [15]. We condition on the event Ey , defined as (B(X1),B(X4),...) =

(B(z1),B(x3),...), that is the random variables denoting which partition the infinite stream of
samples fall in (thus allowing our bound to hold for every possible value of n). On E%O(w), the label

values within each partition of the sample-space partition represent independent Bernoulli random
variable that share the same mean 1, = E [Y | X € &}], b € [B]. Consequently, the bound obtained
can be marginalized over E;O(z) to obtain the assertion of the theorem in unconditional form. Now

we show the bound that applies conditionally on E%o(m).

Consider any fixed region of the sample-space partition A} and corresponding points
{(xt,Y)) }jvzbl Then S; = (Z§=1 Yib) — ty, is a sub-exponential process with variance process:

t
A b N2
V= (v -Vl
i=1
Howard et al. [14, Proposition 2] implies that S; is also a sub-gamma process with variance process

V; and the same scale ¢ = 1. Since the theorem holds for any sub-exponential uniform boundary, we
choose one based on analytical convenience. Recall definition of the polynomial stitching function

l(v) := Inh(In, (v/m)) + In(lp/c),
kyi= (4072,
ko = (M +1)/v/2.

where [y = 1 for the scalar case. Note that for ¢ > 0 it holds that S, (v) < k14/vl(v) 4+ 2ckz2l(v).

Sa(v) 1= \/kfvl(v) + k2c212(v) + kacl(v), where

From Howard et al. [15, Theorem 1], it follows that u(v) = S, (v v m) is a sub-gamma uniform
boundary with scale ¢ and crossing probability «. Applying Theorem 9 with h(k) < (k + 1)%((s)
where ((-) is Riemann zeta function and parameters 77 «<— e, s « 1.4, ¢ < 1, m « 1l and a «
a/(2B), yields that ks < 1.88,k1 < 1.46 and [(v) = 1.4 - Inln (ev) + In(2¢(1.4) B/«). Since
Theorem 9 provides a bound that holds uniformly across time ¢, then it provides a guarantee for
t = Ny, in particular. Hence, with probability at least 1 — /B,

1~46\/‘7b+ 14T (e (7 v 1)) +1n(63B/a) 527 Inln (¢ (Vrv1)) +3.761n(6.38/a)
+

m — | <
< Ny Ny
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_ 7\/x7,,+ ‘Inln <e (ffb+ v 1)) + 5.31n(6.3B/a).
Ny

using that /= +y < y/z + /y and Inln(exz) < vz Inlnex for 2 > 1. Finally, we apply a union
bound to get a guarantee that holds simultaneously for all regions of the sample-space partition. [

D Calibration under covariate shift (including proofs of results in
Section 4.4)

The results from Section 4.4 are proved in Appendix D.1 (Theorem 7) and D.3 (Proposition 2). To
show Theorem 7, we first propose and analyze a slightly different estimator than (39) that is unbiased

for wl()w), but needs additional oracle access to the parameters {mb}be[ ) defined as
my = PPX (X € Xb) /P};X (X € Xb)

my denotes the ‘relative mass’ of region X},. (For simplicity, we assume that P Is(X € Xp) > 0 for
every b since otherwise the test-point almost surely does not belong to A}, and estimation in that bin
is not relevant for a calibration guarantee.) We then show that m; can be estimated using w, which
would lead to the proposed estimator 7vr§w). First, we establish the following relationship between
Es[Y | X eX]and Ep [Y | X € &].

Proposition 3. Under the covariate shift assumption, for any b € [ B]

Ex[Y | X € X)) =my-Ep[w(X)Y | X €X)].

Proof. Observe that

dP(X | X eX,) dP(X) Pp(X ey — w(X) - m
AP(X [X € X,) dP(X) Pp(XedXy) b

Thus we have,
= E};[]EI;[Y|X]\X€XZ,]
Es[Ep[Y | X]| X € &)

3) dP(X | X € &)

- dP(X|XeXb)'EP[Y|X]|X€Xb

my -
=my-Ep[Ep [w(X)Y | X]| X € X

my 'EP [w(X)Y ‘ X e Xb] s
where in (1) we use the tower rule, in (2) we use the covariate shift assumption, (3) can be seen by

using the integral form of the expectation, (4) uses the observation at the beginning of the proof, (5)
uses that w(X) is a function of X and finally, (6) uses the tower rule.

Let N, denote the number of calibration points from the source domain that belong to bin b. Given
Proposition 3, a natural estimator for E;5 [Y | X € A} ] is given by:

~(w ]-
TrIS ) .= A Z myw(X;)Y;. (33)
b B(x)=b

Estimation properties of ?rlgw) are given by the following theorem.
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Theorem 8. Assume that sup, w(x) = U < 0. For any « € (0, 1), with probability at least 1 — «,

20.*) In(3B/a)
Ny

3myU In(3B/)
Ny ?

7ATZ()w) ~Es[YV | Xe Xb]’ < + simultaneously for all b € [B],

where V") = 2= 3%, s <o (mow(X0)Y; — 72

The proof is given in Appendix D.2. Next, we discuss a way of estimating m;, using likelihood ratio
w instead of relying on oracle access. Observe that

dP(X | X eX,) dP(X) Pp(XeX,)

= . =w(X) - myp.
dP(X | X e Xy)  dP(X) Po(X €Ay w(X) - me
Thus we have,
i | dP(X | X € &) B
E X)| XeX)=my 'Ep | o2 | XeX| =m" 34
plw(X)| X eX]=m PdP(X\Xe)Q)' €A my -, 34
which suggests a possible estimator for m;, given by
-1
B(X.)=b W(Xi
Py = (ZLB(X@)I) ( )> , be[B]. (35)
Ny

On substituting this estimate for my in (33), we get a new estimator
2iB(x)—b W(X)Y;
Zi:B(X,i):b w(X;)

. With this observation, we now prove Theorem 7.

which is exactly 7 V(w)

D.1 Proof of Theorem 7

Let us define rp := 1/m;, and
~ Zi:B(X-):bw(X’i)

Fp = N . (36)

Step 1 (Uniform lower bound for V). Since the regions of the sample-space partition were
constructed using uniform-mass binning, the guarantee of Theorem 5 holds. Precisely, we have that

with probability at least 1 — «/3, simultaneously for every b € [B],
n n1n(6B/a)
Ny > o — g |02
"~ 9B 2

Step 2 (Approximating 7). Observe that the estimator (36) is an average of N, random vari-
ables bounded by the interval [0,U]. Let Ep(,) be the event that (B(X,),...,B(X,)) =
(B(x1),...,B(x,)). On the event Ep(,), within each region &}, the number of point from the
calibration set is known and the Y;’s in each bin represent independent Bernoulli random variables
that share the same mean E [w(X) | X € A},]. Consider any fixed region X}, b € [B]. By Hoeffd-
ing’s inequality, it holds that

~ U?1n(6B/«)
P<|rb_7”b|> T‘EB a:)) a/(3B).

Applying union bound across all regions of the sample-space partition, we get that:

2
e (wetal: bl PO |y ) <o

Because this is true for any Fj/,), we can marginalize to obtain that with probability at least 1—a/3,

U21n(6B/a)

5N, (37)

Vbe [B], |ry — 7| <
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Step 3 (Going from 7, to m;). Define 7* = minyep) E [w(X) | X € A,]. Suppose Vb € [B],
|rp — 74| < € and € < r*/2. Then, we have with probability at least 1 — «/3:

1 1 € 2e
- T =X X 5 < )
Ty Th ri|l—¢/re| 13

We now sete = 4/ %65/“) as specified in equation (37) and verify that e < r*/2.

e First, from step 1, with probability at least 1 — /3, Ny« = Q(n/B) and thus NV, = 2(n/B)
for every b € [B].

DT —omZe, Vbe[B]. (38)

|mp — | =

Tb'?b

e By the condition in the theorem statement, for every b € [B],

U?1n(6B/a) U?2B1In(6B/a) U?BIn(6B/«)
o) o R o

Finally recall that L < r*. Thus we can pick c in the theorem statement to be large enough
such thate < L/2 < r*/2.

Thus for e = %ﬁf/a), by a union bound over the event in (37) and step 1, the conditions for

(38) are satisfied with probability at least 1 — 2a/3. Hence we have for some large enough constant

c >0,
~ U2BIn(6B/«) U |Bln(6B/«a)
2.,/
|y, — my| < emy, - o, <C-L2 o .

The final inequality holds by observing that m; < 1/L which follows from relationship (34) and the
assumption that inf, w(z) > L.

Step 4 (Computing the final deviation inequality for %éw)). Recall the definitions of the two
estimators: L
~(w) |, _
Ty = N, Z myw(X;)Y;,
:B(X;)=b
and

Ny

g1 _
o= — Y mw(X)Y,
©:B(X;)=b

which differ by replacing my, by its estimator 1, defined in (35). By triangle inequality,

%o —E[Y | X € ]| < \%gw_agﬂ + ‘ﬁéw)—E[Y|X6Xb] .

Theorem 8 bounds the term ‘%éw) —E[Y|Xe Xb]’ with high probability. In the proof of Theo-

rem 8, we can replace the empirical Bernstein’s inequality by Hoeffding’s inequality to obtain with
probability at least 1 — «/3,

2In(6B/a) _ (U\’> |In(6B/a)
Y -E[Y | X e )| < UPn6B/a) _ (U, /n0B/a)
’ﬂ—b [ | € b] = 2Nb < I 2Nb )
simultaneously for all b € [B] (the last inequality follows since L < 1 < U). To bound
‘?réw) — %) first note that:




—U - | — m|.

Then we use the results from steps 1 and 3 to conclude that with probability at least 1 — 2a/3,

W) A(w U\’ [Bn(6B [nn(6B
‘%é )—Wé )’gc.(L> %) and N, >n/B — M_

simultaneously for all b € [B]. Thus by union bound, we get that it holds with probability at least

1—a,
_ U\’ [BIn(6B/a)
—E[Y [ Xed|<c =) )/ —L
[T —E[Y | X e ]| <c (L) o

simultaneously for all b € [ B] and large enough absolute constant ¢ > 0. This concludes the proof.
O

D.2 Proof of Theorem 8
Consider the event Eg(,) defined as (B(X1),...,B(X,)) = (B(x1),...,B(z,)). Condi-

tioned on Ep(y, since sup, w(z) < U, we get that %l()w) is an average of independent non-

negative random variables mpw(X;)Y; that are bounded by m,U and share the same mean
my Ep [w(X)Y | X € &] = Es[Y | X € &] (by Proposition 3).Using Theorem 10 for a fixed
b € [ B], we obtain:

2V, In(3B/a) N 3mpU In(3B/«
N, N,

i ‘%éw)—Elg[Y|XeXb]‘> )‘Eg(w) < a/B.

Applying a union bound over all b € [ B], we get:

P (Vbe [B] : ‘?rg”’ ~Ep[Y|Xe Xb]‘ < QWHZE[?;B/") + 3m"U1]r\}£33/0‘) ‘EB(I)) >1-a.

Because this is true for any Fp(,), we can marginalize to obtain the assertion of the theorem in
unconditional form. O

D.3 Proof of Proposition 2

Fix any « € (0, 1). For any k € N observe that by triangle inequality,
7™ _Es[Y | X e Xb]’ < ’%g“’) “Ep[Y|Xe Xb]‘ + ’%g“” il

Consider any ¢ > 0. Note that by Theorem 7, there exists sufficiently large n such that the first
term is larger than /2 with probability at most /2 simultaneously for all b € [B]. Hence, it
suffices to show that there exists a large enough £ such that the probability of the second term
exceeding £/2 is at most /2 simultaneously for all b € [B]. While analyzing the second term,
we treat n as a constant while leveraging the consistency of wy as k — 0. For simplicity, denote
Ay = sup, |w(x) — Wk (z)|. Then for any b € [B]:
| Zisox)=p WX)Ys X x)= Wk (Xi)Yi
2iB(x)—b W(Xi) 2iiB(x:)—b Wk (X5)
Zi:B(X,;):b w(X;)Y; _ Zi:B(Xi):b Wi (X;)Y;
Zi:B(Xi):bw(Xi) Zi:B(X,i):bw(Xi)
n Zi:B(Xi):b @k(XZ)}fZ _ Zi:B(X,;):b @k(X’L)Y:L
2iB(xs)=b W(X5) 2iB(x)=b Wk(X5)
1
2iB(x:)—b W(Xi)

~(w)

~ (D)
Ty — Ty

@
<

~x

(2)
Sn-Ako
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1 1
Zi:B(X,):b w(X;) Zi:B(X,;):b Wi (X;)

25 a (R ) (@ A,

where (1) is due to the triangle inequality, (2) is due to the facts that the number of points in any
bin is at most n and that absolute difference between w and w is at most Ay, (3) combines the
aforementioned reasons in (2) and the assumptions: L < inf, w(z) < sup,w(z) < U. Since

—+

> BR(X0)Y;

—~

Ay it 0, clearly there exists a large enough £ such that:

P (|7 = 5™ > e2) < a2

Thus we conclude that 7\?,5@’“) is asymptotically calibrated at level a. O

D.4 Preliminary simulations

This section is structured as follows. We first describe the overall procedure for calibration under
covariate shift. The finite-sample calibration guarantee of Theorem 7 holds for oracle w whereas in
our experiments we will estimate w; to assess the loss in calibration due to this approximation, we
introduce some standard techniques used in literature. The preliminary experiments are performed

with simulated data which are described after this. Finally, we propose a modified estimator %IS@) of
Ep [Y | X € &3] which appears natural but has poor performance in practice.

Procedure. We describe how to construct approximately calibrated predictions practically. This
involves approximating the importance weights w and the relatives mass terms {m}pe[p]. The
summarized calibration procedure consists of the following steps:

1. Split the calibration set into two parts and use the first to perform uniform mass binning

2. Given unlabeled examples from both source and target domain, estimate w. The uncon-
strained Least-Squares Importance Fitting (uLSIF) procedure [17] is used for this.

3. Compute for every b € [ B], the estimator as per (17), replacing w with @:

@) iB(x)—p W(Xi)Y
Ty = — . 39)
Zi:B(XT;):b w(X;)

4. On a new test point from the target distribution, output the calibrated estimate 7

(@)
B(XnJrl)'

Assessment through reliability diagrams and ECE. Given a test set (from the target distribu-
tion) of size m: {(X/,Y/)};e[m] and a function g : X — [0, 1] that outputs approximately cal-
ibrated probabilities, we consider the reliability diagram to estimate its calibration properties. A
reliability diagram is constructed using splitting the unit interval [0, 1] into non-overlapping inter-
vals {Ip }pe[p] for some B’ as

1—1 3 . B -1
Ii = |:B/7B/) , 1= 1,...,B/_1 al‘ld IB/ = |:B/71:| .
Let B’ : [0,1] — [B’] denote the binning function that corresponds to this binning. We then
compute the following quantities for each bin b € [B’]:

2B (X =b Vi
FP(I) = — z (fraction of positives in a bin),
(i B'(X]) = b}
2iopr(x2)=b 9(X7)
MP(1,) = |{zBl£>’)’((;(5 — (mean predicted probability in a bin).
If g is perfectly calibrated, the reliability diagram is diagonal. Define the proportion of points that
fall into various bins as:
5, = L1 B/(X;) = bl
b — )

m

be[B].
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Figure 2: In Figure 2a uncalibrated Random Forest (ECE ~ 0.023) is compared with calibration that
does not take the covariate shift into account (ECE ~ 0.047). In Figure 2b uncalibrated Random
Forest is compared with calibration that takes the covariate shift into account (ECE ~ 0.017).

Then ECE (or ¢1-ECE) is defined as:

ECE(g) = ), Py IMP(I;) — FP(I,)|.
be[B']

ECE can also be defined in the /,, sense and for multiclass problems but we limit our attention to the
£1-ECE for binary problems.

Simulations with synthetic data. We illustrate the performance of our proposed estimator (17)
using the following simulated example, for which we can explicitly control the covariate shift. Con-
sider the following data generation pipeline: for the source domain each component of the feature
vector is drawn from Beta(a, §) where a« = 8 = 1, which corresponds to uniform draws from the
unit cube. For the target distribution each component can be drawn independently from Beta(a/, 5').
If the dimension is d, the true likelihood ratio is given as

wia) = Px@) _ ﬁ )" (L= 2w)”
dpx(l‘) z:l O‘ 1 17%( ))ﬁ 1
where ;) are the coordinates of feature vector z. We set d = 3 and o’ = 2,3’ = 1 so that

w(x) = 8- w(1)T(2)7(3). The labels for both source and target distributions are assigned according
to:

P(Y =1|X =z) = % (14 sin (w (o2 + By + %)) ))

for w = 20. As the underlying classifier we use a Random Forest with 100 trees (from sklearn).
14700 data points were used to train the underlying Random Forest classifier, 2000 data points from
both source and target were used for the estimation of importance weights. The parameters o and
A for uLSIF were tuned by leave-one-out cross-validation: we considered 25 equally spaced values
on a log-scale in range (1072,102) for o and 100 equally spaced values on a log-scale in range
(1073,10%) for \. Uniform mass binning was performed with 10 bins and 1940 data points from
the source domain were used to estimate the quantiles. 7840 source data points were used for the
calibration and finally, 28000 data points from the target domain were used for evaluation purposes.
We note that this simulation is a ‘proof-of-concept’; the sample sizes we used are not necessarily
optimal can presumably be improved.

We compare the unweighted estimator (12) which corresponds to weighing points in each bin equally
as we would do if there was no covariate shift, and the estimator (17) that uses an estimate of w to
account for covariate shift. The reliability diagrams are presented in Figure 2, with the ECE reported
in the caption. For the ECE estimation and reliability diagrams, we used B’ = 10.
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Figure 3: Calibration of Random Forest with m;, estimated as per equation (35) (ECE = 0.05).

Alternative estimator for m;. Estimator (35) is one way of estimating m; using the w values,
that leads to (17). However, there exists another natural estimator which we propose and show
some preliminary empirical results for. Suppose we have access to additional unlabeled data from
the source and target domains ({X7}e[n.],» and {X}};cp,,] respectively). From the definition of
mp = Pp, (X € X,)/Pp_(X € Ab), a natural estimator is,

n% l{i € [ns] : B(X}) = b}
T b BXD =0}

A~

my =

be[B]. (40)

In this case, the estimator (33) reduces to:

B =LY aX)Ys
b iB(X;)=b

We show experimental results with this estimation procedure. We used 8500 data points from the
source domain and 8000 points from the target domain to compute (40). The reliability diagram
and ECE with this estimator is reported in Figure 3. On our simulated dataset, we observe that the
estimators %l()w) perform significantly worse than the estimators %éw). While this is only a single
experimental setup, we outline some drawbacks of this estimation method that may lead to poor
performance in general.

1. %éw) requires access to additional unlabeled data from the source and target domains with-

out leading to increase in performance.

2. The denominator of 7, could be badly behaved if the number of points from the target
domain in bin b are small. We could perform uniform-mass binning on the target domain
to avoid this, but in this case /N, may be small which would lead to the estimator %éw)
performing poorly.

Our overall recommendation through these preliminary experiments is to use the estimator %éﬁ)) as

proposed in Section 4.4 instead of %éﬁ’).

E Venn prediction

Venn prediction [24, 45-47] is a calibration framework that provides distribution-free guarantees,
which are different from the ones in Definitions 1 and 2. For a multiclass problem with L la-
bels, Venn prediction produces L predictions, one of which is guaranteed to be perfectly calibrated
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(although it is impossible to know which one). These are called multiprobabilistic predictors, for-
mally defined as a collection of predictions (f1, f2,... fr) where each f; € {X¥ — Ap_;} (here
Ap_ is the boundary of the ¢ ball in the non-negative orthant of R”, corresponding to all pos-
sible distributions over {1,2,...,L}). Vovk and Petej [45] defined two calibration guarantees for
multiprobabilistic predictors, the first being oracle calibration.

Definition 4 (Oracle calibration). (f1, fa,... f1,) is oracle calibrated if there exists an oracle selector
S such that fg is perfectly calibrated.

Venn predictors satisfy oracle calibration [45, Theorem 1] with S = Y. In the binary case, this
means that when Y = 1, f; (X)) is perfectly calibrated but we do not have any guarantee on fo(X);
on the other hand if Y = 0, fo(X) is perfectly calibrated but we know nothing about f; (X). Since
Y is unknown, oracle calibration seems to us to primarily serve as theoretical guidance, but does
not give a clear prescription on what to output and what theoretical guarantee that output satisfies.
In practice, it seems reasonable to suspect that if fo(X) and f;(X) are close, then their average
should be approximately calibrated in the sense of Definition 1, but to the best of our knowledge,
such results have not been shown formally (other aggregate functions apart from average are also
suggested (without formal guarantees) by Vovk and Petej [45, Section 4]). For instance, it may
be tempting to think that oracle calibration of a multiprobabilistic predictor leads to approximate
calibration in the following way. Consider the prediction function

F(X) = min f;(X) —gmaxfi()()7

and the radius of the interval [min f;(X), max f;(X)]:

max f;(X) — min f;(X)
3 .

Since Venn predictors satisfy oracle calibration, one might conjecture that f is (¢, «) approximately
calibration (per Definition 1) for the given function € and for any « € (0, 1). We examined this claim
but were unable to prove such a guarantee formally. In fact, it seems that no general calibration
guarantee should be possible with the size of the calibration interval being O(s(X)); we evidence
this through the following construction.

e(X) =

Consider a setup, with no covariates and only label values Y, and a single bin that contains all points
(in the Venn prediction language: a taxonomy under which all points are equivalent). For a test-point
Y,,+1 and any predictor f, note that E [Y,, 1 | f] is simply equal to IE [Y,11] since any information
used to construct f is independent of Y, 1. To ensure calibration, we may look for a guarantee of
the following form for some §:

E [Yoia [ f1=fl = [E[Yaua] = fI <6

In essence, f is an estimator for the parameter E [Y] with a corresponding deviation bound of
0. Without distributional assumptions, we only expect to estimate such a parameter with error at
best 6 = O(1/4/n) for a fixed constant probability of failure. On the other hand, the Venn pre-
diction interval [min f;, max f;] often has radius O(1/n). Thus for valid approximate calibration,
we would need to provide a larger interval than [min f;, max f;], even though one of the f;’s is
perfectly calibrated. Given this example, our conjecture is that it might be possible to show that
there always exists an f;(X) that is (n~%5polylog (1/a)), ) calibrated. Without knowing which
fi(X) to pick, perhaps one can show that an aggregate point in the interval [min f;, max f;] is
((max f; — min f;) + n~%°polylog (1/a) , ) approximately calibrated. In Section 4, we showed
such a result for histogram binning (which can be interpreted as a Venn predictor). It would be
interesting to study if such results can be shown for general Venn predictors.

Another guarantee for multiprobabilistic predictors is calibration in the large.

Definition 5 (Calibration in the large). (f1, f2,... fr) is calibrated in the large if the following is
satisfied: E [Y] € [Emin f;(X), Emax f;(X)].

Vovk and Petej [45, Theorem 2] show that Venn predictors satisfy calibration in the large. Due to
the expectation signs and the coverage of the marginal probability E [Y], calibration in the large
does not lead to a clear interpretable guarantee for uncertainty quantification, but rather a minimum
requirement that serves as a guiding principle.
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F Auxiliary results

F.1 Concentration inequalities

Theorem 9 (Howard et al. [15], Theorem 4). Suppose Z; € [a,b] a.s. for all t. Let (Z) be any
[a, b]-valued predictable sequence, and let u be any sub-exponential uniform boundary with crossing

probability o for scale c = b — a. Then:
A2
i1 (Zi - Zz‘) )
>1-2

u(Z
P Vt=1:|Z,— | <

Theorem 10 (Partial statement of Audibert et al. [2], Theorem 1). Let X1, ..., X, be i.i.d. random
variables bounded in [0, s], for some s > 0. Let yu = E[X1] be their common expected value.
Consider the empirical mean X ,, and variance V,, defined respectively by

5 Z;;l Xi _ Z?=1(Xi — Yn)Q

X,=="="— and V,
n n

Then for any 6 € (0, 1), with probability at least 1 — §,

2V, log(3/9) N 3slog(3/9)
n n '

‘Yn_,u‘ <

F.2 Uniform-mass binning

Kumar et al. [21] defined well-balanced binning and showed that uniform mass-binning is well-
balanced.

Definition 6 (Well-balanced binning). A binning scheme B of size B is S-well-balanced (5 > 1)

for some classifier g if

BLB <P(g(X)ely) < %

simultaneously for all b € [B].

To perform uniform-mass binning labeled examples are required at the stage of training the base
classifier g(-). We denote this data as DL,. Procedures based on uniform-mass binning are well-
balanced if |D1 ‘ is sufficiently large.

cal

Lemma 11 (Kumar et al. [21], Lemma 4.3). For a universal constant ¢ > 0, if’l)cla,| > c¢BIn(B/a),
then with probability at least 1 — «, the uniform mass binning scheme B is 2-well-balanced.

The calibration guarantees in Section 4 depend on the minimum number of training points Np»

in any bin. Uniform mass-binning guarantees that Ny« = Q(n/B). This is used in the proof of
Theorem 5.
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