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Proofs

Proof of Lemma 2.1

Proof.

V (i, j) =

∫
Rn

θ(x− xi)θ(x− xj)φ(x)d

(
n∏
k=1

µk(xk)

)
.

V (i, j) =

n∏
k=1

∫
R
θ(xk − xki )θ(xk − xkj )dµk(xk) =

n∏
k=1

∫ ∞
max(xk−

i ,xk−
j )

dµk(xk)

=

n∏
k=1

[
1− µk(max(xk−i , xk−j ))

]
.

Proof of Lemma 3.1

Proof. Consider a Bernoulli trial Z(t), with

Z(t) =

n∏
k=1

Itk≥max(xk
i ,x

k
j )
.

Therefore

p(Z(t) = 1) =

n∏
k=1

[
1− µtargetk (max(xk−i , xk−j ))

]
.

Also note from Lemma 2.1,

V true(i, j) =

n∏
k=1

[
1− µtargetk (max(xk−i , xk−j ))

]
.

Hence, we have V true(i, j) = p(Z(t) = 1). V̂ (i, j) can be rewritten as V̂ (i, j) =
1
M

∑M
q=1 Z(tq). Therefore, V̂ (i, j) denotes the sample mean of the Bernoulli

trial Z(t) with samples Z(t1), Z(t2), · · · , Z(tm). We know that sample mean of
a Bernoulli trial is unbiased and a sufficient statistic for p(Z(t) = 1). Hence,
V̂ (i, j) is the minimum variance unbiased estimator of p(Z(t) = 1) [Duda and Hart, 1973].

Proof of Theorem 3.2

Proof. For ease of notation, we prove the theorem assuming continuous µtarget(.)
(check footnote1)

1For cumulative distribution functions that are not left continuous, we can replace
µtarget(x) by µtarget(x−) at points of discontinuity.

1



For convenience assume mij = max(xi, xj). Further we know that

V true(i, j) = 1− µtarget(mij),

V̂ (i, j) =
1

M

M∑
q=1

Itq≥mij
= 1− 1

M

M∑
q=1

Itq<mij

We define

DKS , supx

∣∣∣∣∣ 1

M

M∑
q=1

Itq<x − µtarget(x)

∣∣∣∣∣
DKS is popularly known as Kolmogorov-Smirnov distance [Kolmogorov, 1933,
Smirnov, 1948]. Therefore, we have

∣∣∣V true(i, j)− V̂ (i, j)
∣∣∣ =

∣∣∣∣∣ 1

M

M∑
q=1

Itq<mij − µtarget(mij)

∣∣∣∣∣
≤ DKS

∣∣∣ρ2(V true)− ρ2(V̂ )
∣∣∣ =

∣∣∣∣∣∣ 1

N2

N∑
i,j=1

lilj

[
V true(i, j)− V̂ (i, j)

]∣∣∣∣∣∣
≤ 1

N2

N∑
i,j=1

|lilj |
∣∣∣V true(i, j)− V̂ (i, j)

∣∣∣
≤ 1

N2
DKS

N∑
i,j=1

|lilj |

Now using Massart’s Inequality [Dudley, 2014], Pr(DKS > ε) < 2e−2Mε2 .

Therefore the statement of theorem follows by choosing ε =
√

logM
M .

Proof of Theorem 3.3

Proof. We first note that∣∣∣ρ2(V true)− ρ2(V̂ )
∣∣∣ ≤ 1

N2

∑
i,j

|lilj |
∣∣∣V true(i, j)− V̂ (i, j)

∣∣∣ . (1)

We prove this theorem by giving a bound for 1
N2

∑
i,j

∣∣∣V true(i, j)− V̂ (i, j)
∣∣∣.

From the proof of Lemma 3.1, V̂ (i, j) denotes the sample mean of i.i.d. Bernoulli
random variables with V true(i, j) being the expected value. Hence, by the Ho-
effding inequality

Pr(
∣∣∣V true(i, j)− V̂ (i, j)

∣∣∣ > δ) < 2e−2Mδ2
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Now, we can use the union bound and the fact that |V true(i, j) − V̂ (i, j)| =
|V true(j, i)− V̂ (j, i)| to get

Pr(
1

N2

∑
i,j

∣∣∣V true(i, j)− V̂ (i, j)
∣∣∣ ≤ δ)

≥ 1− 2(
N(N − 1)

2
+N)e−2Mδ2

= 1−N(N + 1)e−2Mδ2

Now letting δ′ = δmaxi,j |lilj |, we use inequality (1) to obtain the required
result.

Gradient Boosting with V matrix

In the gradient boosting framework introduced by Friedman [Friedman, 2001],
the estimate ŷi of yi is mathematically modeled as follows:

ŷi =

K∑
k=1

fk(xi), fk ∈ F (2)

where K is the number of trees, f is a function the functional space F and F is
the set all possible Classification and Regression Trees (CARTs). The objective
function to be optimized is given by

obj =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (3)

However, in this loss function the samples xi are assumed to be independent. In
a realistic scenario, samples may not be independent, for example, the samples
may be derived from different races and genders giving rise to implicit bias in
the training dataset. To encounter this, we can have a loss function that takes
into account the associations between different loss function. This is tackled by
using a V-matrix which also measures the distance between the sample points.
Formally, the objective or loss function is given as follows:

obj =

n∑
i=1

n∑
j=1

l(yi, yj , ŷi, ŷj , Vij) +

K∑
k=1

Ω(fk) (4)

Note we use Vij to denote V (i, j) here. The proof below deals with a special
case when l(yi, yj , ŷi, ŷj , Vij) = (yi − ŷi)(yj − ŷj)Vij .

Proof

obj =

n∑
i=1

n∑
j=1

(yi − ŷi)(yj − ŷj)Vij +

K∑
k=1

Ω(fk) (5)
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ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi) (6)

obj(t)

=

n∑
i,j=1

(yi − [ŷ
(t−1)
i + ft(xi)])(yj − [ŷ

(t−1)
j + ft(xj)])Vij

+

t∑
k=1

Ω(fk)

= obj(t−1) +

n∑
i,j=1

ft(xj)(ŷ
(t−1)
i − yi)Vij+

n∑
i,j=1

[ft(xi)(ŷ
(t−1)
j − yj) + ft(xi)ft(xj)]Vij + Ω(ft)

=

n∑
i,j=1

[ft(xj)(ŷ
(t−1)
i − yi) + ft(xi)(ŷ

(t−1)
j − yj)]Vij

+

n∑
i,j=1

ft(xi)ft(xj)Vij + Ω(ft) + constant

(7)

ft(x) and Ω(ft) are defined as follows:

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, · · · , T}. (8)

where w is the vector of scores on leaves, q is a function assigning each data
point to the corresponding leaf, and T is the number of leaves. The complexity
Ω(ft) is given by

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j (9)
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Let gi = ŷ
(t−1)
i − yi, and Ij be the set of all xi that belong to leaf j, i.e.

Ij = {i|q(xi) = j}, then

obj(t) =

n∑
i,j=1

[ft(xj)gi + ft(xi)gj + ft(xi)ft(xj)]Vij

+ Ω(ft) + constant

=

n∑
i,j=1

[wq(xj)gi + wq(xi)gj + wq(xi)wq(xj)]Vij

+ Ω(ft) + constant

=

T∑
k=1

wk[

n∑
i=1

∑
j∈Ik

giVij +
∑
i∈Ik

n∑
j=1

gjVij ]

+

T∑
l=1

T∑
m=1

wlwm
∑
i∈Il

∑
j∈Im

Vij +
1

2
λ

T∑
k=1

w2
k

+ γT + constant

=

T∑
k=1

wk[Ak +Bk] +

T∑
l=1

T∑
m=1

wlwmClm

+
1

2
λ

T∑
k=1

w2
k + γT + constant

(10)

where

Ak =

n∑
i=1

∑
j∈Ik

giVij =

n∑
i=1

gi
∑
j∈Ik

Vij (11)

Bk =
∑
i∈Ik

n∑
j=1

gjVij =

n∑
j=1

gj
∑
i∈Ik

Vij (12)

Clm =
∑
i∈Il

∑
j∈Im

Vij (13)

Taking partial derivative of obj(t) with respect to wi gives us

Ai +Bi +

T∑
j=1

[wj(Cij + Cji)] + λwi = 0 ∀i ∈ {1, 2, · · · , T}. (14)

Eq. (14) can be rewritten as:
Dw∗ = U. (15)

where w∗ is the optimal w, D is a T × T matrix with

Dij = Cij + Cji, j 6= i
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Dii = 2Cii + λ.

or in other words

D = C + CT + λI, I : identity matrix

Also note that DT = D. U is a T × 1 vector with

Ui = −(Ai +Bi).

If D is invertible, then
w∗ = D−1U. (16)

The obj(t) function from Eq. (10) can be rewritten as:

obj(t) = −wTU + wTCTw +
1

2
λwTw. (17)

For w = w∗, obj(t) denoted by obj∗ is given by:

obj∗ = −UT (D−1)TU + UT (D−1)TCTD−1U

+
1

2
λUT (D−1)TD−1U + γT + constant

= −UT (DT )−1U + UT (DT )−1CTD−1U

+
1

2
λUT (DT )−1D−1U + γT + constant

= −UTD−1U + UTD−1CTD−1U

+
1

2
λUTD−1D−1U + γT + constant

(18)

When Vij = Vji, obj
∗ in Eq. (18) above can be further simplified. Note that,

here CT = C which implies

CT =
1

2
[D − λI]. (19)

Plugging CT from (19) above in Eq. (18), we get

obj∗ = −1

2
UTD−1U + γT + constant. (20)

Eqs. (18) and (20) provide a metric to evaluate the goodness of the t-th tree in
the gradient boosting algorithm.
Note: Vij = Vji also implies that A = B.
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