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A Formulas for NTK

We begin by providing the recursive definition of NTK for fully connected (FC) networks with bias
initialized at zero. The formulation includes a parameter β that when set to zero the recursive formula
coincides with the formula given in [1] for bias-free networks.

The network model. We consider a L-hidden-layer fully-connected neural network (in total L+ 1
layers) with bias. Let x ∈ Rd (and denote d0 = d), we assume each layer l ∈ [L] of hidden units
includes dl units. The network model is expressed as

g(0)(x) = x

f (l)(x) = W (l)g(l−1)(x) + βb(l) ∈ Rdl , l = 1, . . . L

g(l)(x) =

√
cσ
dl
σ
(
f (l)(x)

)
∈ Rdl , l = 1, . . . L

f(θ,x) = f (L+1)(x) = W (L+1) · g(L)(x) + βb(L+1)

The network parameters θ include W (L+1),W (L), ...,W (1), where W (l) ∈ Rdl×dl−1 , b(l) ∈ Rdl×1,
W (L+1) ∈ R1×dL , b(L+1) ∈ R, σ is the activation function and cσ = 1/

(
Ez∼N (0,1)[σ(z)2]

)
. The

network parameters are initialized with N (0, I), except for the biases {b(1), . . . ,b(L), b(L+1)},
which are initialized with zero.

The recursive formula for NTK. The recursive formula in [9] assumes the bias is initialized with
a normal distribution. Here we assume the bias is initialized at zero, yielding a sightly different
formulation, which can be readily derived from [9]’s formulation.

Given x, z ∈ Rd, we denote the NTK for this fully connected network with bias by
kFCβ(L+1)(x, z) := Θ(L)(x, z). The kernel Θ(L)(x, z) is defined using the following recursive
definition. Let h ∈ [L] then

Θ(h)(x, z) = Θ(h−1)(x, z)Σ̇(h)(x, z) + Σ(h)(x, z) + β2, (1)

where
Σ(0)(x, z) = xT z

Θ(0)(x, z) = Σ(0)(x, z) + β2.
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and we define

Σ(h)(x, z) = cσE(u,v)vN(0,Λ(h−1)) (σ(u)σ(v))

Σ̇(h)(x, z) = cσE(u,v)vN(0,Λ(h−1)) (σ̇(u)σ̇(v))

Λ(h−1) =

(
Σ(h−1)(x,x) Σ(h−1)(x, z)
Σ(h−1)(z,x) Σ(h−1)(z, z)

)
.

Now, let

λ(h−1)(x, z) =
Σ(h−1)(x, z)√

Σ(h−1)(x,x)Σ(h−1)(z, z)
. (2)

By definition |λ(h−1)| ≤ 1, and for ReLU activation we have cσ = 2 and

Σ(h)(x, z) = cσ
λ(h−1)(π − arccos(λ(h−1))) +

√
1− (λ(h−1))2

2π

√
Σ(h−1)(x,x)Σ(h−1)(z, z)

(3)

Σ̇(h)(x, z) = cσ
π − arccos(λ(h−1))

2π
. (4)

The parameter β allows us to consider a fully-connected network either with (β > 0) or without
bias (β = 0). When β = 0, the recursive formulation is the same as existing derivations, e.g.,
[9]. Finally, the normalized NTK of a FC network with L + 1 layers, without bias, is given by

1
L+1k

FC0(L+1)(xi,xj).

NTK for a two-layer FC network on Sd−1. Using the recursive formulation above, for points on
the hypersphere Sd−1 NTK for a two-layer FC network with bias initialized at 0, is as follows. Let
u = xT z, with x, z ∈ Sd−1. Then,

kFCβ(2)(x, z) = Θ(1)(x, z)

= Θ(0)(x, z)Σ̇(1)(x, z) + Σ(1)(x, z) + β2

= (u+ β2)
π − arccos(u)

π
+
u(π − arccos(u)) +

√
1− u2

π
+ β2.

Rearranging, we get

kFCβ(2)(x, z) = kFCβ(2)(u) =
1

π

(
(2u+ β2)(π − arccos(u)) +

√
1− u2

)
+ β2. (5)

B NTK on Sd−1

This section provides a characterization of NTK on the hypersphere Sd−1 under the uniform measure.
The recursive formulas of the kernels are given in Appendix A.

Lemma 1. Let kFCβ(L)(x, z), x, z ∈ Sd−1, denote the NTK kernels for FC networks with L ≥ 2 lay-
ers, possibly with bias initialized with zero. This kernel is zonal, i.e., kFCβ(L)(x, z) = kFCβ(L)(xT z).

Proof. See Appendix D.

To prove the next theorem, we recall several results on the the arithmetics of RKHS, following [8, 15].

B.1 RKHS for sums and products of kernels.

Let k1,k2 : X × X → R be kernels with RKHSHk1 andHk2 , respectively. Then,

1. Aronszajn’s kernel sum theorem. The RKHS for k = k1 + k2 is given by Hk1+k2
=

{f1 + f2 | f1 ∈ Hk1
, f2 ∈ Hk2

}
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2. This yields the kernel sum inclusion. Hk1 ,Hk2 ⊆ Hk1+k2

3. Norm addition inequality. ‖f1 + f2‖Hk1+k2
≤ ‖f1‖Hk1

+ ‖f2‖Hk2

4. Norm product inequality. ‖f1 · f2‖Hk1·k2
≤ ‖f1‖Hk1

· ‖f2‖Hk2

5. Aronszajn’s inclusion theorem. Hk1
⊆ Hk2

if and only if ∃s > 0, such that k1 � s2k2,
where the latter notation means that s2k2 − k1 is a positive definite kernel over X .

B.2 The decay rate of the eigenvalues of NTK

Theorem 1. Let x, z ∈ Sd−1. With bias initialized at zero and β > 0:

1. kFCβ(L) can be decomposed according to

kFCβ(L)(x, z) =

∞∑
k=0

λk

N(d,k)∑
j=1

Yk,j(x)Yk,j(z), (6)

with λk > 0 for all k ≥ 0 and into Yk,j are the spherical harmonics of Sd−1, and

2. ∃k0 and constants C1, C2, C3 > 0 that depend on the dimension d such that ∀k > k0

(a) C1k
−d ≤ λk ≤ C2k

−d if L = 2, and
(b) C3k

−d ≤ λk if L ≥ 3.

We split the theorem into the next two lemmas. The first lemma handles NTK of two-layer FC
networks with bias, and the second lemma handles NTK for deep networks.

Lemma 2. Let x, z ∈ Sd−1 and kFCβ(2)(xT z) as defined in (5) with β > 0. Then, kFCβ(2)

decomposes according to (6) where λk > 0 for all k ≥ 0 and ∃k0 such that ∀k ≥ k0

C1k
−d ≤ λk ≤ C2k

−d,

where C1, C2 > 0 are constants that depend on the dimension d.

Proof. To prove the lemma we leverage the results of [3, 5]. First, under the assumption of the uniform
measure on Sd−1, we can apply Mercer decomposition to kFCβ(2)(x, z), where the eigenfunctions
are the spherical harmonics. This is due to the observation that kFCβ(2)(x, z) is positive and zonal in
Sd−1. It is zonal by Lemma 1 and positive, since kFCβ(2) can be decomposed as

kFCβ(2)(u) =
1

π

(
(2u+ β2)(π − arccos(u)) +

√
1− u2

)
+ β2

=
1

π

(
2u(π − arccos(u)) +

√
1− u2

)
+

1

π
β2 (π − arccos(u)) + β2

:= κ(xT z) + β2κ0(xT z) + β2,

where κ(xT z) is the NTK for a bias-free, two-layer network introduced in [5] and κ0(xT z) is known
to be the zero-order arc-cosine kernel [6]. By kernel arithmetic, this yields another kernel and this
means that kFCβ(2) is a positive kernel.

Furthermore, according to Proposition 5 in [5]

κ(xT z) =

∞∑
k=0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(z),

where Yk,j , j = 1, . . . , N(d, k) are spherical harmonics of degree k, and the eigenvalues µk satisfy
µ0, µ1 > 0, µk = 0 if k = 2j + 1 with j ≥ 1 and otherwise, µk > 0 and µk ∼ C(d)k−d as k →∞,
with C(d) a constant depending only on d. Next, following Lemma 17 in [5] the eigenvalues of
κ0(xT z), denoted ηk satisfy η0, η1 > 0, ηk > 0 if k = 2j+ 1, with j ≥ 1 and behave asymptotically
as C0(d)k−d. Consequently, kFCβ(2) = κ+ β2κ0 + β2, and since both κ and κ0 have the spherical
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harmonics as their eigenfunctions, their eigenvalues are given by λk = µk + β2ηk > 0 for k > 0 and
λ0 = µ0 + β2η0 + β2 > 0, and asymptotically λk ∼ C̃(d)k−d, where C̃(d) = C(d) + β2C0(d).

To conclude, this implies that ∃k0, C1(d) > 0 and C2(d) > 0, such that for all k ≥ k0 it holds that

C1k
−d ≤ λk ≤ C2k

−d

and also, unless β = 0, for all k ≥ 0

λk > 0.

Next, we prove the second part of Theorem 1 that relates to deep FC networks with bias, kFCβ(L), i.e.
we prove the following lemma.

Lemma 3. Let x, z ∈ Sd−1 and kFCβ(L)(xT z) as defined in Appendix A. Then

1. kFCβ(L) decomposes according to (6) with λk > 0 for all k ≥ 0

2. ∃k0 such that ∀k > k0 it holds thatC3k
−d ≤ λk in whichC3 > 0 depends on the dimension

d

3. HFCβ(L−1) ⊆ HFCβ(L)

Proof. Following Lemma 1, it holds that kFCβ(L) is zonal, and therefore can be decomposed accord-
ing to (6). In order to prove the lemma we look at the recursive formulation of the NTK kernel, i.e.,

kFCβ(l+1) = kFCβ(l)Σ̇(l) + Σ(l) + β2. (7)

Now, following Lemma 17 in [5] all of the eigenvalues of Σ̇(l) are positive, including λ0 > 0. This
implies that the constant function g(x) ≡ 1 ∈ HΣ̇(l) .

Now, we use the norm multiplicity inequality in Sec. B.1 and show thatH
kFCβ(l) ⊆ HkFCβ(l)·Σ̇(l) . Let

f ∈ H
kFCβ(l) , i.e., ‖f‖H

k
FCβ(l)

<∞. We showed that 1 ∈ HΣ̇(l) . Therefore, ‖f · 1‖H
k

FCβ(l)·Σ̇(l)
≤

‖f‖H
k

FCβ(l)
‖1‖H

Σ̇(l)
<∞, implying that f ∈ H

kFCβ(l)·Σ̇(l) .

Finally, according to the kernel sum inclusion in Sec. B.1, relying on the recursive formulation (7)
we haveH

kFCβ(l) ⊆ HkFCβ(l)·Σ̇(l) ⊆ HkFCβ(l+1) . Therefore,

HFCβ(2) ⊆ . . . ⊆ HFCβ(L−1) ⊆ HFCβ(L). (8)

This completes the proof, by using Aronszan’s inclusion theorem as follows. Since HkFC(2) ⊆
HkFC(L)

, then by Aronszajn’s inclusion theorem ∃s > 0 such that kFCβ(2) << s2kFCβ(L). Since
the kernels are zonal on the sphere (with uniform distribution of the data) their corresponding RKHS
share the same eigenfunctions, namely the spherical harmonics.

Therefore, for all k ≥ 0 it holds

s2λk
FCβ(L)

k ≥ λk
FCβ(2)

k > 0

and for k →∞ it holds that

s2λk
FCβ(L)

k ≥ λk
FCβ(2)

k ≥ C1

kd

completing the proof.
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C Laplace Kernel in Sd−1

The Laplace kernel k(x,y) = e−c̄‖x−y‖ restricted to the sphere Sd−1 is defined as

K(x,y) = k(xTy) = e−c
√

1−xT y (9)

where c > 0 is a tuning parameter. We next prove an asymptotic bound on its eigenvalues.

Theorem 2. Let x,y ∈ Sd−1 and k(xTy) = e−c
√

1−xTy be the Laplace kernel, restricted to Sd−1.
Then k can be decomposed as in (6) with the eigenvalues λk satisfying λk > 0 for all k ≥ 0 and ∃k0

such that ∀k > k0 it holds that:
B1k

−d ≤ λk ≤ B2k
−d

where B1, B2 > 0 are constants that depend on the dimension d and the parameter c.

Our proof relies on several supporting lemmas.
Lemma 4. ([17] Thm 1.14 page 6) For all α > 0 it holds that∫

Rd
e−2π‖x‖αe−2πit·xdx = cd

α

(α2 + ‖t‖2)(d+1)/2
, (10)

where cd = Γ(d+1
2 )/(π(d+1)/2)

Lemma 5. Let f(x) = e−c‖x‖ with x ∈ Rd. Then, its Fourier transform Φ(w) with w ∈ Rd is
Φ(w) = Φ(‖w‖) = C(1 + ‖w‖2 /c2)−(d+1)/2 for some constant C > 0.

Proof. To calculate the Fourier transform we need to calculate the following integral

Φ(w) =
1

(2π)d

∫
Rd
e−c‖x‖e−ix·wdx.

According to the Lemma 4, plugging α = c
2π and t = w

2π into (10) yields

Φ(w) = cd
c

(c2 + ‖w‖2)(d+1)/2
=

cd
c(d+1)

1(
1 + ‖w‖2

c2

)(d+1)/2
= C

(
1 +
‖w‖2

c2

)−(d+1)/2

with C = cd
c(d+1) > 0.

Lemma 6. ([11] Thm. 4.1) Let f(x) be defined as f(‖x‖) for all x ∈ Rd, and let Φ(w) = Φ(‖w‖)
denote its Fourier Transform in Rd. Then, its corresponding kernel on Sd−1 is defined as the
restriction k(xTy) = f(‖x− y‖) with x,y ∈ Sd−1. By Mercer’s Theorem the spherical harmonic
expansion of k(xTy) is of the form

k(xTy) =

∞∑
k=0

λk

N(d,k)∑
j=1

Yk,j(x)Yk,j(y).

Then, the eigenvalues in the spherical harmonic expansion λk are related to the Fourier coefficients
of f , Φ(t), as follows

λk =

∫ ∞
o

tΦ(t)J2
k+ d−2

2

(t)dt, (11)

where Jv(t) is the usual Bessel function of the first kind of order v.

Having, these supporting Lemmas, we can now prove Theorem 2.

Proof. First, k(·, ·) is a positive zonal kernel and hence can be written as

k(xTy) =

∞∑
k=0

λk

N(d,k)∑
j=1

Yk,j(x)Yk,j(y).
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Next, to derive the bounds we plug the Fourier coefficients, Φ(ω), computed in Lemma 5, into the
expression for the harmonic coefficients, λk (11), obtaining

λk = C

∫ ∞
0

t(
1 + t2

c2

) d+1
2

J2
k+ d−2

2

(t)dt.

Applying a change of variables t = cx we get

λk = c2C

∫ ∞
0

x

(1 + x2)
d+1

2

J2
k+ d−2

2

(cx)dx. (12)

We next bound this integral from both above and below. To get an upper bound we observe that for
x ∈ [0,∞) x2 < 1 + x2, implying that x(1 + x2)−(d+1)/2 < x−d, and consequently

λk < c2C

∫ ∞
0

x−dJ2
k+ d−2

2

(cx)dx := c2CA(k, d, c).

The above integral A(k, d, c) was computed in [18] (Sec. 13.41 page 402 with a := c, λ := d, and
µ = ν := k + (d− 2)/2) which gives

A(k, d, c) =

∫ ∞
0

x−dJ2
k+ d−2

2

(cx)dx =
( c2 )d−1Γ(d)Γ(k − 1

2 )

2Γ2(d+1
2 )Γ(k + d− 1

2 )
. (13)

Using Stirling’s formula Γ(x) =
√

2πxx−1/2e−x(1 + O(x−1)) as x → ∞. Consequently, for
sufficiently large k >> d

λk < c2CA(k, d, c) = c2C
( c2 )d−1Γ(d)Γ(k − 1

2 )

2Γ2(d+1
2 )Γ(k + d− 1

2 )

∼ c2C
( c2 )d−1Γ(d)

2Γ2(d+1
2 )

·
(k − 1

2 )k−1e−k+ 1
2

(k + d− 1
2 )k+d−1e−k−d+ 1

2

(1 +O(k−1))

= B2k
−d, (14)

where B2 depends on c, C and the dimension d.

We use again the relation (12) to derive a lower bound for λk. First, note that since t, 1 + t2, J2
v (t)

are all non-negative for t ∈ [0,∞) and therefore

λk ≥ c2C
∫ ∞

1

x

(1 + x2)
d+1

2

J2
k+ d−2

2

(cx)dx ≥ c2C
∫ ∞

1

1

2
d+1

2 xd
J2
k+ d−2

2

(cx)dx

=
Cc2

2
d+1

2

(∫ ∞
0

x−dJ2
k+ d−2

2

(cx)dx−
∫ 1

0

x−dJ2
k+ d−2

2

(cx)dx

)

=
Cc2

2
d+1

2

∫ ∞
0

x−dJ2
k+ d−2

2

(cx)dx

1−

∫ 1

0
x−dJ2

k+ d−2
2

(cx)dx∫∞
0
x−dJ2

k+ d−2
2

(cx)dx


=

Cc2

2
d+1

2

A(k, d, c)

(
1− B(k, d, c)

A(k, d, c)

)
,

where B(k, d, c) :=
∫ 1

0
x−dJ2

k+ d−2
2

(cx)dx. The first integral, A(k, d, c), was shown in (14) to

converge asymptotically to B2k
−d. To bound the second integral, B(k, d, c), we use an inequality

from [18] (Section 3.31, page 49), which states that for v, t ∈ R, v > − 1
2 ,

|Jv(t)| ≤
2−vtv

Γ(v + 1)
.

This gives an upper bound for B(k, d, c)

B(k, d, c) =

∫ 1

0

x−dJ2
k+ d−2

2

(cx)dx ≤
∫ 1

0

x−d
2−2(k+ d−2

2 )(cx)2(k+ d−2
2 )

Γ2(k + d
2 )

dx ≤
( c2 )2(k+ d−2

2 )

Γ2(k + d
2 )

.
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Applying Stirling’s formula we obtain B(k, d, c) ≤ O
(

( ce2 )2(k+ d
2

)(k+d)

(k+ d
2 )2(k+ d

2
)

)
, which implies that as k

grows, B(k,d,c)
A(k,d,c) → 0. Therefore, asymptotically for large k

λk ≥
Cc2

2
d+1

2

A(k, d, c)

(
1− B(k, d, c)

A(k, d, c)

)
≥ Cc2

2
d+1

2

A(k, d, c),

from which we conclude that λk > B1k
−d, where the constant B1 depends on c, C, and d. We have

therefore shown that there exists k0 such that ∀k > k0

B1k
−d ≤ λk ≤ B2k

−d.

Finally, to show that λk > 0 for all k ≥ 0 we use again (11) in Lemma 6 which states that

λk =

∫ ∞
0

tΦ(t)J2
k+ d−2

2

(t)dt.

Note that in the interval (0,∞) it holds that t > 0 and Φ(t) > 0 due to Lemma 5. Therefore λk = 0
implies that J2

k+ d−2
2

(t) is identically 0 on (0,∞), contradicting the properties of the Bessel function
of the first kind. Hence, λk > 0 for all k.

C.1 Proof of main theorem

Theorem 3. LetHLap denote the RKHS for the Laplace kernel restricted to Sd−1, and letHFCβ(L)

denote the NTK corresponding to a FC network with L layers with bias, restricted to Sd−1, then
HLap = HFCβ(2) ⊆ HFCβ(L).

Proof. Let λLap
k , λFCβ(2)

k , and λFCβ(L)
k denote the eigenvalues of the three kernel, kLap, kFCβ(2),

and kFCβ(L) in their Mercer’s decomposition, i.e.,

k(xT z) =

∞∑
k=0

λk

N(d,k)∑
j=1

Yk,j(x)Yk,j(z).

Denote by k0 the smallest k for which Theorems 1 and 2 hold simultaneously. We first show
that HLap ⊆ HFCβ(2). Let f(x) ∈ HLap, and let f(x) =

∑∞
k=0

∑N(d,k)
j=0 αk,jYk,j(x) denote its

spherical harmonic decomposition. Then ‖f‖HLap <∞ implies, due to Theorem 2, that

∞∑
k=k0

N(d,k)∑
j=0

1

B2
kdα2

k,j ≤
∞∑

k=k0

N(d,k)∑
j=0

α2
k,j

λLap
k

<∞.

Combining this with Theorem 1, and recalling that λFCβ(2)
k > 0 for all k ≥ 0), we have

∞∑
k=k0

N(d,k)∑
j=0

α2
k,j

λ
FCβ(2)
k

≤
∞∑

k=k0

N(d,k)∑
j=0

1

C1
kdα2

k,j =
B2

C1

∞∑
k=k0

N(d,k)∑
j=0

1

B2
kdα2

k,j <∞,

implying that ‖f‖2HFCβ(2) <∞, and so HLap ⊆ HFCβ(2). Similar arguments can be used to show
that HFCβ(2) ⊆ HLap, proving that HFCβ(2) = HLap. Finally, following the inclusion relation (8)
the theorem is proved.

D NTK in Rd

In this section we denote rx = ‖x‖, rz = ‖z‖ and by x̂ = x/rx, ẑ = z/rz . We first prove Theorem
4 and as a consequence Lemma 7 is proved.

Theorem 4. Let kFC0(L)(x, z),kFCβ(L)(x, z), x, z ∈ Rd, denote the NTK kernel with L layers
without bias and with bias initialized at zero, respectively. It holds that (1) Bias-free kFC0(L) is
homogeneous of order 1. (2) Let kBias(L) = kFCβ(L) − kFC0(L). Then, kBias(L) is homogeneous of
order 0.
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Lemma 7. Let kFCβ(L)(x, z), x, z ∈ Sd−1, denote the NTK kernels for FC networks with L ≥ 2 lay-
ers, possibly with bias initialized with zero. This kernel is zonal, i.e., kFCβ(L)(x, z) = kFCβ(L)(xT z).

To that end, we first prove the following supporting Lemma.

Lemma 8. For x, z ∈ Rd it holds that

Θ(L)(x, z) = rxrzΘ
(L) (x̂, ẑ) = rxrzΘ

(L)(x̂T ẑ),

where Θ(L) = kFC0(L+1), as defined in Appendix A.

Proof. We prove this by induction over the recursive definition of kFC0(L+1) = Θ(L)(x, z). Let
x, z ∈ Rd, then by definition

Θ(0)(x, z) = xT z = rxrzΘ
(0) (x̂, ẑ) = rxrzΘ

(0)
(
x̂T ẑ

)
and

Σ(0)(x, z) = xT z = rxrzΣ
(0) (x̂, ẑ) = rxrzΣ

(0)
(
x̂T z

)
Assuming the induction hypothesis holds for l, i.e.,

Θ(l)(x, z) = rxrzΘ
(l) (x̂, ẑ) = rxrzΘ

(l)
(
x̂T z

)
and

Σ(l)(x, z) = rxrzΣ
(l) (x̂, ẑ) = rxrzΣ

(l)
(
x̂T ẑ

)
we prove that those equalities are also true for l + 1.

By the definition of λ(l) (2) and the induction hypothesis for Σ(l) we have that

λ(l)(x, z) =
Σ(l)(x, z)√

Σ(l)(x,x)Σ(l)(z, z)
=

Σ(l) (x̂, ẑ)√
Σ(l) (x̂i, x̂) Σ(l) (ẑ, ẑ)

= λ(l) (x̂, ẑ) = λ(l)
(
x̂T ẑ

)
Plugging this result in the definitions of Σ (3) and Σ̇ (4), using the induction hypothesis we obtain

Σ(l+1)(x, z) = rxrzΣ
(l+1) (x̂, ẑ) = rxrzΣ

(l+1)
(
x̂T ẑ

)
Σ̇(l+1)(x, z) = Σ̇(l+1) (x̂, ẑ) = Σ̇(l+1)

(
x̂T ẑ

)
(15)

Finally, using the recursion formula (1) (β = 0) and the induction hypothesis for Θ(l), we obtain

Θ(l+1)(x, z) = rxrzΘ
(l+1) (x̂, ẑ) = rxrzΘ

(l+1)
(
x̂T ẑ

)

A corollary of this Lemma is that kFC0(L) is homogeneous of order 1 in Rd, proving the first part of
Theorem 4. Also, it is homogeneous of order 0 in Sd−1, proving Lemma 7 for β = 0.

We next turn to proving the second part of Theorem 4, i.e., that kBias(L) = kFCβ(L) − kFC0(L)

is homogeneous of order 0 in Rd. By rewriting the recursive definition of kFCβ(L), shown in
Appendix A, we can express kBias(L) in the following recursive manner kBias(1) = β2, and
kBias(l+1) = kBias(l)Σ̇ + β2. Therefore, kBias(L) is homogeneous of order zero, since it depends
only on Σ̇, which is by itself homogeneous of order zero (15). This concludes Theorem 4.

Finally, Lemma 7 is proved, since kFCβ(L) = kFC0(L) + kBias(L), and when restricted to Sd−1 both
components are homogeneous of order 0.

Theorem 5. Let p(r) be a decaying density on [0,∞) such that 0 <
∫∞

0
p(r)r2dr < ∞ and

x, z ∈ Rd.

1. Let k0(x, z) be homogeneous of order 1 such that k0(x, z) = rxrzk̂0(x̂T ẑ). Then its
eigenfunctions with respect to p(rx) are given by Ψk,j = arxYk,j (x̂), where Yk,j are the
spherical harmonics in Sd−1 and a ∈ R.
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2. Let k(x, z) = k0(x, z) + k1(x, z) so that k0 as in 1 and k1 is homogeneous of order 0.
Then the eigenfunctions of k are of the form Ψk,j = (arx + b)Yk,j (x̂).

Proof. 1. Since k̂0 is zonal, its Mercer’s representation reads

k̂0(x̂, ẑ) =

∞∑
k=0

λk

N(d,k)∑
j=1

Yk,j(x̂)Yk,j(ẑ),

where the spherical harmonics Yk,j are the eigenfunctions of k̂0. Consequently, as noted
also in [5],

k0(x, z) = a2
∞∑
k=0

λk

N(d,k)∑
j=1

rxYk,j(x̂)rzYk,j(ẑ).

The orthogonality of the eigenfunctions Ψk,j(x) = arxYk,j(x̂) is verified as follows. Let
p̄(x) denote a probability density on Rd such that p̄(x) = p(rx)/A(rx), where A(rx)
denotes the surface area of a sphere of radius rx in Rd. Then,∫
Rd

Ψk,j(x)Ψk′,j′(x)p̄(x)dx = a2

∫ ∞
0

rd+1
x p(rx)

A(rx)
drx

∫
Sd−1

Yk,j(x̂)Yk′,j′(x̂)dx̂ = δk,k′δj,j′ ,

where the rightmost equality is due to the orthogonality of the spherical harmonics and by
setting

a2 =

(∫ ∞
0

rd+1
x p(rx)

A(rx)
drx

)−1

.

Clearly this integral is positive, and the conditions of the theorem guarantee that it is finite.

2. By the conditions of the theorem we can write

k(x, z) = rxrzk̂0(x̂T ẑ) + k̂1(x̂T ẑ),

where x̂, ẑ ∈ Sd−1. On the hypersphere the spherical harmonics are the eigenfunctions of
k0 and k1. Denote their eigenvalues respectively by λk and µk, so that∫

Sd−1

k0(x̂T ẑ)Ȳk(ẑ)dẑ = λkȲk(x̂) (16)∫
Sd−1

k1(x̂T ẑ)Ȳk(ẑ)dẑ = µkȲk(x̂), (17)

where Ȳk(x̂) denote the zonal spherical harmonics. We next show that the space spanned by
the functions rxȲk(x) and Ȳk(x) is fixed under the following integral transform∫

Rd
k(x, z)(αrz + β)Ȳk(ẑ)p̄(z)dz = (arx + b)Ȳk(x̂), (18)

α, β, a, b ∈ R are constants. The left hand side can be written as the application of an
integral operator T (x, z) to a function Φkα,β(z) = (αrz +β)Ȳk(ẑ). Expressing this operator
application in spherical coordinates yields

T (x, z)Φkα,β(z) =

∫ ∞
0

p(rz)r
d−1
z

A(rz)
drz

∫
ẑ∈Sd−1

(rxrzk0(x̂T ẑ)+k1(x̂T ẑ)) (αrz+β)Ȳk(ẑ)dẑ.

We use (16) and (17) to substitute for the inner integral, obtaining

T (x, z)Φkα,β(z) =

∫ ∞
0

p(rz)r
d−1
z

A(rz)
(λkrxrz + µk)(αrz + β)Ȳk(x̂)drz.

Together with (18), this can be written as

T (x, z)Φα,β(z) = Φa,b(x),

9



where (
a
b

)
=

(
λk 0
0 µk

)(
M2 M1

M1 M0

)(
α
β

)
where Mq =

∫∞
0

rq+d−1
z p(rz)
A(rz) drz , 0 ≤ q ≤ 2. By the conditions of the theorem these

moments are finite. This proves that the space spanned by {rxȲ (x̂), Ȳ (x̂)} is fixed under
T (x, z), and therefore the eigenfunctions of kFCβ(L)(x, z) take the form (ārx + b̄)Ȳ (x̂) for
some constants ā, b̄.

The implication of Theorem 5 is that the eigenvectors of kFC0(L) are the spherical harmonic functions,
scaled by the norm of their arguments. With bias, kFCβ(L) has up to 2N(d, k) eigenfunctions for
every frequency k, of the general form (arx + b)Yk,j(x̂) where a, b are constants that differ from one
eigenfunction to the next.

E Experimental Details

E.1 The UCI dataSet

In this section, we provide experimental details for the UCI dataset. We use precisely the same
pre-processed datasets, and follow the same performance comparison protocol as in [2].

NTK Specifications We reproduced the results of [2] using the publicly available code1, and
followed the same protocol as in [2]. The total number of kernels evaluated in [2] are 15 and the
SVM cost value parameter C is tuned from 10−2 to 104 by powers of 10. Hence, the total number of
hyper-parameter combinations searched using cross-validation is 105 (15× 7).

Exponential Kernels Specifications For the Laplace and Gaussian kernels, we searched for 10
kernel width values (1/c) from 2−2 × ν to ν in the log space with base 2, where ν is chosen
heuristically as the median of pairwise l2 distances between data points (known as the median
trick [7]). So, the total number of kernel evaluations is 10. For γ-exponential, we searched through
5 equally spaced values of γ from 0.5 to 2. Since we wanted to keep the number of the kernel
evaluations the same as for NTK in [2], we searched through only three kernel bandwidth values (1/c)
which are 1, ν and #features (default value in the sklearn package2). So, the total number of kernel
evaluations is 15 (5× 3).

For a fair comparison with [2], we swept the same range of SVM cost value parameter C as in [2],
i.e., from 10−2 to 104 by powers of 10. Hence, the total number of hyper-parameter search using
cross-validation is 70 (10× 7) for Laplace and 105 (15× 7) for γ-exponential which is the same as
for NTK in [2].

E.2 Large scale datasets

We used the experimental setup mentioned in [14] and the publicly available code 3. [14] solves
kernel ridge regression (KRR [16]) using the FALKON algorithm, which solves the following linear
system

(Knn + λnI) α = ŷ,

where K is an n× n kernel matrix defined by (K)ij = K(xi, xj), ŷ = (y1, . . . yn)T , and λ is the
regularization parameter. Refer to [14] for more details.

In Table 1, we provide the hyper parameters chosen with cross validation.

1https://github.com/LeoYu/neural-tangent-kernel-UCI
2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.rbf_

kernel.html
3https://github.com/LCSL/FALKON_paper
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MillionSongs [4] SUSY [13] HIGGS [13]

H-γ-exp. γ = 1.4, σ = 5, λ = 1e−6 γ = 1.8, σ = 5, λ = 1e−7 γ = 1.6, σ = 8, λ = 1e−8

H-Laplace σ = 3, λ = 1e−6 σ = 4, λ = 1e−7 σ = 8, λ = 1e−8

NTK L = 9, λ = 1e−9 L = 3, λ = 1e−8 L = 3, λ = 1e−6

H-Gaussian σ = 8, λ = 1e−6 σ = 3, λ = 1e−7 σ = 8, λ = 1e−8

Table 1: Hyper-parameters chosen with cross validation for the different kernels.

E.3 C-Exp: Convolutional Exponential Kernels

Let x = (x1, ..., xd)
T and z = (z1, ..., zd)

T denote two vectorized images. Let P denote a window
function (we used 3× 3 windows). Our hierarchical exponential kernels are defined by Θ̄(x, z) as
follows:

Θ
[0]
ij (x, z) = xizj

s
[h]
ij (x, z) =

∑
m∈P

Θ[h](xi+m, zj+m) + β2

Θ
[h+1]
ij (x, z) = K(s

[h]
ij (x, z), s

[h]
ii (x,x), s

[h]
jj (z, z))

Θ̄(x, z) =
∑
i

Θ
[L]
ii (x, z)

where β ≥ 0 denotes the bias and the last step is analogous to a fully connected layer in networks,
and we set

K(sij , sii, sjj) =
√
siisjj k

(
sij√
siisjj

)
where k can be any kernel defined on the sphere. In the experiments we applied this scheme to the
three exponential kernels, Laplace, Gaussian and γ-exponential.

Technical details We used the following four kernels:

CNTK [1] L = 6, β = 3.

C-Exp Laplace. L = 3, β = 3, k(xT z) = a+ be−c
√

2−2xT z with a = −11.491, b = 12.606, c =
0.048.

C-Exp γ−exponential. L = 8, β = 3, k(xT z) = a + be−c(2−2xT z)γ/2 with a = −0.276, b =
1.236, c = 0.424, γ = 1.888.

C-Exp Gaussian. L = 12, β = 3, k(xT z) = a + be−c(2−2xT z) with a = −0.22, b = 1.166, c =
0.435.

We set β in these experiments with cross validation in {1, ..., 10}. For each kernel k above, the
parameters a, b, c and γ were chosen using non-linear least squares optimization with the objective∑
u∈U (k(u)− kFCβ(2)(u))2, where kFCβ(2) is the NTK for a two-layer network defined in (5) with

bias β = 1, and the set U included (inner products between) pairs of normalized 3× 3× 3 patches
drawn uniformly from the CIFAR images. The number of layers L is chosen by cross validation.

For the training phase we used 1-hot vectors from which we subtracted 0.1, as in [12]. For the classi-
fication phase, as in [10], we normalized the kernel matrices such that all the diagonal elements are
ones. To avoid ill conditioned kernel matrices we applied ridge regression with a regularization factor
of λ = 5 · 10−5. Finally, to reduce overall running times, we parallelized the kernel computations on
NVIDIA Tesla V100 GPUs.
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