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Abstract

Previous literature offers limited clues on how to learn a periodic function using
modern neural networks. We start with a study of the extrapolation properties
of neural networks; we prove and demonstrate experimentally that the standard
activations functions, such as ReLU, tanh, sigmoid, along with their variants, all fail
to learn to extrapolate simple periodic functions. We hypothesize that this is due to
their lack of a “periodic” inductive bias. As a fix of this problem, we propose a new
activation, namely, x + sin2(x), which achieves the desired periodic inductive bias
to learn a periodic function while maintaining a favorable optimization property
of the ReLU-based activations. Experimentally, we apply the proposed method to
temperature and financial data prediction.

1 Introduction

In general, periodic functions are one of the most basic functions of importance to human society
and natural science: the world’s daily and yearly cycles are dictated by periodic motions in the Solar
System [26]; the human body has an intrinsic biological clock that is periodic in nature [20, 35],
the number of passengers on the metro follows daily and weekly modulations, and the stock market
experiences (semi-)periodic fluctuations [28, 43]. Global economy also follows complicated and
superimposed cycles of different periods, including but not limited to the Kitchin and Juglar cycle
[10, 22]. In many scientific scenarios, we want to model a periodic system in order to be able to
predict the future evolution, based on current and past observations. While deep neural networks are
excellent tools in interpolating between existing data, their fiducial version is not suited to extrapolate
beyond the training range, especially not for periodic functions.

If we know beforehand that the problem is periodic, we can easily solve it, e.g., in Fourier space,
or after an appropriate transformation. However, in many situations we do not know a priori if the
problem is periodic or contains a periodic component. In such cases it is important to have a model
that is flexible enough to model both periodic and non-periodic functions, in order to overcome
the bias of choosing a certain modelling approach. In fact, despite the importance of being able to
model periodic functions, no satisfactory neural network-based method seems to solve this problem.
Some previous methods that propose to use periodic activation functions exist [38, 45, 30]. This
line of works propose using standard periodic functions such as sin(x) and cos(x) or their linear
combinations as activation functions. However, such activation functions are very hard to optimize
due to large degeneracy in local minima [30], and the experimental results suggest that using sin as
the activation function does not work well except for some very simple model, and that it can not
compete against ReLU-based activation functions [34, 7, 25, 42] on standard tasks.
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(a) Activation Function: ReLU
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(b) Activation Function: tanh
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Figure 1: Exploration of how different activation functions extrapolate various basic function types: y = x
(first column), y = tanh(x) (second column), y = sin(x) (third column), and y = x2 (last column). The red
curves represents the median model prediction and the shaded regions show the 90% credibility interval from 21
independent runs. Note that the horizontal range is re-scaled so that the training data lies between −1 and 1.

The contribution of this work is threefold: (1) we study the extrapolation properties of a neural
network beyond a bounded region; (2) we show that standard neural networks with standard activation
functions are insufficient to learn periodic functions outside the bounded region where data points
are present; (3) we propose a handy solution for this problem and it is shown to work well on toy
examples and real tasks. However, the question remains open as to whether better activation functions
or methods can be designed.

2 Inductive Bias and Extrapolation Properties of Activation Functions

A key property of periodic functions that differentiates them from regular functions is the extrapolation
property of such functions. With a period 2π, a period function f(x) = f(x + 2π) repeats itself ad
infinitum. Learning a periodic function, therefore, not only requires fitting of pattern on a bounded
region, but the learned pattern needs to extrapolate beyond the bounded region. In this section, we
experiment with the inductive bias that the common activation functions offer. While it is hard
to investigate the effect of using different activation functions in a general setting, one can still
hypothesize that the properties of the activation functions are carried over to the property of the neural
networks. For example, a tanh network will be smooth and extrapolates to a constant function, while
ReLU is piecewise-linear and extrapolates in a linear way.

2.1 Extrapolation Experiments
We set up a small experiment in the following way: we use a fully connected neural network with one
hidden layer consisting of 512 neurons. We generate training data by sampling from four different
analytical functions in the interval [-5,5] with a gap in the range [-1,1]. This allows us to study the
inter-and-extrapolation behaviour of various activation functions. The results can be seen in Fig. 1.
This experimental observation, in fact, can be proved theoretically in a more general form. We see
that their extrapolation behaviour is dictated by the analytical form of the activation function: ReLU
diverges to ±∞, and tanh levels off towards a constant value.

2.2 Theoretical Analysis
In this section, we study and prove the incapability of standard activation functions to extrapolate.

Definition 1. (Feedforward Neural Network.) Let fσ(x) =Whσ...σW1x be a function from Rd1 →
Rdh+1 , where σ is the activation function applied element-wise to its input vector, and Wi ∈ Rdi×di+1 .
fσ(x) is called a feedforward neural network with activation function σ, and d1 is called the input
dimension, and dh+1 is the output dimension.
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Now, one can show that for arbitrary feedforward neural networks the following two extrapolation
theorems hold.

Theorem 1. Consider a feed forward network fReLU(x), with arbitrary but fixed depth h and widths
d1, ..., dh+1. Then

lim
z→∞

∣∣fReLU(zu) − zWuu − bu∣∣2 = 0, (1)

where z is a real scalar, u is any unit vector of dimension d1, and Wu ∈ Rd1×dh is a constant matrix
only dependent on u .

The above theorem says that any feedforward neural network with ReLU activation converges to a
linear transformation Wu in the asymptotic limit, and this extrapolated linear transformation only
depends on u, the direction of extrapolation. See Figure 1 for illustration. Next, we prove a similar
theorem for tanh activation. Naturally, a tanh network extrapolates like a constant function.

Theorem 2. Consider a feed forward network ftanh(x), with arbitrarily fixed depth h and widths
d1, ..., dh+1. Then

lim
z→∞

∣∣ftanh(zu) − vu∣∣2 = 0, (2)

where z is a real scalar, u is any unit vector of dimension d1, and vu ∈ Rdh+1 is a constant vector
that only depends on u.

We note that these two theorems can be proved through induction, and we give their proofs in the
appendix. The above two theorems show that any neural network with ReLU or the tanh activation
function cannot extrapolate a periodic function. Moreover, while the specific statement of the theorem
applies to tanh and ReLU, it is has quite general applicability. Since the proof is only based on
the asymptotic property of activation function when x→ ±∞, one can prove the same theorem for
any continuous activation function that asymptotically converges to a tanh or ReLU; for example,
this would include Swish and Leaky-ReLU (and almost all the other ReLU-based variants), which
converge to ReLU; one can follow the same proving procedure to prove a similar theorem for each of
these activation functions.

3 Proposed Method: x + sin2(x)

Figure 2: Snake at different a.

Figure 3: Optimization of differ-
ent loss functions on MNIST. The
proposed activation is shown as
a blue dashed curve. We see that
Snake is easier to optimize than
other periodic baselines. Also in-
teresting is that Snake (and x +
sin(x)) are also easier to train
than the standard ReLU on this
task.

As we have seen in the previous section, the choice of the activa-
tion functions plays a crucial role in affecting the interpolation and
extrapolation properties of neural networks, and such interpolation
and extrapolation properties in return affect the generalization of the
network equipped with such activation function.

To easily address the proposed function, we propose to use x +
sin2(x) as an activation function, which we call the “Snake” func-
tion. One can augment it with a factor a to control the frequency of
the periodic part. Thus propose the Snake activation with frequency
a

Snakea ∶= x +
1

a
sin2 (ax) = x − 1

2a
cos(2ax) + 1

2a
, (3)

We plot Snake for a = 0.2, 1, 5 in Figure 2. We see that larger a
gives higher frequency.

There are also two conceivable alternatives choices for a periodicity-
biased activation function. One is the sin function, which has been
proposed in [30], along with cos and their linear combinations as
proposed in Fourier neural networks [45]. However, the problem of
these functions does not lie in its generalization ability, but lies in
its optimization. In fact, sin is not a monotonic function, and using
sin as the activation function creates infinitely many local minima
in the solutions (since shifting the preactivation value by 2π gives
the same function), making sin hard to optimize. See Figure 3 for a
comparison on training a 4-layer fully connected neural network on
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ReLU Swish Tanh sin(x) x + sin(x) x + sin2(x)
monotonic 3 7 3 7 3 3

(semi-)periodic 7 7 7 3 3 3

first non-linear term - x2

4
−x3

3
−x3

6
−x3

6
x2

Table 1: Comparison of different periodic and non-periodic activation functions.

Figure 4: Regressing a simple sin function with Snake as activation functions for a = 10.

MNIST. We identify the root cause of the problem in sin as its non-monotonicity. Since the gradient
of model parameters is only a local quantity, it cannot detect the global periodicity of the sin function.
Therefore, the difficulty in biasing activation function towards periodicity is that it needs to achieve
monotonicity and periodicity at the same time.

We also propose two other alternatives, x + sin(x) and x + cos(x). They are easier to optimize than
sin similar to the commonly used ReLU. In the neural architecture search in [34], these two functions
are found to be in list of the best-performing activation functions found using reinforcement learning;
while they commented that these two are interesting, no further discussion was given regarding their
significance. While these two and x+sin2(x) have the same expressive power, we choose x+sin2(x)
as the default form of Snake for the following reason. It is important to note that the preactivation
values are centered around 0 and the standard initialization schemes such as Kaiming init normalizes
such preactivation values to the unit variance [40, 16]. By the law of large numbers, the preactivation
roughly obeys a standard normal distribution. This makes 0 a special point for the activation function,
since most of preactivation values will lie close to 0. However, x + sin(x) seems to be a choice
inferior to x + sin2(x) around 0. Expanding around 0:

⎧⎪⎪⎨⎪⎪⎩

x + sin(x) = 2x − x3

6
+ x5

120
+ o(x5)

x + sin2(x) = x + x2 − x4

3
+ o(x4).

(4)

Of particular interest to us is the non-linear term in the activation, since this is the term that drives the
neural network away from its linear counterpart, and learning of a non-linear network is explained by
this term to leading order. One finds that the first non-linear order expansion for x+ sin(x) is already
third order, while that of x + sin2(x) is contains a non-vanishing second order term, which can probe
non-linear behavior that is odd in x. We hypothesize that this non-vanishing second order term gives
Snake a better approximation property than x+ sin(x). In Table 1, we compare the properties of each
activation function.

Extension: We also suggest the extension to make the a parameter a learnable parameter for each
preactivation value. The benefit for this is that a no-longer needs to be determined by hand. While
we do not study this extension in detail, one experiment is carried out with learnable a, see the
atmospheric temperature prediction experiment in Section 6.2.

3.1 Regression with Fully Connected Neural Network
In this section, we regress a simple 1−d periodic function, sin(x), with the proposed activation
function.See Figure 4 and compare with the related experiments on tanh and ReLU in Figure 1. As
expected, all three activation functions learn to regress the training points. However, neither ReLU
nor tanh seems to be able to capture the periodic nature of the underlying function; both baselines
inter- and extrapolate in a naive way, with tanh being slightly smoother than ReLU. On the other
hand, Snake learns to both interpolate and extrapolate very well, even though the learned amplitude is
a little different from the ground truth, it has grasped the correct frequency of the underlying periodic
function, both for the interpolation regime and the extrapolation regime. This shows that the proposed
method has the desired flexibility towards periodicity, and has the potential to model such problems.
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4 “Universal Extrapolation Theorem”
In contrast to the well-known universal approximation theorems [19, 8, 12] that qualifies a neural
network on a bounded region, we prove a theorem that we refer to as the universal extrapolation
theorem, which focuses on the behavior of a neural network with Snake on an unbounded region. This
theorem says that a Snake neural network with a sufficient width can approximate any well-behaving
periodic function.
Theorem 3. Let f(x) be a piecewise C1 periodic function with period L. Then, a Snake neural
network, fwN

, with one hidden layer and with width N can converge to f(x) uniformly as N →∞,
i.e., there exists parameters wN for all N ∈ Z+ such that

f(x) = lim
N→∞

fwN
(x) (5)

for all x ∈ R, i.e., the convergence is point-wise. If f(x) is continuous, then the convergence is
uniform.

As a corollary, this theorem implies the classical approximation theorem [19, 32, 9], which states that
a neural network with certain non-linearity can approximate any continuous function on a bounded
region.
Corollary 1. Let f(x) be a two-layer neural network parametrized by two weight matrices W1 and
W2, and let w be the width of the network, then for any bounded and continuous function g(x) on
[a, b], there exists m such that for any w ≥m, we can find W1, W2 such that f(x) is ε−close to g(x).

This shows that the proposed activation function is a more general method than the ones previously
studied because it has both (1) approximation ability on a bounded region and (2) the ability to
learn periodicity on an unbounded region. The practical usefulness of our method is demonstrated
experimentally to be on par with standard tasks, and to outperform previous methods significantly on
learning periodic functions. Notice that the above theorem not only applies to Snake but also to the
basic periodic functions such as sin and cos and monotonic variants such x + sin(x), x + cos(x) etc..
While we argued for a preference towards x + sin2(x), it remains to be determined by large-scale
experiments in the industry to decide which one amongst these variants work better in practice, and
we do encourage the practitioners to experiment with a few variants to decide the best suitable form
for their application.

5 Initialization for Snake
As shown in [16], different activation functions actually require different initialization schemes
(in terms of the sampling variance) to make the output of each layer unit variance, thus avoiding
divergence or vanishing of the forward signal. Let W ∈ Rd1×d2 , whose input activations are h ∈ Rd2
with a unit variance for each of its element, and the goal is to set the variance of each element in W
such that Snake(Wx) has a unit variance. To leading order, Snake looks like an identity function,
and so one can make this approximation in finding the required variance: E (∑d2j Wijxj)

2 = 1

which gives E[W 2
ij] = 1/

√
d. If we use uniform distribution to initialize W , then we should sample

from Uniform(−
√

3
d
,
√

3
d
), which is a factor of

√
2 smaller in range than the Kaiming uniform

initialization. We notice that this initialization is often sufficient. However, when higher order
correction is necessary, we provide the following exact solution, which is a function of a in general.

Proposition 1. The variance of expected value of x + sin2
(ax)
a

under a standard normal distribution

is σ2
a = 1 + 1+e−8a

2
−2e−4a

2

8a2
, which is maximized at amax ≈ 0.56045.

The second term can be thought of as the “response” to the non-linear term sin2(x). Therefore, one
should also correct an additional bias induced by the sin2(x) term by dividing the post-activation
value by σa. Since the positive effect of this correction is the most pronounced when the network
is deep, we compare the difference between having such a correction and having no correction on
ResNet-101 on CIFAR-10. The results are presented in the appendix Section A.6.1. We note that
using the correction leads to better training speed and better converged accuracy. We find that for
standard tasks such as image classification, setting 0.2 ≤ a ≤ amax to work very well. We thus set the
default value of a to be 0.5. However, for tasks with expected periodicity, larger a, usually from 5 to
50 tend to work well.
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Figure 6: Experiment on the atmospheric data. (a) Regressing the mean weekly temperature evolution
of Minamitorishima with different activation functions. For Snake, a is treated as a learnable
parameter and the red contour shows the 90% credibility interval. (b) Comparison of tanh, ReLU,
and Snake on a regression task with learnable a.

6 Applications

Figure 5: Comparison
with other activation
functions on CIFAR10.

In this section, we demonstrate the wide applicability of Snake. We
start with a standard image classification task, where Snake is shown to
perform competitively against the popular activation functions, showing
that Snake can be used as a general activation function. We then focus on
the tasks where we expect Snake to be very useful, including temperature
and financial data prediction. Training in all experiments are stopped at
the time when the training loss of all the methods stop to decrease and
becomes a constant. The performances of the converged model is not
visibly different from the early stopping point for the tasks we considered,
and the result would have been similar if we had chosen the early stopping point for comparison1.

6.1 Image Classification
Experiment Description. We train ResNet-18 [17], with roughly 10M parameters, on the standard
CIFAR-10 dataset. We simply replace the activation functions in ReLU with the specified ones for
comparison. CIFAR-10 is a 10-class image classification task of 32× 32 pixel images; it is a standard
dataset for measuring progress in modern computer vision methods2. We use LaProp [46] with the
given default hyperparameters as the optimizer. We set learning rates to be 4e − 4 for the first 50
epochs, and 4e − 5 for the last 50 epochs. The standard data augmentation technique such as random
crop and flip are applied. We note that our implementation reproduces the standard performance
of ResNet18 on CIFAR-10, around 92 − 93% testing accuracy. This experiment is designed to test
whether Snake is suitable for standard and large-scale tasks one encounters in machine learning. We
also compare this result against other standard or recently proposed activation functions including
tanh, ReLU, Leaky−ReLU [42], Swish [34], and sin [30].

Result and Discussion. See Figure 5. We see that sin shows similar performance to tanh, agree-
ing with what was found in [30], while Snake shows comparative performance to ReLU and
Leaky−ReLU both in learning speed and final performance. This hints at the generality of the
proposed method, and may be used as a replacement for ReLU in a straightforward way. We also
test against other baselines on ResNet-101, which has 4 times more parameters than ResNet-18, to
check if Snake can scale up to even larger and deeper networks, and we find that, consistently, Snake
achieves similar performance (94.1% accuracy) to the most competitive baselines.

6.2 Atmospheric and Body Temperature Prediction
For illustration, we first show two real-life applications of our method to predicting the atmospheric
temperature of a local island, and human body temperature. These can be very important for medical
applications. Many diseases and epidemics are known to have strong correlation with atmospheric
temperature, such as SARS [6] and the current COVID-19 crisis ongoing in the world [44, 36, 27].
Therefore, being able to model temperature accurately could be important for related policy making.

1The code for our implementation of a demonstrative experiment can be found at https://github.
com/AdenosHermes/NeurIPS_2020_Snake.

2Our code is adapted from https://github.com/kuangliu/pytorch-cifar
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(a) Snake (b) Snake

(c) tanh, ReLU (d) Sinusoidal

Figure 7: Prediction of human body temperature. (a) Snake; (b) Averaged temperature prediction in a circadian
cycle (i.e. as a function of the natural hours in a day); (c) tanh and ReLU; (d) sinusoidal activations.

Atmospheric temperature prediction. We start with testing a feedforward neural network with two
hidden layers (both with 100 neurons) to regress the temperature evolution in Minamitorishima, an
island south of Tokyo (longitude: 153.98, latitude: 24.28)3. The data represents the average weekly
temperature after April 2008 and the results are shown in Fig. 6a. We see the tanh and ReLU-based
models fail to optimize this task, and do not make meaningful extrapolation. On the other hand, the
Snake-based model succeeds in optimizing the task and makes meaningful extrapolation with correct
period. Also see Figure 6b. We see that Snake achieves vanishing training loss and generalization loss,
while the baseline methods all fail to optimize to 0 training loss, and the generalization loss is also
not satisfactory. We also compare with the more recent activation functions such as the Leaky-ReLU
and Swish, and similar results are observed; see appendix.

Human body temperature. Modeling the human body temperature may also be important; for
example, fever is known as one of the most important symptom signifying a contagious condition,
including COVID19 [15, 39]. Experiment Description. We use a feedforward neural network with 2
hidden layers, (both with 64 neurons) to regress the human body temperature. The data is measured
irregularly from an anonymous participant over a 10-days period in April, 2020, of 25 measurements
in total. While this experiment is also rudimentary in nature, it reflects a great deal of obstacles the
community faces, such as very limited (only 25 points for training) and insufficient measurement
taken over irregular intervals, when applying deep learning to real problems such as medical or
physiological prediction [18, 33]. In particular, we have a dataset where data points from certain
period in a day is missing, for example, from 12am to 8am, when the participant is physically
at rest (See Figure 7b), and for those data points we have, the intervals between two contiguous
measurements are irregular with 8 hours being the average interval, yet this is often the case for
medical data where exact control over variables is hard to realize. The goal of this task is to predict
the body temperature at at every hour. The model is trained with SGD with learning rate 1e − 2 for
1000 steps, 1e − 3 for another 1000 steps, and 5e − 4 for another 1000 steps.

Results and Discussion. The performances of using ReLU, tanh , sin, sin+ cos and Snake are shown
in Figure 7. We do not have a testing set for this task, since it is quite unlikely that a model will predict
correctly for this problem due to large fluctuations in human body temperature, and we compare the
results qualitatively. In fact, we have some basic knowledge about body temperature. For example,
(1) it should fall within a reasonable range from 35.5 to 37.5 Celsius degree [13], and, in fact, this
is the range where all of the training points lie; (2) at a finer scale, the body temperature follows
a periodic behavior, with highest in the afternoon (with a peak at around 4pm), and lowest in the
midnight (around 4am) [13]. At the bare minimum, a model needs to obey (1), and a reasonably
well-trained model should also discover (2). However, tanh or ReLU fail to limit the temperature to
the range 35.5 and 37.5 degree. Both baselines extrapolate to above 39 degree at 20 days beyond the
training set. In contrast, learning with Snake as the activation function learned to obey the first rule.

3Data from https://join.fz-juelich.de/access
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Figure 8: Prediction of Wilshire 5000 index, an indicator of the US and global economy.

See Figure 7.a. To test whether the model has also grasped the periodic behavior specified in (2), we
plot the average hourly temperature predicted by the model over a 30 days period. See Figure 7b.
We see that the model does capture the periodic oscillation as desired, with peak around 16pm and
minimum around 4am. The successful identification of 4am is extremely important, because this is in
the range where no data point is present, yet the model inferred correctly the periodic behavior of the
problem, showing Snake really captures the correct inductive bias for this problem.

6.3 Financial Data Prediction

Problem Setting. The global economy is another area where quasi-periodic behaviors might happen
[21]. At microscopic level, the economy oscillates in a complex, unpredictable manner; at macro-
scopic level, the global economy follows a 8−10 year cycle that transitions between periods of growth
and recession [5, 37]. In this section, we compare different models to predict the total US market
capitalization, as measured by the Wilshire 5000 Total Market Full Cap Index4 (we also did the
same experiment on the well-known Buffet indicator, which is seen as strong indicator for predicting
national economic trend [24]; we also see similar results). For training, we take the daily data from
1995-1-1 to 2020-1-31, around 6300 points in total, the ending time is deliberately chosen such that it
is before the COVID19 starts to affect the global economy [3, 11]. We use the data from 2020 − 2 − 1
to 2020 − 5 − 31 as the test set. Noticeably, the test set differs from training set in two ways (1) a
market crush called black Thursday happens (see Figure 8); (2) the general trend is recessive (market
cap moving downward on average). It is interesting to see whether the bearish trend in this period
is predictable without the affect of COVID19. For neural network based methods, we use a 4-layer
feedforward network with 1→ 64→ 64→ 1 hidden neurons, with specified activation function, we
note that no activation function except Snake could optimize to vanishing training loss. The error is
calculated with 5 runs.

Method MSE on Test Set
ARIMA(2,1,1) 0.0215±0.0075

ARIMA(2,2,1) 0.0306±0.0185

ARIMA(3,1,1) 0.0282±0.0167

ARIMA(2,1,2) 0.0267±0.0154

ReLU DNN 0.0113±0.0002

Swish DNN 0.0161±0.0007

sin+ cos DNN 0.0661±0.0936

sin DNN 0.0236±0.0020

Snake 0.0089±0.0002

Table 2: Prediction of Wilshire 5000 Index
from 2020-2-1 to 2020-5-31.

Results and Discussion. See Table 2, we see that the pro-
posed method outperforms the competitors by a large mar-
gin in predicting the market value from 2020-2-1. Qual-
itatively, we focus on making comparison with ARIMA,
a traditional and standard method in economics and stock
price prediction [29, 2, 41]. See Figure 8. We note that
ARIMA predicts a growing economy, Snake predicts a
recessive economy from 2020-2-1 onward. In fact, for all
the methods in Table 2, the proposed method is the only
method that predicts a recession in and beyond the testing
period, we hypothesize that this is because the proposed
method is only method that learns to capture the long term
economic cycles in the trend. Also, it is interesting that
the model predicts a recession without predicting the violent market crash. This might suggest that
the market crash is due to the influence of COVID19, while a simultaneous background recession
also occurs, potentially due to global business cycle. For purely analysis purpose, we also forecast
the prediction until 2023 in Figure 8. Alarmingly, our method predicts a long-term global recession,
starting from this May, for an on-average 1.5 year period, only ending around early 2022. This also
suggests that COVID19 might not be the only or major cause of the current recessive economy.

4Data from https://www.wilshire.com/indexes
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(a) (b) (c)

Figure 9: Comparison between simple RNN (with ReLU as activation function) and feedforward
network with Snake as activation function. (a) The task is to regress a length-T time series generated
by a simple periodic function contaminated with a white gaussian noise with variance σ2. (b) As the
noise increases, the RNN fails in generalization, while this has relatively no effect on the proposed
method. (c) One more important advantage of the proposed method is that it requires much less
computation time during forward and backward propagation.

6.4 Comparison with RNN on Regressing a Simple Periodic Function
One important application of the learning of periodicities is time series prediction, where the period-
icity is at most one-dimensional. This kind of data naturally appears in many audio and textual tasks,
such as machine translation [4], audio generation [14], or multimodal learning [23]. Therefore, it is
useful to compare with RNN on related tasks. However, we note that the problem with RNNs is that
they implicitly parametrize the data point x by time: x = x(t). It is hence limited to model periodic
functions of at most 1d and cannot generalize to a periodic function of arbitrary dimension, which is
not a problem for our proposed method. We perform a comparison of RNN with Snake deployed on
a feedforward network on a 1d problem. See Figure 9.a for the training set of this task. The simple
function we try to model is y = sin(0.1x), we add a white noise with variance σ2 to each y, and the
model sees a time series of length T . See 9.b for the performance of both models, when T = 100,
and validated on a noise-free hold-out section from t = 101 to 300. We see that the proposed method
outperforms RNN significantly. On this task, One major advantage of our method is that it does not
need to back-propagate through time (BPTT), which both causes vanishing gradient and prohibitively
high computation time during training [31]. In Figure 9.c we plot the average computation time of a
single gradient update vs. the length of the time series, we see that, even at smallest T = 5, the RNN
requires more than 10 times of computation time to update (when both models have a similar number
of parameters, about 3000). For Snake, the training is done with gradient descent on the full batch,
and the computation time remains low and does not increase visibly as long as the GPU memory is
not overloaded. This is a significant advantage of our method over RNN. Snake can also be used in a
recurrent neural network, and is also observed to improve upon ReLU and tanh for predicting long
term periodic time evolution. Due to space constraint, we discuss this in section A.2.

7 Conclusion
In this work, we have identified the extrapolation properties as a key ingredient for understanding
the optimization and generalization of neural networks. Our study of the extrapolation properties of
neural networks with standard activation functions suggest the lack of capability to learn a periodic
function: due to the mismatched inductive bias, the optimization is hard and generalization beyond
the range of observed data points fails. We think that this example suggests that the extrapolation
properties of a learned neural networks should deserve much more attention than it currently receives.
We then propose a new activation function to solve this periodicity problem, and its effectiveness
is demonstrated through the “extrapolation theorem”, and then tested on standard and real-life
application experiments. We also hope that our current study will attract more attention to the study
of modeling periodic functions using deep learning.
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Broader Impact Statement

In the field of deep learning, we hope that this work will attract more attention to the study of how
neural networks extrapolate, since how a neural network extrapolates beyond the region it observes
data determines how a network generalizes. In terms of applications, this work may have broad
practical importance because many processes in nature and in society are periodic in nature. Being
able to model periodic functions can have important impact to many fields, including but not limited
to physics, economics, biology, and medicine.
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