
Neural Mesh Flow: 3D Manifold Mesh Generation
via Diffeomorphic Flows

Kunal Gupta Manmohan Chandraker
University of California, San Diego

{k5gupta, mkchandraker}@eng.ucsd.edu

Abstract

Meshes are important representations of physical 3D entities in the virtual world.
Applications like rendering, simulations and 3D printing require meshes to be
manifold so that they can interact with the world like the real objects they represent.
Prior methods generate meshes with great geometric accuracy but poor manifold-
ness. In this work we propose Neural Mesh Flow (NMF) to generate two-manifold
meshes for genus-0 shapes. Specifically, NMF is a shape auto-encoder consisting
of several Neural Ordinary Differential Equation (NODE)[1] blocks that learn
accurate mesh geometry by progressively deforming a spherical mesh. Training
NMF is simpler compared to state-of-the-art methods since it does not require any
explicit mesh-based regularization. Our experiments demonstrate that NMF facil-
iates several applications such as single-view mesh reconstruction, global shape
parameterization, texture mapping, shape deformation and correspondence. Impor-
tantly, we demonstrate that manifold meshes generated using NMF are better-suited
for physically-based rendering and simulation. Code and data are released.1

1 Introduction
Polygon meshes allow an efficient virtual representation of 3D objects, enabling applications in
graphics rendering, simulations, modeling and manufacturing. Consequently, mesh generation or
reconstruction from images or point sets has received significant recent attention. While prior
approaches have primarily focused on obtaining geometrically accurate reconstructions, we posit that
physically-based applications require meshes to also satisfy manifold properties. Intuitively, a mesh
is manifold if it can be physically realized, for example, by 3D printing. Typically, reconstructed
meshes are post-processed with humans in the loop for manifoldness, in order to enable ray tracing,
slicing or Boolean operations. In contrast, we propose a novel deep network that directly generates
manifold meshes (Fig. 1), alleviating the need for manual post-processing.

A manifold is a topological space that locally resembles Euclidean space in the neighbourhood of each
point. A manifold mesh is a discretization of the manifold using a disjoint set of simple 2D polygons,
such as triangles, which allows designing simulations, rendering and other manifold calculations.
While a mesh data structure can simply be defined as a set (V, E ,F) of vertices V and corresponding
edges E or face F , not every mesh (V, E ,F) is manifold. Mathematically, we list various constraints
on a singly connected mesh with the set (V, E ,F) that enables manifoldness2.

• Each edge e ∈ E is common to exactly 2 faces in F (Fig. 2a)
• Each vertex v ∈ V is shared by exactly one group of connected faces (Fig. 2b)
• Adjacent faces Fi, Fj have normals oriented in same direction (Fig. 2c)

1https://kunalmgupta.github.io/projects/NeuralMeshflow.html and try our colab notebook.
2In the scope of this work, meshes do not exhibit defects like duplicate elements, isolated vertices, degenerate

faces and inner surfaces that can also cause a mesh to be non-manifold.
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(a) Inputs

Approach Vertex Edge Face Non-Int.

MeshRCNN[2] explicit 7 7 7 7
AtlasNet[3] explicit 3 7 7 7
AtlasNet-O[3] explicit 3 3 7 7
Pixel2Mesh[4] explicit 3 3 7 7
GEOMetrics[5] explicit 3 3 7 7
3D-R2N2[6] implicit 7 7 3 3
PSG[7] implicit 7 7 3 3
OccNet[8] implicit 7 7 3 3

NMF (Ours) explicit 3 3 3 3

(b) Manifoldness of prior work

(c) Applications enabled by NMF Manifold Meshes

Figure 1: Given an input as either a 2D image or a 3D point cloud (a) Existing methods generate corresponding
3D mesh that fail one or more manifoldness conditions (b) yielding unsatisfactory results for various applications
including physically based rendering (c). NeuralMeshFlow generates manifold meshes which can directly be
used for high resolution rendering, physics simulations (see supplementary video) and be 3D printed without the
need for any prepossessing or repair effort.

Figure 2: Non-manifold geometries for a part of singly connected mesh: (a) An
edge that is shared by either exactly one (red) or more than two (red dashed)
faces. (b) A vertex (red) shared by more than one group of connected faces. (c)
Adjacent faces that have normals (red-arrow) oriented in opposite directions.
(d) Faces intersecting other triangles of the same mesh.

The above mentioned constraints on a mesh(V; E; F ) guarantee it to be a manifold in the limit of
in�nitesimally small discretization. That is not the case when dealing with practical meshes with large
and non-uniformly distributed triangles. To ensure physical realizability, we tighten the de�nition
with a fourth practical constraint that no two triangles mayintersect(Fig. 2d).

In this work, we pose the task of 3D shape generation as learning a diffeomorphic �ow from a template
genus-0 manifold mesh to a target mesh. Our key insight is that manifoldness is conserved under a
diffeomorphic �ow due to their uniqueness [9, 10] and orientation preserving property [11, 12]. In
contrast to methods that learn “deformations” of a template manifold using an MLP or graph-based
network [3–5], our approach ensures manifoldness of the generated mesh. We use Neural ODEs
[1] to model the diffeomorphic �ow, however, must overcome their limited capability to represent a
wide variety of shapes [9, 10, 13], which has restricted prior works to single-category representations
[14, 15]. We propose novel architectural features such as an instance normalization layer that enables
generating 3D shapes across multiple categories and a series of diffeomorphic �ows to gradually
re�ne the generated mesh. We show quantitative comparisons to prior works and more importantly,
compare resulting meshes on physically meaningful tasks such as rendering, simulation and 3D
printing to highlight the importance of manifoldness.

Toy example: regularizer's dilemma Consider the task of deforming a template unit spherical
meshS (Fig. 3a) into a target star meshT (Fig. 3b). We approximate the deformation with a
multi-layer perceptron (MLP)f � with a unit hidden layer of256 neurons withrelu and output
layer withtanh activation. We trainf � by minimizing various losses over the points sampled from
S; T. A conventional approach involves minimizing the Chamfer DistanceL c betweenS; T, leading
to accurate point predictions but several edge-intersections (Fig. 3c). By introducing edge length
regularization [4] L e, we get fewer edge-intersections (Fig. 3d) but the solution is also geometrically
sub-optimal. We can further reduce edge-intersections with Laplacian regularization [4] (Fig. 3e),
but this takes a bigger toll on geometric accuracy. Thus, attempting to reduce self-intersections by
explicit regularization not only makes the optimization hard, but can also lead to predictions with
lower geometric accuracy. In contrast, our proposed use of NODE (with dynamicsf � ) is designed by
construction [9, 10] to prevent self-intersections without explicit regularization (Fig. 3f).

In summary, we make the following contributions:

� A novel approach to 3D mesh generation, Neural Mesh Flow (NMF), with a series of NODEs
that learn to deform a template mesh (ellipsoid) into a target mesh with greatermanifoldness.
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