Appendices

This is the Supplementary Material for “Coupling-based Invertible Neural Networks Are Universal
Diffeomorphism Approximators.” Table [2] summarizes the abbreviations and the symbols used in the
paper. Figure [3]depicts the relations among the notions of universalities appearing in this paper and
how they are connected by the sections in this Supplementary Material.

Table 2: Abbreviation and notation table

Abbreviation/Notation Meaning

CF-INN Invertible neural networks based on coupling flow
IAF Inverse autoregressive flow

DSF Deep sigmoidal flow

SoS Sum-of-squares polynomial flow

MLP Multi-layer perceptron

CF, hi,r.0 Coupling flow

ACF, ¥y, o ¢ Affine coupling flow

H Set of functions from R%~! to R

H-ACF,Wg_14+
Aff

‘H-single-coordinate affine coupling flows (s,t € H)
Set of invertible affine transformations

GL Set of invertible linear transformations

G Generic notation for a set of invertible functions

INNg Set of invertible neural networks based on G

D? Set of all C2-diffeomorphisms with C2-diffeomorphic domains
T Set of all C*°-increasing triangular mappings

S Set of all C"-single-coordinate transformations

Diffz Group of compactly-supported C2-diffeomorphisms (on R%)
[|-]] Euclidean norm

[llop Operator norm

[ LP-norm (p € [1,00)) on a subset K C R¢

[ sup, & Supremum norm on a subset K C R?

14(7) Indicator (characteristic) function of A

A Proof of Lemma (I} From L?-universality to distributional universality

Here, we prove Lemma([3] which corresponds to LemmalI]in the main text.

First, note that the larger p, the stronger the notion of LP-universality: if a model M is an LP-universal
approximator for F, it is also an L?-universal approximator for JF for all 1 < ¢ < p. In particular,
we use this fact with ¢ = 1 in the following proof.

Lemma 3 (Lemmain the main text). Let p € [1,00). Suppose M is an LP-universal approximator
Sfor T°°. Then M is a distributional universal approximator.

Proof. We denote by BL; the set of bounded Lipschitz functions f: R? — R satisfying || f||sup re +
Ly <1, where Ly denotes the Lipschitz constant of f. Let 1, v be absolutely continuous probability
measures, and take any € > 0. By Theorem 11.3.3 in [42]], it suffices to show that there exists g € M
such that

fdgip— fdv
Rd

B(gsp,v) := sup <e.

feBLy

Let p,q € L'(R?) be the density functions of y and v respectively. Let ¢ € L'(R?) be a positive
C°°-function such that fRd ¢(x)dx = 1 (for example, Gaussian distribution), and for ¢ > 0, put

oi(x) = t~%¢p(x/t). We define pu; := ¢ * pdx and vy := ¢ * qdx. Since both ||¢; * p —p|l1 ge and
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Figure 3: Informal diagram of the relations among propositions and lemmas connecting them. Here,
p € [1,00). S.C. stands for “special case” and indicates that the notion of universality implies the
other as a special case. DSF stands for deep sigmoidal flow, and SoS stands for sum-of-squares
polynomial flow.

llé¢ * ¢ — q||1 ra converges to 0 as ¢ — 0, there exists ¢y > 0 such that for any continuous mapping
G :RY - RY,

1 llsup,me €

1 llsup,me €
) ’ '

/ fdyto—fdl/‘ <
ha 5

‘/dfdG*uto — [ dG. <
R

By using Lemmabelow, there exists 7' € 7°° such that T, 1z, = v,. Let K C R? be a compact
subset such that

3
1 *,uto(K) < g

By the assumption, there exists g € M such that

19
— d .
/K (@) = 9@l < 16w P@)]
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Thus for any f € BL1, we have

/Rdfdg*u—fdv

< / fdgspe, — fdgp| + ‘/ fdvy, — fdv
R4 R
N / FoTdu,|+ / Fogdu|+ / F(T(@)) — Flg(@))] dpu ()
RIAN\K RINK K
I flsupra e | Iflsupms | Nfllsuprae | 1flsuprae | Lge
5 5 5 5 5
<e

)

where Ly is the Lipschitz constant of f. Here we used || f|,, ga + Ly < 1. Therefore, we have
B(g«,v) < €. 0

The following lemma is essentially due to [43].

Lemma 4. Let 1 be a probability measure on R with a O density function p. Let U := {x €
R< : p(x) > 0}. Then there exists a diffeomorphism T : U — (0,1)? such that its Jacobian is
upper triangular matrix with positive diagonal, and T, ;i = U(0,1). Here, U(0,1)% is the uniform
distribution on [0, 1.

Proof. Let q;(x1,...,2;) = fRdﬂ' p(x1,. oy Tig1, -, Xq)dxiqy ... dxg. Then we define T :

U — (0,1)? by
T(ml,...,xd) = </ qi(mlwu#ﬂihy)dy) .
oo Gi—1(T1, ., i) i

Then we see that 7" is a diffeomorphism and its Jacobian is upper triangular with positive diagonal
elements. Moreover, by a direct computation, we have T,.du = U(0, 1). [

We include a proof for the statement that that any probability measure on R™ is arbitrarily approxi-
mated by an absolutely continuous probability measure in the weak convergence topology:

Lemma 5. Let i be a arbitrary probability measure of R™. Then there exists a sequence { i, }°2 4
such that ., weakly converges to 1.

Proof. Let ¢ be a positive C* function such that [,,, ¢(x)dx = 1. For t > 0, put ¢y(z) :=
t~"¢(x/t). We define

wy(x) = be(z — y)du(y).
o

We prove the absolutely continuous measure w;dz weakly converges to p as t — 0. In fact, for any
bounded continuous function f, we have

e = /fdﬂ‘ = ‘/ St t2) = f)d)duduly)
= //m [ (y +tx) — f(y)|¢(x)dadp(y).

Since f is bounded and ¢ is absolutely integrable, by the dominated convergence theorem, as ¢ — 0,

we have
[ gwds = [ san

namely, w;dx weakly converges to y. O
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B Proof of Theorem [I; Equivalence of universality properties

In this section, we provide the proof details of Theorem [I]in the main text. Section explains
the reduction from D? to Diff?, and Section explains the reduction from Diff; to S and
permutations of variables.

Here, we formally repost the proof of Theorem [I|which has been essentially completed in Section[4.1]

Proof of Theoreml[l] Since we have S° C T°° C D?, it is sufficient to prove that the universal
approximation properties for S> imply those for D?. Therefore, we focus on describing the reduction
from D? to S°. First, by combining Lemma 11| with the LP-universality (in the case |A)) or the
sup-universality (in the case of INNg for §°, we obtain the LP-universal (resp. sup-universal)
approximation property for SZ. Now, in light of Lemma@ and Theorem we obtain the assertion
of Theorem [4]in the main text, i.e., for any f € D? and compact subset K C U +» there exist
Wi,...,W, € Atfand 7,...,7. € S?and b € R? such that f(z) = Wy o7y 0---0 W, o 7.(x)
for all z € K. Given this decomposition, we combine the LP-universality (in the case or
the sup-universality (in the case B)) of INNg for S? with Proposition E] to obtain the assertion of
Theorem 11 O

B.1 From D? to Diff?

In this section, we describe how the approximation of D? is reduced to that of Diff i when we are
only concerned with its approximation on a compact set.

Lemma 6. Let f: U — R? be an element of D?, and let K C U be a compact set. Then, there exists
h € Diffﬁ and an dffine transform W € Aff such that

Wobhlk = flk.

Proof of Lemmal6] We denote the injections of U and f(U) into R? by ¢;: U < R? and
ta: f(U) = R?, respectively. Since U is C2-diffeomorphic to R and f is C2-diffeomorphic, f(U)
is also C2-diffeomorphic to R¢. By applying Theorem 3.3 in [44] to ¢; o f*1|f(U) : f(U) — R and
the injection 5, we can obtain diffeomorphisms Fy: f(U) — R% and Fy: f(U) — R? such that
Filpxy = [ ) and Fa|p(x) = Idf k), where Id ¢y denotes the identity map on f(K). Let
F:=Fyo Fl_lz R? — R<. By definition, we have F|x = f|x.

Take a sufficiently large open ball B centered at O such that K C B. Let W & Aff such that
W (x) = DF~1(0)(z — F(0)). Then by Lemmabelow, we conclude that there exists a compactly
supported diffeomorphism h: R? — R? such that W o h|x = F|x = f|x. O

Lemma 7. Let B, C R? be an open ball of radius r with origin 0, and let f : B, — f(B,) C R?
be a C?-diffeomorphism onto its image such that f(0) = 0 and Df(0) = I. Let ¢ € (0,7/2). Then
there exists h € Diff? such that f(x) = h(z) for any x € B,_..

Proof. Puté :=¢/(2r —¢), and define I5 := (—1 — 8,1+ 6). We define F' : B,_. /> x Iy — R% by

flz)
F(x,t) = t ?ftfo’
T ift =0.

Let U := F(B,_./2) andlet F' : U x I5 — B,__ 5 such that F'(F(z,t)) =  for any (z,t) € U.
Fix a compactly supported function on R% x I such that for (z,t) € F(B,_. x [-1,1]), ¢(z,t) = 1,
and for (x,t) ¢ U ¢ = 0. Then we define H : R x I; — R by
OF
H(z,t) := ¢(z, t)E(FT(x,t),t).

Since f is C? diffeomorphism, there exists L > 0 such that for any ¢ € I, || H(z,t) — H(y,t)| <
L|lz — y| with z,y € R?. Thus the differential equation

d
£ = H(z,t), 2(0) ==
has a unique solution ¢,.(t). Then h(z) := ¢,(1) is the desired extension. O
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Here, we remark that Lemma[/|is a modified version of Lemma D.1 in Bernard et al. [44], with
a correction to make it explicit that the extended diffeomorphism is compactly supported. Their
Lemma D.1 does not explicitly state that it is compactly supported, but by Theorem 1.4 in Section 8
of Hirsch [45]], it can be shown that the diffeomorphism is actually compactly supported.

B.2 From Diff? to S* and permutations

The goal of this section is to show Theorem which reduces the approximation problem of Diﬁ’f to
that of S2, and Lemma which reduces from S2 to S°.

Theorem 5. Let f € Diﬁf. Then there exist Ty, . .., T, € SN Diﬂf, and permutations of variables
O1,-..,0n € &y, such that
f:Tloalo"'oTnOUn-

Proof. Combining Corollary [I] Lemma|8] and Lemma 9] we have the assertion. O

We defer the statement and proof of Corollary |1} which describes the key properties of Diﬂf, to
Section[C] In the remainder of this section, we describe Lemma[8] Lemmal[9} and Lemmal[T1] First,
Lemma [8]claims that the nearly-Id elements necessarily satisfy the condition of Lemma 9| below.
Lemma 8. Let A = (a; ;)i j=1,.. 4 be amatrix. If |A — Ij|lop < 1, thenfork =1,...,d, the k-th
trailing principal submatrix Ay, := (@i k—1,j4k—1)i,j=1,....d—(k—1) of A is invertible. Here I is a
unit matrix of degree d.

Proof. Let v € R4™*+1 with |lv|| = 1, and put w := (0,...,0,v) € R% Then we have 1 >
(A — Iy)w|* > ||[(Ax — Ix)v||*. Thus |4y — I|| < 1. Since Y 2 (Ix — Ag)" absolutely
converges, and it is identical to the inverse of Ay, we have that Ay is invertible. O

We apply the following lemma together with Lemma to decompose nearly-Id elements into S? and
permutations. For a € N, we denote the set of a-by-a real-valued matrices by M (a, R).

Lemma 9. Let r be a positive integer and f: R* — R% a compactly supported C” -diffeomorphism.
We write f = (f1,...,f4) with f;: RY — R. For k € [d], let Ai(m) € M(d— (k—1),R) be
the k-th trailing principal submatrix of Jacobian matrix of f, whose (i, j) component is given by

(%(m)) (,j=1,---,d— (k—1)). We assume
det Ai(x) # 0 for any k € [d] and = € R%.
Then there exist compactly supported C”-diffeomorphisms Fy, ..., Fy : R? — R® in the forms of
Fi(x) :=(z1,...,zi—1, hi(xT), Tig1, ..., Ta)
for some h;: R® — R such that the identity holds:
f=Fo---0oFy

Proof. The proof is based on induction. Suppose that f is in the form of f(x) =
(fi(®),..., fm(x), Tmt1,-..,24). By means of induction with respect to m, we prove that
there exist compactly supported C”-diffeomorphisms Fi, ..., F,, : R — R? in the forms of
Fy(x) := (21,..., %1, hi(T), 2iy1,...,2q) for some h; : RY — Rsuchthat f = Fjo---0 F,.
In the case of m = 1, the above is clear. Assume that the statement is true in the case of any k < m.
Define

F(z1,...,xq) = (@1, o, Tm—1, [ (), Tt 1, - - - Td),
fi=foF L

Note that F' is a compactly supported C”-diffeomorphism from R? to R?. In fact, compactly
supportedness and surjectivity of F' comes from the compactly supportedness of f. More-
over, since we have det DF, = %(x) # 0 for any x € R? by the assumption on f, F

OTm
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is injective and is a C"-diffeomorphism from R? to R? by inverse function theorem. There-
fore, f is also a C"-diffeomorphism from R? to R?. We show that f is of the form f(z) =
(91(®),- s gm—1(®), m, - - , a) for some C"-functions g;: RY = R (i = 1,--- ,m — 1) satis-

fying det Ai(:r) # 0 for any z € R? and k € [d]. From Lemma there exist g;,h € CT(R?)
(i=1,---,m) such that

l(a:) = (91(33), e 7gm(m)axm+17 e al'd)

IS
F*I(w) = (z1,  , Tm—1, M(X), Trpy1, -+, Tq).
Then we have

fl@)=Fof z)=(91(), . gm-1(2), i (f (@), Trms1, "+ » Ta)
= (gl(m)7 to agm—l(x)axma ce 7xd)-

Therefore, from Lemma f is of the following form

f(l‘) = fOF_l(x) = (fl OF_l(x)7"' afmfl OF_l(,’L‘),Qjm’-“ ,.T,'d).
Moreover, by the form of F~! and f, we have D f(z) = Df(F~'(x)) o DF~!(x) and
A Imfl
- oh oh
Df:( I>’ D(F1 = 2 ... 2
d—m
for some A € M(m,R) with all the trailing principal minors nonzero. Therefore, we obtain
det A£ (z) # 0 for any € R? and k € [d]. Here, by the assumption of the induction, there exist

compactly supported C"-diffeomorphisms F;: R? — R% and h; € C"(R?) (i = 1,--- ,m — 1) such
that

f=Fio-oF, 1, Fi(z)= (v1, - zi—1,hi(x), Tiz1, -, a).
Thus f = f o F has a desired form. O

Lemma 10. Let r be a positive integer and f: RY — R C"-diffeomorphism of the form

f((B) = (f1($)7 afm(w)amerh'" ,de),

where f;: R? — R belongs to C"(R%) (i = 1,--- ,m). Then the inverse map f~1 becomes of the
form

f_l(:c) = (gl(w)7 o agm(m)vxm-&-ly e 'l'd),
where g; : RY — R belongs to C"(RY) fori =1,--- ,m.

Proof. We write f~(x) = (hy(x),--- , hq(x)), where h; € C"(R?) (i = 1,--- ,d). Then by the
definition of the inverse map, the identity

($1,~-~ 737d) = fof_l(w) = (fl(hl(m))a afm(hm(x))vhm-i-l(m)f" ,hd(iB))

holds for any & € R?, which implies that we obtain h;(z) = z; (i = m + 1,--- ,d). This completes
the proof of the lemma. O

The following Lemma11|is used in the main text in reducing the approximation problem from S? to
S2°. We say that f: R* — Ris a locally LP-function if [ |f(z)|Pdx < oo holds for any compact
set K C R%.

Definition 7 (Last-increasing). We say that a map f : R? — R is last-increasing if, for any
(a,...,aq_1) € RI1, the function f(ay,...,aq_1, ) is strictly increasing with respect to x.

Lemma 11. Let 7: R? — R be a last-increasing locally LP-function. Then for any compact subset
K C R% and any € > 0, there exists a last-increasing C>®°-function 7: R* — R satisfying

I = 7llp.x <e.
Moreover, if T is continuous, there exists a last-increasing C*°-function 7 such that

I = Fllyup i < &
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Proof. Let ¢ : R — R be a compactly supported non-negative C>°-function with [o(z)|de =1
such that for any (ay, . ..,aq_1) € R4, the function ¢(ay, . .., aq_1,z) of z is even and decreasing
on{z >0:¢(a,...,aq_1,7) > 0}. Fort > 0, we define ¢;() := t~%¢(x/t). Then we see that
Ty := ¢y * T is a C°-function. We take any a € R4~. We verify that 7;(a, z4) is strictly increasing
with respect to z4. Take any x4, z/; € R satisfying x4 > ;. Since 7 is strictly increasing, we have

(a,zq) — 7(a,z) = » ou(z)(t((a,zq) — ) — 7((@, 2);) — x))dx > 0.

Thus for any (ay,...,aq_1) € R?L, the C®-function 7¢(ay, . .., aq_1, ) is strictly increasing for
with respect to x.

Next, take any compact subset K C R%. We show ||7; — 7|, c — 0 ast — 0. We prove 7; converges
Tast — 0. Take R > 0 satisfying K C B(R) := {z € R? : |2| < R}. We assume 0 < ¢ < 1.
Then we have ¢; * T = ¢; * (15(g4+1)T). Since we have 1g(r11)T € LP(R?), we obtain

e+ T —Tllp.x = ll¢t ¥ Apr+1)T) — 1BR+1)Tllp. K
< H(bt * (1B(R+1)T) — 1B(R+1)T||p,]Rd — 0 (t — 0)
Here, we used a property of mollifier ¢; (see Theorem 8.14 in [46] for example).

Next, we consider the sup-approximation when 7 is continuous. By direct computation, we have

sup |7y(y) — 7(y)] < sup / 16(2)| - | (y — tz) — 7()|de
yeK yeK JRA

<C sup |7(y —tx) —7(y)| = 0 (t—0).
(z,y)€supp(¢) x K

Here C' := sup,cpa |¢(x)|. Thus in both cases above, By taking sufficiently small ¢, we obtain the
desired C'*°-function 7 = 7. O

C Key properties of diffeomorphisms on R?: From Diffg to Nearly-Id

This section explains the reduction of the universality for Difff to Nearly-1d elements. The reduction
involves a structure theorem from the field of differential geometry. The results of this section are
used as a building block for the proofs in Section[B.2]

Definition 8 (Compactly supported diffeomorphism). The diffeomorphism f on R¢ is compactly
supported if there exists a compact subset K C R? such that for any ¢ K, f(x) = . We denote
by Diff 3 the space of compactly supported C?-diffeomorpshisms.

The set Diﬂ?f constitutes a group whose group operation is the function composition. Moreover,
Diﬁz is a topological group with respect to the Whitney topology 27, Proposition 1.7.(9)]. Then

there is a crucial structure theorem of Difff attributed to Herman, Thurston [28]], Epstein [29], and
Mather 30, 31]]:

Fact 2. The group Diff? is simple, i.e., any normal subgroup H C Diffg is either {1d} or Diff%.

The assertion is proven in Mather [31] for the connected component containing Id, instead of the
entire set of compactly-supported C?-diffeomorphisms when the domain space is a general manifold
instead of R?. In the special case of R?, the connected component containing Id is shown to be Diff 2
itself [27, Example 1.15], hence Fact[Z]follows. For details, see [27, Corollary 3.5 and Example 1.15].

As a side note, the assertion of Theorem [2]is proved to hold generally for C"-diffeomorphisms
only except for = d + 1 [27]]. Nevertheless, this exception does not cause any problem in our
proof, because we apply it with » = 2 and d > 2. The limitation only means that the structure of
C?-diffeomorphisms is better understood than that of C?*!-diffeomorphisms. Also note that this
exception does not affect the approximation capability for C'“*1-diffeomorphisms either as they
are contained in C? where we perform our theoretical analyses. For the details of mathematical
ingredients, see [47].

Here, we provide a precise definition of the flow endpoints introduced in Section 4.1}
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Definition 9 (Flow endpoints). A flow endpoint is an element of Diffg which can be represented
as ¢(1), where ¢ : [0,1] — Diff? is a continuous map such that ¢(0) = Id and that ¢ is additive,
namely, ¢(s) o ¢(t) = ¢(s +t) forany s,t € [0,1] with s + ¢ € [0, 1].

We use Fact[2]to prove that a compactly supported diffeomorphism can be represented as a compo-
sition of flow endpoints in Diffg. The following lemma is a restatement of Lemmain the main
text.

Lemma 12. Let S C Diﬁ’g be the set of all flow endpoints. Then, Diﬁ’g coincides with the set of
finite compositions of elements in S defined by

H::{glo"'ogn5”21791;---agn65}'

Proof. In view of Fact[2] it is enough to show that H forms a subgroup, that it is normal, and that it
is non-trivial.

First, we prove the H consists a subgroup of Diﬂf. By definition, for any g, h € H, it is immediate
to show that g o h € H. We prove that H is closed under inversion. For this, it suffices to show
that S is closed under inversion. Let g = ¢(1) € S. Consider the map ¢ : [0, 1] — Diff? defined
by o(t) := (4(t))~L. Since Diff? is a topological group [27, Proposition 1.7.(9)], ¢ is continuous.
Moreover, it is immediate to show that ¢ is additive in the sense of Definition[9] and that ¢ (0) = Id.
Thus, g~! = (1) is an element of S.

Next, we prove H is normal. It suffice to show that S is closed under conjugation since the conjugation
g — hgh~! is a group homomorphism on Diff2. Let g = ¢(1) € S, where ¢ : [0,1] — Diff> is a
continuous map associated to g. Then, we define a ® : R? x [0,1] — R? by ®(z,t) = ¢(t)(z). We
call ® a flow associated with g. We take arbitrary h € Diff~. Then, the function & : R? x [0, 1]
defined by ®'(-, s) := h=! 0 ®(-, s) o h is a flow associated with h~'gh, which means h~*gh € S,
i.e., S is closed under conjugation.

Finally, we show H is nontrivial. It suffice to show that .S includes a non-identity element. Let
1 : R — O(d) be a nontrivial homomorphism of Lie groups, where O(d) is a orthogonal group of
degree d. Such ) exists, for example, let 1)(t) := exp(tA) for some nonzero skew-symmetric matrix
A, namely, AT = —A. Letu : [0,00) — R be a compactly supported C™ function such that its
support does not include 0. Then, We define ® : R? x [0, 1] — R? by ®(z,t) := 1 (u(|x|)t)z. Then,
O is the flow associated with ®(-,1) € S, that is a non-identity element.

O

Definition 10 (Nearly-Id elements). Let f € Diﬁf. We say f is nearly-1d if, for any = € R<, the
Jacobian D f of f at x satisfies

IDf(x) = 1|, <1,
where [ is the unit matrix.

Corollary 1. For any f € Diffg, there exist finite elements g1, ...,qg, € Diffg such that f =
gr © -0 g1 and g; is nearly-1d for any i € [r].

Proof. Let S be the subset of Diﬂ?z as defined above. Therefore, by Lemma there exist
hiy...,hy € S such that f = hy, o--- 0 hy. Fori € [m], let ¢; be a flow associated with
h;. Since [0,1] > t = ®;(-,t) € Diff? is continuous with respect to Whitney topology and ®;(-,0)
is the identity function, we can take a sufficiently large n such that h; = ®;(-,1/n) is nearly-1d. By
the additive property of ®;, we have
f=hpo---oh :flmo~~oi~1m0«~oi~zlo~~ol~11,
—_——— ———

n times n times
which completes the proof of the corollary. O

D Proof of Theorem 2t LP-universality of INN#_Acr

In this section, we provide the proof details of Theorem |2|in the main text. The correspondence
between this section and Section @] in the main text is as follows: Steps 1, 2, 3 correspond to
Section [D.1] Step 4 corresponds to Section[D.2] and Step 5 is justified by Proposition[6]in Section [F]
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D.1 Approximation of general elements of S?

In this section, we prove the following lemma to construct an approximator for an arbitrary element
of SS (hence for §2°) within INNy_scr. It is based on Lemmaproved in Section which
corresponds to a special case.

Here, we rephrase Theorem 2] as in the following:

Lemma 13 (Z?-universality of INNy_acr for compactly supported S2°). Let p € [1,00). Assume
H is a sup-universal approximator for C2°(R~1) and that it consists of piecewise C'-functions.
Let f € SS, e>0,and K C R%bea compact subset. Then, there exists g € INNy_acr such that
If =gl x <e

Proof. Since we can take a > 0, b € R satisfying aK +b C [0, 1]¢, it is enough to prove the assertion
for the case K = [0, 1]%.

Next, we show that we can assume that for any (z,y) € R?, u(x,0) = 0 and u(x,1) = 1 for
any £ € R4, Since u(z,-) is a diffeomorphism, we have u(z,0) # u(z,1) for any z € R.
By the continuity of f, either of u(z,0) > u(z,1) for all € [0,1]?! or u(=x,0) < u(x, 1) for
all z € [0,1]?~! holds. Without loss of generality, we assume the latter case holds (if the former
one holds, we just switch u(x,0) and u(x, 1)). We define s(x) = —log(u(x,1) — u(x,0)) and
t(x) = —u(z,0)(u(z, 1) — u(z,0))"!. By a direct computation, we have

Uy 1.0 fla,y) = <m M) = (2, u(x,y)).

In particular, ¥, ; o f(2,0) = (2,0) and ¥, ; o s(x, 1) = («, 1) hold. , and the map y — ug(x,y)
is a diffeomorphism for each x. Thus if we prove the existence of an approximator for ¥ ; o f, by
Proposition[6] we can arbitrarily approximate f itself.

For k := (ky1,...,kq_1) € Z% ' and n € N, we define (k),, := Zle kni—t € {0,...,n% — 1},
that is, k is the n-adic expansion of (k),,. For any n € N, define the following discontinuous ACF:
P (0,14 = [0,1]471 x [0,n9] by

n—1

wn(wvy) = |z y+ Z (E)nlAg+l(w) ’

ki, ka—1=0

where k& := (k1,...,kq) and k + 1 := (k1 + 1,...,kq + 1). We take an increasing function
v, @ R — R that is smooth outside finite points such that

vp(2) ==

w(B B e )+ B 2 € () () + )
. if 2 ¢ [0,n?).

We consider maps h,, on [0, 1]471 x [0,74] and f,, : [0,1]? — [0, 1]? defined by

h”(.’E,Z) = ($7’U”(z))’
fn = 1/17710’%01/’”'

Then we have the following claim.
Claim. For all k1, -- ,kq_1 =0,--- ,n— 1, we have

fn(m,y) = <CC,’LL (klv"w kd_17y>>
n n

on TT{Z [k, Bty 5 [0, 1),

n’ n
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In fact, we have

fa(®,y) =¥ 0 by 0 by (2,y)
= 77[}7:1 o hn(x,y + (k)n)
= ¢;1($, vn(y + (E)n))

:’(/J;l <w7u<kl,...,kd1,y> +(k)n>
n n
( <k1 kdil >)
= | T, U —y..., Y .
n n

Therefore, the claim above has been proved. Hence we see that || f — fn||sup1 x — 0asn — oo.
By Lemma [[4] below and the universal approximation property of #, for any compact subset K
and € > 0, there exist g1, g2, g3 € INN#_acr such that ||91 — ’L/JEIHP x <& llg2 — hn||p7K <,
and ||g3 — ¥nll, x < . Thus by Proposition @ for any compact K and ¢ > 0, there exists
g € INNyacr such that |lg — f|, x <e. O

D.2 Special case: Approximation of coordinate-wise independent transformation

In this section, we show the lemma claiming that special cases of single-coordinate transformations,
namely coordinate-wise independent transformations, can be approximated by the elements of
INN#_acF given sufficient representational power of H.

Lemma 14. Let p € [1,00). Assume H is a sup-universal approximator for C3°(R4~1) and that
it consists of piecewise C'-functions. Let u : R — R be a continuous increasing function. Let
f:RT = R (x,y) — (x,u(y)) where x € R¥~! and y € R. For any compact subset K C R?
and € > 0, there exists g € INNyacr such that || f — gl , c <e.

Proof. We may assume without loss of generality, in light of Lemma [T1] that u is a C*°-
diffeomorphism on R and that the inequality u'(y) > 0 holds for any y € R. Furthermore, we may
assume that u is compactly supported (i.e., u(y) = y outside a compact subset of R) without loss of
generality because we can take a compactly supported diffeomorphism % and a,b € R (a # 0) such
that a@ + b = w on any compact set containing K by Lemma[6] and the scaling a and the offset b can
be realized by the elements of INNy_acF.

Fix § € (0,1). We define the following functions:

’(/)()(CB, y) L= (w§d72a U/(y)xd—la y)
= (x<a—2,exp(log v’ (y))za-1,9),

Vi(z,y) = (T<a—2,za—1+ 0 (u(y) — y),v),
Yoz, y) : = (T<d—2, Ta—1,y + 0T4—1),
Ys3(x,y) = (T<a—2,2a-1 — 0 'y —u ' (y),y),

where we denote & = (1, ...,74_1) € R4~L. First, we show that || f — 13 0 15 0 1y © Vollgup. e =
0 as 6 — 0. By a direct computation, we have

Y3093 01 (@, y) = V30 Yo(T<a—2,a—1 + 0 (u(y) — y),y)
= 3(T<d—2,Ta—1 + 6 (u(y) — y),y + 6(za—1 + 6 (u(y) — v)))
= Y3(®<a—a,xa1+0 ' (uly) —y),6za—1 + u(y))
= (T<a—2,0a-1 — 6 (6mg_1 +u(y) —u ' (Sxa—1 +u(y))), a1 + u(y))
= (®<a—2,0 "u (62za—2 + u(y)) — 0"y, uly) + 6za-1),

where © = (1,...,24-1) € R Since u € C([—r,r]) where r = maxz y)ex |y], by
applying Taylor’s theorem, there exists a function R(x, y;d) and C' = C([—r, 7], u) > 0 such that

u™ (u(y) + 6x) =y +u/(y) Loz + R(z,y;6)(0x)* and  sup |R(z,y;0)| <C
6€(0,1)
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for all (x,y) € K. Therefore, we have
Y3092 01 0 Yo(m,y) = (z,u(y)) + 6(R(@, v (y)za-1;0)T<d—1,v (y)Ta-1)-

For any compact subset K, the last term uniformly converges to 0 as 6 — 0 on K.

Assume § is taken to be small enough. Now, we approximate 3 o --- o ¥y by the elements
of INNy acr. Since u is a compactly-supported C*°-diffeomorphism on R, the functions
(T<a-2,y) = log /' (y), (T<a-2,y) = u(y) —y. and (T<q-2,y) = y —u~'(y), each appearing in
Yo, P1, V3, respectively, belong to C'2° (Rd_l). On the other hand, )5 can be realized by GL C Aff.
Therefore, combining the above with the fact that  is a sup-universal approximator for C°(R%~1),

we have that for any compact subset K’ C R< and any € > 0, there exist ¢, ..., ¢3 € INNy AcF
such that [|¢; — ¢i|g,p, 5+ < € In particular, we can find ¢o,...,¢3 € INNg. scr such that
i = @ill, x <e

Now, recall that # consists of piecewise C'-functions as well as 1; (i = 0,...,3). Moreover,

g, Y1, Y3 are compactly supported while ¥5 € GL, hence they are Lipschitz continuous outside a
bounded open subset. Therefore, by Proposition[6] we have the assertion of the lemma.

O

E Locally bounded maps and piecewise diffeomorphisms

In this section, we provide the notions of locally bounded maps and piecewise C''-maps. These
notions are used to state the regularity conditions on the CF layers in Theorem [I] and to prove the
results in Section [l

E.1 Definition of locally bounded maps

Here, we provide the definition of locally bounded maps. It is a very mild condition that is satisfied
in most cases of practical interest, e.g., by continuous maps.

Definition 11 (Locally bounded maps). Let f be a map from R™ to R™. We say f is locally bounded
if for each point € R™, there exists a neighborhood U of x such that f is bounded on U.

As a special case, continuous maps are locally bounded; take an open ball U centered at « and take a
compact set containing U to see that f is bounded on U.

E.2 Definition and properties of piecewise C''-mappings

In this section, we give the definition of piecewise C'*-mappings and their properties. Examples of
piecewise C'!-diffeomorphisms appearing in the paper include the #-ACF with  being MLPs with
ReLU activation.

Definition 12 (piecewise C''-mappings). Let f : R™ — R"™ be a measurable map. We say f is a
piecewise C*-mapping if there exists a mutually disjoint family of (at most countable) open subsets
{Vi }ier such that

e vol(R?\ Uy) =0,

e for any ¢ € I, there exists an open subset W; containing the closure V; of V;, and C*-
mapping f; : W; — R? such that f;|y, = f|v,, and

e for any compact subset K, #{i € [ : V; N K # 0} < oo.

where we denote Uy := | |;; Vi, and #(-) denotes the cardinality of a set.

We remark that piecewise C'*-mappings are essentially locally bounded in the sense that for any
compact set K C R%, ess.supy||f]| = |If]l < oo. Then we define a piecewise C!-

diffeomorphisms:

sup, KNUy

Definition 13 (piecewise C'-diffeomorphisms). Let f : R¢ — R be a piecewise C''-mapping. We
say f is a piecewise C-diffeomorphism if
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1. the image of nullset via f is also a nullset,

2. flu, is injective, and for i € I, fi is a C'-diffeomorphism from W; onto f;(W;),
3. vol (R®\ f(Uy)) =0, and

4. for any compact subset K, #{i € I : f(V;) N K # 0} < oo.

We summarize the basic properties of piecewise C''-diffeomorphisms in the proposition below:

Proposition 4. Let f and g be piecewise C-diffeomorphisms. Then, we have the following.

1. There exists a piecewise C-diffeomorphism f' such that f(fT(z)) = x for x € U+ and
FH(f(y) =yfory € Uy.

2. Forany h € L', we have [ h(z)dx = [ h(f(z))|Df(x)|dx, where |D f(x)| is the absolute
value of the determinat of the Jacobian matrlx of fatx.

3. For any compact subset K, f~'(K) N Uy is a bounded subset.
4. For any nullset F, then f~(F) is also a nullset.
5. For any measurable set E and any compact set K, f~1(E N K) has a finite volume.
6. The composition f o g is also a piecewise C*-diffeomorphism.
Proof. Proofof: Fix a € R For z € R\ f(Uy), define f1(z) = a, and for x € f(V;), define

i) = f |‘_/1(x) Then, f1 is a piecewise C'-mapping with respect to the family of pairwise
disjoint open subsets { f(V;)}ic1, and satisfies the conditions for piecewise C'!-diffeomphism.

Proof of ]: Tt follows by the following computation:

/h(x)dm = /f(Uf) h(zx)dx

_ Z/ﬂv‘) h(z)dx

el

—2}/ Wf)ww=/hU@mDﬂﬂww

el

Proof of@ It suffices to show that f~1(K)NU + 1s covered by finitely many compact subsets. In fact,
we remark that only finitely many V;’s intersect with f~1(K). If not, 1nﬁn1tely many f(V;) intersects
f(f~1(K)) C K, which contradicts the definition of piecewise C-diffeomorphisms. Let Iy C I
be a finite subset composed of i € I such that V; intersecting with f~1(K). For i € Iy, we define a

compact subset F; := f, ' (f;(V;) N K). Then we see that f~!(K) N Uy is contained in Ujc 1, F;.

Proof ofH|: Tt suffices to show that for any compact subset K, the volume of f~!(F) N K is zero. By
applying[2|to the case h = 1, we see that

/ \Df(x)|dz = 0.
f=H)
Forn > 0,let E, := f~Y(F)N K N{x € R?: |Df(z)| > 1/n}. Then we have

(
YollEn) _ [\ b f(a) e < Df(x)|dx =0
[, i@ s [ psjas <o
thus vol(K N f~1(F)) = lim,,—,oo vol(E,,) = 0

Proof of B]: By applying[2]to the case h = 1k, we see that

/ |Df(x)|dz = vol(E N K).
1(ENK)
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Let F be a closure of f~1(K) N Uy. By Fis acompact subset. Let [ :={i € I : FNV; # 0}
be a finite subset. Then we have

C = inf |Df]
fHE)NUy
> inf inf |Dfi| > 0.
i€y Fﬂvi

Thus,
/ Df(@)|dz > Cvol(f(E N K)),
F-HENK)NU;

where the last equality follows from vol(f~!(ENK)\U;) = 0. Thus we have vol(f ! (ENK)) < oo

Proof of @ : We denote by {V;}icr, {V]}jes the disjoint open families associated with f and g,
respectively. At first, we prove f o g is a piecewise C''-mapping. Let V;; := ¢~ (V; N g(Vi)nU,
and deﬁne Z/[fog = {Vvij}(i’j)eli. Let Ufog = Ui,j‘/ij = gil(Uf N g(Ug)) N Ug. By the
volume of R \ Uyoq is zero. On each V;;, ﬁ o g; is an extension of f o g|vq,j. For any compact

subset K, #{(4,7) € I x J : K NV;; # 0} < oo. In fact, suppose the number is infinite. Then
g(Uy N K) intersects with an infinite number of open subsets in the form of g(Uy N K) N'V; Ng(V}).

On the other hand ¢(Uy N K) is a bounded subset, thus by definition, the number of (¢, j) € I x J
satisfying g(Uy N K) N'V; N g(V}) # 0 is finite. It is a contradiction. Therefore, g o f is a piecewise
C'-mapping.

Next, we prove f o g is a piecewise C'-diffeomorphism. The first and second condition follows by
definition. For the third condition, since R? \ f o g(Usoq) = (R \ f(Us)) U (R?\ f(g(U,)) C
RY\ f(g(U,) N Uy), it suffices to show that the volue of R? \ f(g(U,) N Uy) is zero. In fact,
by the injectivity of f on Uy, we have f(g(U,) NUs) = f(Us) \ f(Us \ g(Uy)). Thus R?\
fg(U)NUs) = R\ f(Uy)) U f(Ug\ g(Uy)). By definition of C*-diffeomorphism, we conclude
R4\ f(g(Uy) NUy) is a nullset. For the fourth condition, let K be a compact subset. Assume the
{(i,5) € I x J : fog(Vij) N K # 0} = co. Since f is a piecewise C''-diffeomorphism, there
exist infinitely many elements in j € J such that f o g(V/) N f(Us) N K # (). On the other hand,
f7HE N f(Uy)) N Uy is bounded, and its closure intersects with only finitely many g(V)’s, thus
K N f(Uy) intersects with only finitely many f o g(V;), which is a contradiction.

O

For a measurable mapping f : R™ — R™ and any R > 0, we define a measurable set
L(R; f) :=A{x e R™ - [[f(x) = ()|l > Rl|lz — y| for some y € Uy}

Then we have the following proposition:

Proposition 5. Let f : R™ — R" be a piecewise C'-mapping. Assume f is linearly increasing,
namely, there exists a,b > 0 such that || f(z)|| < al||z| + b for any x € R™. Then for any compact
subset K', vol(L(R; fYNK') - 0as R — oc.

Proof. Let B be an open ball containing K’ of radius r. Fix an arbitrary ¢ > 0. We note that the
linearly increasing condition implies the locally boundedness of f. Let C' := supg || f||. For 6 > 0,
we define

Vs := {x € B : dist (z,0U; UOB)) < §},

where dist(z, S) := inf es{||z — y||}. Set ¢ to be vol(Vs) < e. We claim that

b sy W@ -1

(z,y)€K’'xR™\B |z =yl
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is finite. In fact, let ' := inf c g/ y¢ g ||z — y||. Then for x € K" andy ¢ B, we have

1f(z) = F@Il o IF @)+ 1F @)
[z =yl — |z —yll
< allzll +afly] +2b
- [z —yll
allzll +a(llz — yll + ll=]) +2b
- [z —yll
2a||z|| + 2b
S Py
2 2
n arr—li— b.

Thus, L is finite. Since B intersects with finitely many V;’s, f| B\V;,, is @ Lipschitz function. Put
Ls > 0 as the Lipschitz constant of f\B\Vm. Then for any R > max(L, Ls, 4C/d), we see that
L(R; f) N K’ is contained in V. Actually, we should prove that x ¢ L(R; f) when z € K’ \ Vj.

Take arbitrary y € R™. When y ¢ B, since x € K’, we have W < L by the definition of L.

Wheny € B\ Vo, since z € K’ \ Vs C B\ V2, we have W < L by the definition of

llz—=yll

Ls. Wheny € V; /5, we have ||z — y|| > g because = ¢ V5. Thus,

@)~ 1)l _ @]+ _ C+C _ 40

[z =yl — 6/2 o2 T4
Combining these three cases, we conclude that z ¢ L(R; f). Thus we have vol(L(R; f) N K') < ¢,
namely, we conclude vol(L(R; /)N K') — 0 as R — oo. O

Remark. The linearly increasing condition is important to prove our main theorem. Our approximation
targets are compactly supported diffeomorphisms, affine transformations, and the discontinuous ACFs
appeared in Section[d.2] or Section[D.1] all of which satisfy the linearly increasing condition.

F Compatibility of approximation and composition

In this section, we prove the following proposition. It enables the component-wise approximation,
i.e., given a transformation that is represented by a composition of some transformations, we can
approximate it by approximating each constituent and composing them. The justification of this
procedure is not trivial and requires a fine mathematical argument. The results here build on the
terminologies and the propositions for piecewise C'!-diffeomorphisms presented in Section

Proposition 6. Let M be a set of piecewise C*-diffeomorphisms (resp. locally bounded maps) from
R? to R?, and Fy, . .., F, be linearly increasing piecewise C'-diffeomorphisms (resp. continuous
maps) from R® to R? (r > 2). Assume for any € > 0 and compact set K C RY, there exists
Gi,...,G, € M such that fori € [r], ||F; — Gin K <¢&(resp. ||F;— Gi”wp « < €). Then for

any € > 0 and compact set K C RY, there exists G4, . .., Gy € M, such that

||FT'O"‘OF17GTO"'OG1||p,K<€

(resp. [Fro--oFt —Gro-- 0G|y, g <€)

Proof. We prove by induction. In the case of » = 2, it follows by Lemma (for LP-norm)
or Lemma [16] (for sup-norm) below in the case of M; = My = M. In the general case, let

Fy := Fy o--- Fy. Then by the induction hypothesis, for any compact set K" and ¢ > 0, there exists
Go9 = G, 0+ 0 Gy for some G; € M such that HF2 - GQH? x < & where ? = porsup. By

applying Lemma [I5]or Lemma[I6] with M; = M and My = Mo --- o M (the set of compositions
of r — 1 elements of M) below, we conclude the proof. O
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Lemma 15. Let M, and M be sets of piecewise C-diffeomorphisms from R? to R?. Let Fy, F} :
R? — R4 be linearly increasing piecewise C'-diffeomorphisms. Assume for any ¢ > 0 and compact

set K C RY, fori = 1,2, there exists éi € M; such that || F; — él < €. Then for any e > 0
p,K
and compact set K C R4, fori = 1,2, there exists G; € M;, such that

||F2 o F} — Goy OGl”p,K <E.

Proof. Fix arbitrary ¢ > 0 and compact set K C R% Put K’ := F;(K NUp, ). Then, since
Fi(K NUg,) is bounded (see the remark under Definition[12), K is compact. We claim that there
exists R > 0 such that

3 19
vol(F; Y (L(R; Fy) N K')M? < s ]|
K/

which can be confirmed as follows. Take an increasing sequence R, > 0 (n > 1) satis-
fying lim,, oo R, = oo. Let B, := L(Rp;f) N K’ and A, := Ffl(Bn). Then, from
Proposition [5| we have vol(B,) — 0, which implies vol((),, B,,) = 0. By Proposition
, we have vol(N°2, A,) = vol(Fy (N, Bn)) = 0. By Proposition Ié-_1| , we have
vol(A;) = vol(Fy'(By)) < oo. Recall that if a decreasing sequence {S,,}°°, of measurable
sets satisfies vol(S1) < co and vol((,—; S,,) = 0, then lim,,_, o, vol(S,,) = 0. Therefore, we obtain
lim,,—, o0 vOl(4;,) = 0 and we have the assertion of the claim.

Take G1 € M, such that .

171 = Gill, x < 55

Put S := F; ! (L(R; F») N K'), and define a compact subset K" := (G1)~1(K) N Ut . Here, the
1
compactness of K" follows from Proposition . Next, we take G5 € M such that
€

3 ess.sup |det(DGD|
(GH~1(K)

[F2 — Gallp,xn <

where G{ is a piecewise C'!-diffeomorphism defined by Proposition . Then we have
[F2 0 F1 = G2 0G|, ¢
S| F2o bt = FoGhll, x + [F20 G — G20 G|,
S |(Fapo Fr— FyoGi)lsll, o +[|(Fao Fr — Fa o Gi)lis||,

+ ess.sup |det(DG)|||F2 — Gallp.xr
(G (K)
<e.

O

Lemma 16 (compatibility of composition). Let M1 and My be sets of locally bounded maps from
R? to RY. Let Fy, Fy : R? — R? be continuous maps. Assume for any ¢ > 0 and compact set

K c RY, fori = 1,2, there exists éZ € M, such that HFL — éz‘ « < €. Then for any € > 0 and
sup,

compact set K C RY, for i = 1,2, there exists G; € M, such that
[F2 0 Fy — G2 0 G|

sup, K < E.

Proof. Take any positive number ¢ > 0 and compact set K C R%. Put r := maxycf |F; (k)| and
K':={z € R%: |z| <7+ 1}. Let Gy € M, satisfying

sup |Fy(z) — Ga(z)] <
TeEK'

DN o
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Since any continuous map is uniformly continuous on a compact set, we can take a positive number
d > 0 such that for any =,y € K’ with |z — y| < 4,

€
Fo(e) ~ Fal)] < 5.
From the assumption, we can take GG; € M satisfying
sup |Fi(z) — G1(x)| < min{l, §}.
reK

Then, it is clear that ' (K) C K’ by the definition of K’. Moreover, we have G (K) C K'. In fact,
we have

G1(K)| < jgglFl(x) —Gi(o)| | B(F)| <1+ (ke K).

Then for any x € K, we have

[P0 Fi(z) — G2 0 Gy ()] < [Fa(Fi(z)) — Fo(Gi(2))| + [F2(Gi(z)) — Ga(Gi(x))]
< €.

G Examples of flow architectures covered in this paper
Here, we provide the proofs for the universal approximation properties of certain CF-INNs.

G.1 Neural autoregressive flows (NAFs)

In this section, we prove that neural autoregressive flows [18]] yield sup-universal approximators for
St (hence for S2°). The proof is not merely an application of a known result in Huang et al. [48]]
but it requires additional non-trivial consideration to enable the adoption of Lemma 3 in Huang et al.
[48] as it is applicable only for those smooth mappings that match certain boundary conditions.

Definition 14. A deep sigmoidal flow (DSF; a special case of neural autoregressive flows) [[18
Equation (8)] is a flow layer g = (g1,...,94): R? — R< of the following form:

n o b )
gu(@) =0 Zwk,j(wgk_1)~o< N ICE 1)) 7
j=1

Ti(T<k-1)

where o is the sigmoid function, n € N, w;, b;, 7;: R¥=1 — R (j € [n]) are neural networks such
that b;(-) € (ro,71), 75(-) € (0,72), wj(-) > 0,and 3°7_, w;(-) = 1 (ro,m1 € R, 2 > 0). We
define DSF to be the set of all possible DSFs.

Proposition 7. The elements of DSF are locally bounded, and INNpgy is a sup-universal approxi-
mator for S_.

Proof. The elements of DSF are continuous, hence locally bounded. Let s = (s, ,84) € S2.
Take any compact set K C R¢ and € > 0. Since K is compact, there exist rg,7; € R such that
K C [rg,m1]¢. Putry = rg — 1,7 = r1 + 1. We take a C'-function b: (7, 7}) — R satisfying

L bljrg,r =0,

2. bl(ry,r) and b|(,, ;1) are strictly increasing,

3. limg 4y 10 b(z) = —o0o and lim, .+ ¢ b(z) = oo,
4. limg_,py 1o d(gib) () and lim,_,,/ _g %(x) existin R,

where ¢ is the sigmoid function. For each k € [d], we define a C*-map 5. : [r), 71]*~1 x (rf,7]) x
[rh,71]%7% — R, which is strictly increasing with respect to z, by

Sp(x) = sp(x) + b(zg) (z= (21, - ,2q)).
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Moreover, we define amap S: [r), 7] — [0, 1]¢ by
Skl gt 41 x ) gy 144 = 0 © By
Sk(xh e wrkrflar(l)a Th+1y" " >xd) = 07
Sk(.T/l, e amk—hrlla Th41," " 71'(1) = 17
where we write S = (51, -+, Sq). Then, by Lemma([l7] S satisfies the assumptions of Lemma 3 in
[48]]. Since S([ro,71]?%) C (0,1)? is compact, there exists a positive number § > 0 such that
S([ro,r1]%) + B(0) := {S(x) + v : = € [ro,m1|% v e B)} C[6,1-0]<,

where B(§) := {z € R%: |z| < §}. Let L > 0 be a Lipschitz constant of 0=*: (0,1) — R on
[6,1 — 6]%. By Lemma 3 in [48], there exists g € INNpgr such that

, €
”S —0o g”sup,['r[’),r’l]d < min {57 Z} .
As aresult, o o g([ro,m1]%) C S([ro,m1]%) + B(8) C [§,1 — 6]¢. Then we obtain

s = gllsup,x < lIs — gHSupv[To,n]d = HU_l cgos—o too Og”SUPv[TOle]d
< L|IS = 0 0 gllsup,fro,rij¢
<e

O

Lemma 17. We denote by T the set of all C'-increasing triangular mappings from R? to R%. For
s = (s1,"+,84) € T, we define amap S: [ry,r}]% — [0,1]% as in the proofofPropositioan
Then S is a C*-map.

Proof. Itis enough to show that Sy: [rf,7;]¢ — [0, 1] is a C*-function. We prove that for any i € [d],
the i-th partial derivative of Sy exists and that it is continuous on [y, r}]%. First, for i € [d — 1], we

consider the -th partial derivative.
Claim 1.

0S4 () = {iﬁ‘;(sl(a:) + b(xd))gij () (x € [rh, )3 x (r), 7))
o 0 (xqg = 1(,77)

In fact, for z € [r}), 7] x (rf, 7)), we have

gi? (z) = 8((787?(95) = %(Sd(sc) + b(zq)) <gj:: (x) + 0) .

For x = (£<4-1,7(), we have

0S4 (z) = lim Sa(r<i—1,xi +hyxigr, - xg-1,7() — Sa(T<q—1,7()
63@ h—0 h
0-0
=lim —— =0
h—0
Here, note that by the definition of Sy, the notation Sy(z<;—1,2; + h, i1, -+ ,z4—1,7() makes

sense even if z; = r{ or x; = . We can verify the case © = (x<4_1,7}) similarly.

Next, we show that 3¢ is continuous. We take any z<q_1 € [rf,7{]?"!. Since we have
lim, .y b(x) = —00, lim,_, b(z), limy, 400 92 (x) = 0, and |g;‘j (z)] < o (z € [r),71]9),
we obtain
do &sd
—(si(x) +b =0
im0 + ) S @) =0
dﬁ 6Sd

(si(%) + b(za)) oz, (r) =0

1m
z—(xq—1,77) dx

Therefore, the partial derivative % () is continuous on [ry,7}]¢ fori € [d — 1].
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Next, we consider the d-th derivative of .Sj.

Claim 2.
o5, 2 (sale) + b(wa) (F22(@) + f(wa)) (@ € [rp ) x (1, 70))
8:Ud( r) = esd(l’gd—l,To)/hmm_}ré_‘ro d(g;b) (z) (xq = 1))
emsatecairlim, o M50 @) (va =14

We verify Claim 2. Since it is clear for the case = € [rf, 1]~! x (1}, 7) by the definition of Sy, we
consider the case x4 = r{,r].
Subclaim. For z’_,; , € [rg,r7]*!

)

M = esd(af<d 170)

. (
lim

r—=(Ty_170) ( ( ))

im ( ( ) (xd)) e—sd(wlgdfl,ri)
z—(a T<d— 171) ( ( ))
We verify this subclaim. From lim,, ,,, b(z) = —o0, we have
o(sa(z) +b(zg))  1+e @) ebl@a) 4
o(b(xq)) T 1 4 e—sal@)=blza) T eblza) 4 g—sa(z)
1

_ sa(@ey_1,mh) ’ /
—sa(z’ rl) € samio (I - (xgd—la TO))
e S T<q_1:T0

Similarly, from lim, ., b(z) = oo, we have
O(Sd(m) + b(fEd)) -1 _ e*Sd(ﬂi) 1+ e*b(“)
a(b(zg)) — 1 1 4 e—salx)=b(za)

e (@ (ol ),

Therefore, our subclaim has been proved. By using L’Hopital’s rule, we have

/ , B
i CGUO TR g dloob) gy, cGEAER) 21 doeb) )
h—+0 h =) X x—r] h x—r] dx

Then, from Subclaim, we obtain
Sy . o(salzr<a—1,70 + h) +b(ry + h)) —
o d(x<d 1570) = hliglro h
~ lim o(sda(z<a—1,70 + h) + b(rg + h)) o (b(rg + h))
h—+0 o(b(ro + h)) h
. o d(cob)
— psd(T<a—1,70) 1 - 7
€ ’ zﬁlg(’?#»() dx (z),
08y . o(sa(r<g—1,m +h)+b(r; +h))—1
x4 B, (Fd-1T1) = hl—l>n—10 h
— lim O'(Sd(xgd,l,?"/l + h) + b(?”ll + h)) -1 ) J(b(?"ll + h)) -1
h——0 ob(ry+h)) -1 h

= efalT<a-1m1) iy daob) (z).
=7 dxr

Therefore, Claim 2 was proved.

Finally, we verify %(z) is continuous on [y, r{]%. Fix ', , € [r},r1]%"L. Since we have

lime ot , ) 99 (gq(x) + b(zq)) giz( ) = 0, from Claim 2, it is enough to show the following:
Claim 3.
do db / d(cob)
i ao b sa(T<da—1,70) Ii
o™ ) T (sa(@) +b(wa)) 2= (wa) = e = (z),

d db / . d(ocob
9 (oa(w) + b)) 2 (2a) = ezt D220 )

m
m%(m’gd_l,ri) dx z—ri—0 dx
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We verify Claim 3. We have

do Sd\T T
- ;”((Z(;I; o 2o () %(”)
dx

(
)

99 (54(z) + b(zq)) d(o o b) (za)

2 (b(4)) e

Since we have 92 (z) = o(z)(1 — o(x)), from Subclaim above, Claim 3 follows from

99 (sa(x) + b(x4))  o(sa(z) + b(za)) 1—o(sa(z)+b(za))

(
bza))  olb(za)) L= o(b(za))
)
)

R {esd(I;dleé) (1’ — (’I’<d 1 (/) )
. /
1

—sa(r’q_1,m1)
a1 (3 = (T,

Therefore, we proved the continuity of g—f‘; (z). O

G.2 Sum-of-squares polynomial flows (SoS flows)

In this section, we prove that sum-of-squares polynomial flows [21] yield CF-INNs with the sup-
universal approximation property for S} (hence for S°). Even though Jaini et al. [21] claimed
the distributional universality of the SoS flows by providing a proof sketch based on the univariate
Stone-Weierstrass approximation theorem, we regard the sketch to be invalid or at least incomplete as
it does not discuss the smoothness of the coefficients, i.e., whether the polynomial coefficients can be
realized by continuous functions. Here, we provide complete proof that takes an alternative route to
prove the sup-universality of the SoS flows via the multivariate Stone-Weierstrass approximation
theorem.

Definition 15. A sum-of-squares polynomial flow (SoS flow) [21, Equation (9)] is a flow layer
g=(g1,--.,94): RY — R of the following form:

gr(x) = %2r+1($k;ck($<k 1)),

Bort1(z;(c,a)) :=c+ Z <Z a; bul> du,

0 p=1

where O}, : RF=1 — RB(r+1)+1 g 3 neural network, r € N U {0}, and B € N. We define SoS to be
the set of all possible SoS flows.

Proposition 8. The elements of SoS are locally bounded, and INNg.g is a sup-universal approxima-
tor for S1.

Proof. The elements of SoS are continuous, hence locally bounded. The sup-universality follows

from the Stone-Weierstrass approximation theorem as in the below. Let s = (s1,...,54) € S., a
compact subset K C R4 and e > 0 be given. Then, there exists R > 0 such that K C [—R, R]d.
Since sq(z) is strictly increasing with respect to z4 and s is C!, we have n(z) := 3;3 () >0

and 7 is continuous. Therefore, we can apply the Stone-Weierstrass approximation theorem [46,
Corollary 4.50] to /n(xz): for any § > 0, there exists a polynomial 7(z1,...,24) such that
v/ — WHSHP_[_ e < 0- Then, by rearranging the terms, there exist € N and polynomials
&(x1,...,xq—1) such that w(xq,...,x24) = Z{ZO &z, ..., iﬂd—1)$fi- Now, define

ga(x) = Sd(mgd—hO)-i-/ d(Tr(:CSd_l,u))Qdu
oy :
=Sd(w§d71,0)+/ <Z§z($1,-.-,xd1)ul> du
0 1=0
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and §(z) := (v1,...,%a-1,Ja(x)). Then,

HS - gllsup,K = sup ‘sd(w) - gd(w”
TeK

Taq
sd(wgd,hO) +/ n(wgdflau)du_gd(:c)
0

= sup
TeK
xd 2
= swp | [ (of@eii) - rlwei0)du
xekK |Jo
<R sw V(@) - @)
Te[—R,R)4
=R- sup |vn(@)+n(z)| Vi) (@)
Te[-R,R)?
<R sup  2y/n(x)+9 9,
Te[—R,R|4

where we used

sup |v/n(e) + ()] < sup [2v/n(@)| + V() - 7(z)]

TE[-R,R)4 TE[-R,R)?
< sup  24/n(x) +0.
Te[—-R,R]4

Itis straightforward to show that there exists g € SoS such that [|g — g[|,,,, x < 5 by approximating

each of sd(mgd_l) and &; on K using neural networks. Finally, taking ¢ to be small enough so that
[$ = Gllsup. e < 5 holds, the assertion is proved. O

H Using permutation matrices instead of Aff in the definition of INNg

In terms of representation power, there is no essential difference between using the permutation group
and using the general linear group in Definition[I] In fact, one can express the elementary operation
matrices (hence the regular matrices) by combining affine coupling flows, permutations.

From this result, we can see that employing Aff in Definition[I]instead of the permutation matrices is
not an essential requirement for the universal approximation properties to hold. For this reason, we
believe that the empirically reported difference in the performances of Glow [4] and RealNVP [3]] is
mainly in the efficiency of approximation rather than the capability of approximation.

Lemma 18. We have
INNy.acr = {Wiogio---oW,0g, : gi € H-ACF,W; € &4}, (D

where G is the permutation group of degree d.

Proof. Since any translation operator (i.e., addition of a constant vector) can be easily represented by
the elements of H-ACF and permutations, it is enough to show that any element of GL(n,R) can
be realized by a finite composition of elements of {-ACF and G,. To show that, it is sufficient to
consider only the elementary matrices. Row switching comes from &,. Moreover, element-wise sign
flipping can be described by a composition of finite elements of 7{-ACF. To see this, first observe

R IERHIIE

holds. Now, any lower triangular matrix with positive diagonals can be described by a composition
of finite elements of {-ACF. Therefore, any diagonal matrix whose components are +1 can be
described by a composition of elements in #-ACF and &,. Therefore, any affine transform is an
element of the right hand side of (T). O

I Other related work

In this section, we elaborate on the relation of the present paper and the existing literature.
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Approach to make universal approximators by augmenting the dimensionality. Zhang et al.
[39]] showed that invertible residual networks (i-ResNets) [49] and neural ordinary differential
equations (NODEs) [37} 38| can be turned into universal approximators of homeomorphisms by
increasing the dimensionality and padding zeros. Similarly, Huang et al. [[50] motivated employing
the dimensionality augmentation technique for ACFs based on the theory of Hamiltonian ODEs.
Given that, one may wonder if we can apply a similar technique to augment CF-INN to have the
universality, which can bypass the proof techniques developed in this study. However, there is a
problem that the approach can undermine the exact invertibility of the model: unless the model is
ideally trained so that it always outputs zeros in the zero-padded dimensions, the model can no longer
represent an invertible map operating on the original dimensionality. On the other hand, we showed
the universality properties of certain CF-INNs without introducing the complication arising from the
dimensionality augmentation.
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