On the Similarity between the Laplace and Neural Tangent Kernels

- Supplementary Material -

Amnon Geifman¹ Abhay Yadav² Yoni Kasten¹

Meiray Galun¹ David Jacobs² Ronen Basri¹

A Formulas for NTK

We begin by providing the recursive definition of NTK for fully connected (FC) networks with bias initialized at zero. The formulation includes a parameter β that when set to zero the recursive formula coincides with the formula given in [1] for bias-free networks.

The network model. We consider a L-hidden-layer fully-connected neural network (in total L+1 layers) with bias. Let $\mathbf{x} \in \mathbb{R}^d$ (and denote $d_0 = d$), we assume each layer $l \in [L]$ of hidden units includes d_l units. The network model is expressed as

$$\mathbf{g}^{(0)}(\mathbf{x}) = \mathbf{x}$$

$$\mathbf{f}^{(l)}(\mathbf{x}) = W^{(l)}\mathbf{g}^{(l-1)}(\mathbf{x}) + \beta \mathbf{b}^{(l)} \in \mathbb{R}^{d_l}, \quad l = 1, \dots L$$

$$\mathbf{g}^{(l)}(\mathbf{x}) = \sqrt{\frac{c_{\sigma}}{d_l}} \sigma\left(\mathbf{f}^{(l)}(\mathbf{x})\right) \in \mathbb{R}^{d_l}, \quad l = 1, \dots L$$

$$f(\theta, \mathbf{x}) = f^{(L+1)}(\mathbf{x}) = W^{(L+1)} \cdot \mathbf{g}^{(L)}(\mathbf{x}) + \beta b^{(L+1)}$$

The network parameters θ include $W^{(L+1)}, W^{(L)}, ..., W^{(1)}$, where $W^{(l)} \in \mathbb{R}^{d_l \times d_{l-1}}, \mathbf{b}^{(l)} \in \mathbb{R}^{d_l \times 1}, W^{(L+1)} \in \mathbb{R}^{d_l \times d_L}, b^{(L+1)} \in \mathbb{R}, \sigma$ is the activation function and $c_{\sigma} = 1/\left(\mathbb{E}_{z \sim \mathcal{N}(0,1)}[\sigma(z)^2]\right)$. The network parameters are initialized with $\mathcal{N}(0,I)$, except for the biases $\{\mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(L)}, b^{(L+1)}\}$, which are initialized with zero.

The recursive formula for NTK. The recursive formula in [9] assumes the bias is initialized with a normal distribution. Here we assume the bias is initialized at zero, yielding a sightly different formulation, which can be readily derived from [9]'s formulation.

Given $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$, we denote the NTK for this fully connected network with bias by $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L}+1)}(\mathbf{x},\mathbf{z}) := \Theta^{(L)}(\mathbf{x},\mathbf{z})$. The kernel $\Theta^{(L)}(\mathbf{x},\mathbf{z})$ is defined using the following recursive definition. Let $h \in [L]$ then

$$\Theta^{(h)}(\mathbf{x}, \mathbf{z}) = \Theta^{(h-1)}(\mathbf{x}, \mathbf{z})\dot{\Sigma}^{(h)}(\mathbf{x}, \mathbf{z}) + \Sigma^{(h)}(\mathbf{x}, \mathbf{z}) + \beta^2, \tag{1}$$

where

$$\Sigma^{(0)}(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z}$$
$$\Theta^{(0)}(\mathbf{x}, \mathbf{z}) = \Sigma^{(0)}(\mathbf{x}, \mathbf{z}) + \beta^2.$$

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

¹Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel ²Department of Computer Science, University of Maryland, College Park, MD

and we define

$$\begin{split} \Sigma^{(h)}(\mathbf{x}, \mathbf{z}) &= c_{\sigma} \mathbb{E}_{(u, v) \backsim N(0, \Lambda^{(h-1)})} \left(\sigma(u) \sigma(v) \right) \\ \dot{\Sigma}^{(h)}(\mathbf{x}, \mathbf{z}) &= c_{\sigma} \mathbb{E}_{(u, v) \backsim N(0, \Lambda^{(h-1)})} \left(\dot{\sigma}(u) \dot{\sigma}(v) \right) \\ \Lambda^{(h-1)} &= \begin{pmatrix} \Sigma^{(h-1)}(\mathbf{x}, \mathbf{x}) & \Sigma^{(h-1)}(\mathbf{x}, \mathbf{z}) \\ \Sigma^{(h-1)}(\mathbf{z}, \mathbf{x}) & \Sigma^{(h-1)}(\mathbf{z}, \mathbf{z}) \end{pmatrix}. \end{split}$$

Now, let

$$\lambda^{(h-1)}(\mathbf{x}, \mathbf{z}) = \frac{\Sigma^{(h-1)}(\mathbf{x}, \mathbf{z})}{\sqrt{\Sigma^{(h-1)}(\mathbf{x}, \mathbf{x})\Sigma^{(h-1)}(\mathbf{z}, \mathbf{z})}}.$$
 (2)

By definition $|\lambda^{(h-1)}| \leq 1$, and for ReLU activation we have $c_{\sigma} = 2$ and

$$\Sigma^{(h)}(\mathbf{x}, \mathbf{z}) = c_{\sigma} \frac{\lambda^{(h-1)}(\pi - \arccos(\lambda^{(h-1)})) + \sqrt{1 - (\lambda^{(h-1)})^2}}{2\pi} \sqrt{\Sigma^{(h-1)}(\mathbf{x}, \mathbf{x}) \Sigma^{(h-1)}(\mathbf{z}, \mathbf{z})}$$
(3)

$$\dot{\Sigma}^{(h)}(\mathbf{x}, \mathbf{z}) = c_{\sigma} \frac{\pi - \arccos(\lambda^{(h-1)})}{2\pi}.$$
(4)

The parameter β allows us to consider a fully-connected network either with $(\beta > 0)$ or without bias $(\beta = 0)$. When $\beta = 0$, the recursive formulation is the same as existing derivations, e.g., [9]. Finally, the normalized NTK of a FC network with L+1 layers, without bias, is given by $\frac{1}{L+1}k^{\mathrm{FC}_0(L+1)}(\mathbf{x}_i,\mathbf{x}_j)$.

NTK for a two-layer FC network on \mathbb{S}^{d-1} . Using the recursive formulation above, for points on the hypersphere \mathbb{S}^{d-1} NTK for a two-layer FC network with bias initialized at 0, is as follows. Let $u = \mathbf{x}^T \mathbf{z}$, with $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$. Then,

$$\begin{aligned} \boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z}) &= \Theta^{(1)}(\mathbf{x}, \mathbf{z}) \\ &= \Theta^{(0)}(\mathbf{x}, \mathbf{z}) \dot{\Sigma}^{(1)}(\mathbf{x}, \mathbf{z}) + \Sigma^{(1)}(\mathbf{x}, \mathbf{z}) + \beta^2 \\ &= (u + \beta^2) \frac{\pi - \arccos(u)}{\pi} + \frac{u(\pi - \arccos(u)) + \sqrt{1 - u^2}}{\pi} + \beta^2. \end{aligned}$$

Rearranging, we get

$$\boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z}) = \boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(u) = \frac{1}{\pi} \left((2u + \beta^2)(\pi - \arccos(u)) + \sqrt{1 - u^2} \right) + \beta^2.$$
 (5)

B NTK on \mathbb{S}^{d-1}

This section provides a characterization of NTK on the hypersphere \mathbb{S}^{d-1} under the uniform measure. The recursive formulas of the kernels are given in Appendix A.

Lemma 1. Let $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z})$, $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$, denote the NTK kernels for FC networks with $L \geq 2$ layers, possibly with bias initialized with zero. This kernel is zonal, i.e., $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z}) = \mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}^T\mathbf{z})$.

Proof. See Appendix D.

To prove the next theorem, we recall several results on the the arithmetics of RKHS, following [8, 15].

B.1 RKHS for sums and products of kernels.

Let $k_1, k_2: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be kernels with RKHS \mathcal{H}_{k_1} and \mathcal{H}_{k_2} , respectively. Then,

1. Aronszajn's kernel sum theorem. The RKHS for $k=k_1+k_2$ is given by $\mathcal{H}_{k_1+k_2}=\{f_1+f_2\mid f_1\in\mathcal{H}_{k_1},\ f_2\in\mathcal{H}_{k_2}\}$

2

- 2. This yields the **kernel sum inclusion.** $\mathcal{H}_{k_1}, \mathcal{H}_{k_2} \subseteq \mathcal{H}_{k_1+k_2}$
- 3. Norm addition inequality. $||f_1 + f_2||_{\mathcal{H}_{k_1 + k_2}} \le ||f_1||_{\mathcal{H}_{k_1}} + ||f_2||_{\mathcal{H}_{k_2}}$
- 4. Norm product inequality. $||f_1 \cdot f_2||_{\mathcal{H}_{k_1 \cdot k_2}} \le ||f_1||_{\mathcal{H}_{k_1}} \cdot ||f_2||_{\mathcal{H}_{k_2}}$
- 5. Aronszajn's inclusion theorem. $\mathcal{H}_{k_1} \subseteq \mathcal{H}_{k_2}$ if and only if $\exists s > 0$, such that $k_1 \ll s^2 k_2$, where the latter notation means that $s^2 k_2 k_1$ is a positive definite kernel over \mathcal{X} .

B.2 The decay rate of the eigenvalues of NTK

Theorem 1. Let $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$. With bias initialized at zero and $\beta > 0$:

1. $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ can be decomposed according to

$$\boldsymbol{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z}) = \sum_{k=0}^{\infty} \lambda_k \sum_{j=1}^{N(d,k)} Y_{k,j}(\mathbf{x}) Y_{k,j}(\mathbf{z}), \tag{6}$$

with $\lambda_k > 0$ for all $k \geq 0$ and into $Y_{k,j}$ are the spherical harmonics of \mathbb{S}^{d-1} , and

- 2. $\exists k_0$ and constants $C_1, C_2, C_3 > 0$ that depend on the dimension d such that $\forall k > k_0$
 - (a) $C_1 k^{-d} \le \lambda_k \le C_2 k^{-d}$ if L = 2, and
 - (b) $C_3 k^{-d} \le \lambda_k \text{ if } L \ge 3.$

We split the theorem into the next two lemmas. The first lemma handles NTK of two-layer FC networks with bias, and the second lemma handles NTK for deep networks.

Lemma 2. Let $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$ and $\mathbf{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}^T\mathbf{z})$ as defined in (5) with $\beta > 0$. Then, $\mathbf{k}^{\mathrm{FC}_{\beta}(2)}$ decomposes according to (6) where $\lambda_k > 0$ for all $k \geq 0$ and $\exists k_0$ such that $\forall k \geq k_0$

$$C_1 k^{-d} \le \lambda_k \le C_2 k^{-d},$$

where $C_1, C_2 > 0$ are constants that depend on the dimension d.

Proof. To prove the lemma we leverage the results of [3, 5]. First, under the assumption of the uniform measure on \mathbb{S}^{d-1} , we can apply Mercer decomposition to $\mathbf{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z})$, where the eigenfunctions are the spherical harmonics. This is due to the observation that $\mathbf{k}^{\mathrm{FC}_{\beta}(2)}(\mathbf{x}, \mathbf{z})$ is positive and zonal in \mathbb{S}^{d-1} . It is zonal by Lemma 1 and positive, since $\mathbf{k}^{\mathrm{FC}_{\beta}(2)}$ can be decomposed as

$$\begin{aligned} \boldsymbol{k}^{\mathrm{FC}_{\beta}(2)}(u) &= \frac{1}{\pi} \left((2u + \beta^2)(\pi - \arccos(u)) + \sqrt{1 - u^2} \right) + \beta^2 \\ &= \frac{1}{\pi} \left(2u(\pi - \arccos(u)) + \sqrt{1 - u^2} \right) + \frac{1}{\pi} \beta^2 \left(\pi - \arccos(u) \right) + \beta^2 \\ &:= \kappa(\mathbf{x}^T \mathbf{z}) + \beta^2 \kappa_0(\mathbf{x}^T \mathbf{z}) + \beta^2, \end{aligned}$$

where $\kappa(\mathbf{x}^T\mathbf{z})$ is the NTK for a bias-free, two-layer network introduced in [5] and $\kappa_0(\mathbf{x}^T\mathbf{z})$ is known to be the zero-order arc-cosine kernel [6]. By kernel arithmetic, this yields another kernel and this means that $\mathbf{k}^{FC_{\beta}(2)}$ is a positive kernel.

Furthermore, according to Proposition 5 in [5]

$$\kappa(\mathbf{x}^T \mathbf{z}) = \sum_{k=0}^{\infty} \mu_k \sum_{j=1}^{N(d,k)} Y_{k,j}(\mathbf{x}) Y_{k,j}(\mathbf{z}),$$

where $Y_{k,j}, j=1,\ldots,N(d,k)$ are spherical harmonics of degree k, and the eigenvalues μ_k satisfy $\mu_0,\mu_1>0,$ $\mu_k=0$ if k=2j+1 with $j\geq 1$ and otherwise, $\mu_k>0$ and $\mu_k\sim C(d)k^{-d}$ as $k\to\infty$, with C(d) a constant depending only on d. Next, following Lemma 17 in [5] the eigenvalues of $\kappa_0(\mathbf{x}^T\mathbf{z})$, denoted η_k satisfy $\eta_0,\eta_1>0,$ $\eta_k>0$ if k=2j+1, with $j\geq 1$ and behave asymptotically as $C_0(d)k^{-d}$. Consequently, $\mathbf{k}^{\mathrm{FC}_\beta(2)}=\kappa+\beta^2\kappa_0+\beta^2$, and since both κ and κ_0 have the spherical

harmonics as their eigenfunctions, their eigenvalues are given by $\lambda_k = \mu_k + \beta^2 \eta_k > 0$ for k > 0 and $\lambda_0 = \mu_0 + \beta^2 \eta_0 + \beta^2 > 0$, and asymptotically $\lambda_k \sim \tilde{C}(d)k^{-d}$, where $\tilde{C}(d) = C(d) + \beta^2 C_0(d)$.

To conclude, this implies that $\exists k_0, C_1(d) > 0$ and $C_2(d) > 0$, such that for all $k \ge k_0$ it holds that

$$C_1 k^{-d} < \lambda_k < C_2 k^{-d}$$

and also, unless $\beta = 0$, for all k > 0

$$\lambda_k > 0$$
.

Next, we prove the second part of Theorem 1 that relates to deep FC networks with bias, $k^{FC_{\beta}(L)}$, i.e. we prove the following lemma.

Lemma 3. Let $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$ and $\mathbf{k}^{FC_{\beta}(L)}(\mathbf{x}^T \mathbf{z})$ as defined in Appendix A. Then

- 1. $\mathbf{k}^{FC_{\beta}(L)}$ decomposes according to (6) with $\lambda_k > 0$ for all $k \geq 0$
- 2. $\exists k_0 \text{ such that } \forall k > k_0 \text{ it holds that } C_3 k^{-d} \leq \lambda_k \text{ in which } C_3 > 0 \text{ depends on the dimension } d$
- 3. $\mathcal{H}^{FC_{\beta}(L-1)} \subseteq \mathcal{H}^{FC_{\beta}(L)}$

Proof. Following Lemma 1, it holds that $k^{FC_{\beta}(L)}$ is zonal, and therefore can be decomposed according to (6). In order to prove the lemma we look at the recursive formulation of the NTK kernel, i.e.,

$$\boldsymbol{k}^{\mathrm{FC}_{\beta}(l+1)} = \boldsymbol{k}^{\mathrm{FC}_{\beta}(l)}\dot{\Sigma}^{(l)} + \Sigma^{(l)} + \beta^{2}.$$
 (7)

Now, following Lemma 17 in [5] all of the eigenvalues of $\dot{\Sigma}^{(l)}$ are positive, including $\lambda_0 > 0$. This implies that the constant function $g(\mathbf{x}) \equiv 1 \in \mathcal{H}_{\dot{\Sigma}^{(l)}}$.

Now, we use the norm multiplicity inequality in Sec. B.1 and show that $\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)}}\subseteq\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)},\dot{\Sigma}^{(l)}}$. Let $f\in\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)}}$, i.e., $\|f\|_{\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)}}}<\infty$. We showed that $1\in\mathcal{H}_{\dot{\Sigma}^{(l)}}$. Therefore, $\|f\cdot 1\|_{\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)},\dot{\Sigma}^{(l)}}}\leq \|f\|_{\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)}}}\|1\|_{\mathcal{H}_{\dot{\Sigma}^{(l)}}}<\infty$, implying that $f\in\mathcal{H}_{k^{\mathrm{FC}_{\beta}(1)},\dot{\Sigma}^{(l)}}$.

Finally, according to the kernel sum inclusion in Sec. B.1, relying on the recursive formulation (7) we have $\mathcal{H}_{\boldsymbol{\nu}^{\mathrm{FC}_{\beta}(1)}} \subseteq \mathcal{H}_{\boldsymbol{\nu}^{\mathrm{FC}_{\beta}(1)}, \dot{\Sigma}(1)} \subseteq \mathcal{H}_{\boldsymbol{\nu}^{\mathrm{FC}_{\beta}(1+1)}}$. Therefore,

$$\mathcal{H}^{\mathrm{FC}_{\beta}(2)} \subseteq \ldots \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(L-1)} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(L)}.$$
 (8)

This completes the proof, by using Aronszan's inclusion theorem as follows. Since $H^{k^{FC(2)}} \subseteq H^{k^{FC(L)}}$, then by Aronszajn's inclusion theorem $\exists s>0$ such that $k^{FC_{\beta}(2)} << s^2 k^{FC_{\beta}(L)}$. Since the kernels are zonal on the sphere (with uniform distribution of the data) their corresponding RKHS share the same eigenfunctions, namely the spherical harmonics.

Therefore, for all $k \geq 0$ it holds

$$s^2 \lambda_k^{\mathbf{k}^{\mathrm{FC}_\beta(\mathrm{L})}} \ge \lambda_k^{\mathbf{k}^{\mathrm{FC}_\beta(2)}} > 0$$

and for $k \to \infty$ it holds that

$$s^2 \lambda_k^{\boldsymbol{k}^{\mathrm{FC}_\beta(\mathrm{L})}} \geq \lambda_k^{\boldsymbol{k}^{\mathrm{FC}_\beta(2)}} \geq \frac{C_1}{k^d}$$

completing the proof.

C Laplace Kernel in \mathbb{S}^{d-1}

The Laplace kernel $k(\mathbf{x}, \mathbf{y}) = e^{-\bar{c}\|\mathbf{x} - \mathbf{y}\|}$ restricted to the sphere \mathbb{S}^{d-1} is defined as

$$K(\mathbf{x}, \mathbf{y}) = \mathbf{k}(\mathbf{x}^T \mathbf{y}) = e^{-c\sqrt{1 - x^T y}}$$
(9)

where c > 0 is a tuning parameter. We next prove an asymptotic bound on its eigenvalues.

Theorem 2. Let $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{d-1}$ and $\mathbf{k}(\mathbf{x}^T\mathbf{y}) = e^{-c\sqrt{1-\mathbf{x}^T\mathbf{y}}}$ be the Laplace kernel, restricted to \mathbb{S}^{d-1} . Then \mathbf{k} can be decomposed as in (6) with the eigenvalues λ_k satisfying $\lambda_k > 0$ for all $k \geq 0$ and $\exists k_0$ such that $\forall k > k_0$ it holds that:

$$B_1 k^{-d} \le \lambda_k \le B_2 k^{-d}$$

where $B_1, B_2 > 0$ are constants that depend on the dimension d and the parameter c.

Our proof relies on several supporting lemmas.

Lemma 4. ([17] Thm 1.14 page 6) For all $\alpha > 0$ it holds that

$$\int_{\mathbb{R}^d} e^{-2\pi \|\mathbf{x}\| \alpha} e^{-2\pi i \mathbf{t} \cdot \mathbf{x}} d\mathbf{x} = c_d \frac{\alpha}{(\alpha^2 + \|\mathbf{t}\|^2)^{(d+1)/2}},$$
(10)

where $c_d = \Gamma(\frac{d+1}{2})/(\pi^{(d+1)/2})$

Lemma 5. Let $f(\mathbf{x}) = e^{-c\|\mathbf{x}\|}$ with $\mathbf{x} \in \mathbb{R}^d$. Then, its Fourier transform $\Phi(\mathbf{w})$ with $\mathbf{w} \in \mathbb{R}^d$ is $\Phi(\mathbf{w}) = \Phi(\|\mathbf{w}\|) = C(1 + \|\mathbf{w}\|^2/c^2)^{-(d+1)/2}$ for some constant C > 0.

Proof. To calculate the Fourier transform we need to calculate the following integral

$$\Phi(\mathbf{w}) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-c\|\mathbf{x}\|} e^{-i\mathbf{x}\cdot\mathbf{w}} d\mathbf{x}.$$

According to the Lemma 4, plugging $\alpha=\frac{c}{2\pi}$ and $\mathbf{t}=\frac{\mathbf{w}}{2\pi}$ into (10) yields

$$\Phi(\mathbf{w}) = c_d \frac{c}{\left(c^2 + \|\mathbf{w}\|^2\right)^{(d+1)/2}} = \frac{c_d}{c^{(d+1)}} \frac{1}{\left(1 + \frac{\|\mathbf{w}\|^2}{c^2}\right)^{(d+1)/2}} = C\left(1 + \frac{\|\mathbf{w}\|^2}{c^2}\right)^{-(d+1)/2}$$

with $C = \frac{c_d}{c^{(d+1)}} > 0$.

Lemma 6. ([11] Thm. 4.1) Let $f(\mathbf{x})$ be defined as $f(\|\mathbf{x}\|)$ for all $\mathbf{x} \in \mathbb{R}^d$, and let $\Phi(\mathbf{w}) = \Phi(\|\mathbf{w}\|)$ denote its Fourier Transform in \mathbb{R}^d . Then, its corresponding kernel on \mathbb{S}^{d-1} is defined as the restriction $\mathbf{k}(\mathbf{x}^T\mathbf{y}) = f(\|\mathbf{x} - \mathbf{y}\|)$ with $\mathbf{x}, \mathbf{y} \in \mathbb{S}^{d-1}$. By Mercer's Theorem the spherical harmonic expansion of $\mathbf{k}(\mathbf{x}^T\mathbf{y})$ is of the form

$$\boldsymbol{k}(\mathbf{x}^T\mathbf{y}) = \sum_{k=0}^{\infty} \lambda_k \sum_{j=1}^{N(d,k)} Y_{k,j}(\mathbf{x}) Y_{k,j}(\mathbf{y}).$$

Then, the eigenvalues in the spherical harmonic expansion λ_k are related to the Fourier coefficients of f, $\Phi(t)$, as follows

$$\lambda_k = \int_0^\infty t\Phi(t) J_{k+\frac{d-2}{2}}^2(t) dt, \tag{11}$$

where $J_v(t)$ is the usual Bessel function of the first kind of order v.

Having, these supporting Lemmas, we can now prove **Theorem 2**.

Proof. First, $k(\cdot, \cdot)$ is a positive zonal kernel and hence can be written as

$$\boldsymbol{k}(\mathbf{x}^T\mathbf{y}) = \sum_{k=0}^{\infty} \lambda_k \sum_{j=1}^{N(d,k)} Y_{k,j}(\mathbf{x}) Y_{k,j}(\mathbf{y}).$$

Next, to derive the bounds we plug the Fourier coefficients, $\Phi(\omega)$, computed in Lemma 5, into the expression for the harmonic coefficients, λ_k (11), obtaining

$$\lambda_k = C \int_0^\infty \frac{t}{\left(1 + \frac{t^2}{c^2}\right)^{\frac{d+1}{2}}} J_{k+\frac{d-2}{2}}^2(t) dt.$$

Applying a change of variables t = cx we get

$$\lambda_k = c^2 C \int_0^\infty \frac{x}{(1+x^2)^{\frac{d+1}{2}}} J_{k+\frac{d-2}{2}}^2(cx) dx.$$
 (12)

We next bound this integral from both above and below. To get an upper bound we observe that for $x \in [0, \infty)$ $x^2 < 1 + x^2$, implying that $x(1 + x^2)^{-(d+1)/2} < x^{-d}$, and consequently

$$\lambda_k < c^2 C \int_0^\infty x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx := c^2 C A(k, d, c).$$

The above integral A(k,d,c) was computed in [18] (Sec. 13.41 page 402 with $a:=c, \lambda:=d$, and $\mu=\nu:=k+(d-2)/2$) which gives

$$A(k,d,c) = \int_0^\infty x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx = \frac{\left(\frac{c}{2}\right)^{d-1} \Gamma(d) \Gamma(k-\frac{1}{2})}{2\Gamma^2(\frac{d+1}{2})\Gamma(k+d-\frac{1}{2})}.$$
 (13)

Using Stirling's formula $\Gamma(x)=\sqrt{2\pi}x^{x-1/2}e^{-x}(1+O(x^{-1}))$ as $x\to\infty$. Consequently, for sufficiently large k>>d

$$\lambda_{k} < c^{2}CA(k, d, c) = c^{2}C \frac{\left(\frac{c}{2}\right)^{d-1}\Gamma(d)\Gamma(k - \frac{1}{2})}{2\Gamma^{2}\left(\frac{d+1}{2}\right)\Gamma(k + d - \frac{1}{2})}$$

$$\sim c^{2}C \frac{\left(\frac{c}{2}\right)^{d-1}\Gamma(d)}{2\Gamma^{2}\left(\frac{d+1}{2}\right)} \cdot \frac{(k - \frac{1}{2})^{k-1}e^{-k + \frac{1}{2}}}{(k + d - \frac{1}{2})^{k + d - 1}e^{-k - d + \frac{1}{2}}} (1 + O(k^{-1}))$$

$$= B_{2}k^{-d}, \tag{14}$$

where B_2 depends on c, C and the dimension d.

We use again the relation (12) to derive a lower bound for λ_k . First, note that since $t, 1 + t^2, J_v^2(t)$ are all non-negative for $t \in [0, \infty)$ and therefore

$$\begin{split} \lambda_k &\geq c^2 C \int_1^\infty \frac{x}{(1+x^2)^{\frac{d+1}{2}}} J_{k+\frac{d-2}{2}}^2(cx) dx \geq c^2 C \int_1^\infty \frac{1}{2^{\frac{d+1}{2}} x^d} J_{k+\frac{d-2}{2}}^2(cx) dx \\ &= \frac{Cc^2}{2^{\frac{d+1}{2}}} \left(\int_0^\infty x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx - \int_0^1 x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx \right) \\ &= \frac{Cc^2}{2^{\frac{d+1}{2}}} \int_0^\infty x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx \left(1 - \frac{\int_0^1 x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx}{\int_0^\infty x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx} \right) \\ &= \frac{Cc^2}{2^{\frac{d+1}{2}}} A(k,d,c) \left(1 - \frac{B(k,d,c)}{A(k,d,c)} \right), \end{split}$$

where $B(k,d,c):=\int_0^1 x^{-d}J_{k+\frac{d-2}{2}}^2(cx)dx$. The first integral, A(k,d,c), was shown in (14) to converge asymptotically to B_2k^{-d} . To bound the second integral, B(k,d,c), we use an inequality from [18] (Section 3.31, page 49), which states that for $v,t\in\mathbb{R},v>-\frac{1}{2}$,

$$|J_v(t)| \le \frac{2^{-v}t^v}{\Gamma(v+1)}$$

This gives an upper bound for B(k, d, c)

$$B(k,d,c) = \int_0^1 x^{-d} J_{k+\frac{d-2}{2}}^2(cx) dx \le \int_0^1 x^{-d} \frac{2^{-2(k+\frac{d-2}{2})}(cx)^{2(k+\frac{d-2}{2})}}{\Gamma^2(k+\frac{d}{2})} dx \le \frac{\left(\frac{c}{2}\right)^{2(k+\frac{d-2}{2})}}{\Gamma^2(k+\frac{d}{2})}.$$

Applying Stirling's formula we obtain $B(k,d,c) \leq O\left(\frac{(\frac{ce}{2})^{2(k+\frac{d}{2})}(k+d)}{(k+\frac{d}{2})^{2(k+\frac{d}{2})}}\right)$, which implies that as k grows, $\frac{B(k,d,c)}{A(k,d,c)} \to 0$. Therefore, asymptotically for large k

$$\lambda_k \ge \frac{Cc^2}{2^{\frac{d+1}{2}}} A(k,d,c) \left(1 - \frac{B(k,d,c)}{A(k,d,c)} \right) \ge \frac{Cc^2}{2^{\frac{d+1}{2}}} A(k,d,c),$$

from which we conclude that $\lambda_k > B_1 k^{-d}$, where the constant B_1 depends on c, C, and d. We have therefore shown that there exists k_0 such that $\forall k > k_0$

$$B_1 k^{-d} \le \lambda_k \le B_2 k^{-d}.$$

Finally, to show that $\lambda_k > 0$ for all $k \geq 0$ we use again (11) in Lemma 6 which states that

$$\lambda_k = \int_0^\infty t\Phi(t) J_{k+\frac{d-2}{2}}^2(t) dt.$$

Note that in the interval $(0,\infty)$ it holds that t>0 and $\Phi(t)>0$ due to Lemma 5. Therefore $\lambda_k=0$ implies that $J_{k+\frac{d-2}{2}}^2(t)$ is identically 0 on $(0,\infty)$, contradicting the properties of the Bessel function of the first kind. Hence, $\lambda_k>0$ for all k.

C.1 Proof of main theorem

Theorem 3. Let $\mathcal{H}^{\mathrm{Lap}}$ denote the RKHS for the Laplace kernel restricted to \mathbb{S}^{d-1} , and let $\mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L})}$ denote the NTK corresponding to a FC network with L layers with bias, restricted to \mathbb{S}^{d-1} , then $\mathcal{H}^{\mathrm{Lap}} = \mathcal{H}^{\mathrm{FC}_{\beta}(2)} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(\mathrm{L})}$.

Proof. Let λ_k^{Lap} , $\lambda_k^{\text{FC}_{\beta}(2)}$, and $\lambda_k^{\text{FC}_{\beta}(L)}$ denote the eigenvalues of the three kernel, $\boldsymbol{k}^{\text{Lap}}$, $\boldsymbol{k}^{\text{FC}_{\beta}(2)}$, and $\boldsymbol{k}^{\text{FC}_{\beta}(L)}$ in their Mercer's decomposition, i.e.,

$$\mathbf{k}(\mathbf{x}^T\mathbf{z}) = \sum_{k=0}^{\infty} \lambda_k \sum_{j=1}^{N(d,k)} Y_{k,j}(\mathbf{x}) Y_{k,j}(\mathbf{z}).$$

Denote by k_0 the smallest k for which Theorems 1 and 2 hold simultaneously. We first show that $\mathcal{H}^{\mathrm{Lap}} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(2)}$. Let $f(\mathbf{x}) \in \mathcal{H}^{\mathrm{Lap}}$, and let $f(\mathbf{x}) = \sum_{k=0}^{\infty} \sum_{j=0}^{N(d,k)} \alpha_{k,j} Y_{k,j}(\mathbf{x})$ denote its spherical harmonic decomposition. Then $\|f\|_{\mathcal{H}^{\mathrm{Lap}}} < \infty$ implies, due to Theorem 2, that

$$\sum_{k=k_0}^{\infty} \sum_{j=0}^{N(d,k)} \frac{1}{B_2} k^d \alpha_{k,j}^2 \le \sum_{k=k_0}^{\infty} \sum_{j=0}^{N(d,k)} \frac{\alpha_{k,j}^2}{\lambda_k^{\text{Lap}}} < \infty.$$

Combining this with Theorem 1, and recalling that $\lambda_k^{\mathrm{FC}_{\beta}(2)}>0$ for all $k\geq 0$), we have

$$\sum_{k=k_0}^{\infty} \sum_{j=0}^{N(d,k)} \frac{\alpha_{k,j}^2}{\lambda_k^{\mathrm{FC}_{\beta}(2)}} \leq \sum_{k=k_0}^{\infty} \sum_{j=0}^{N(d,k)} \frac{1}{C_1} k^d \alpha_{k,j}^2 = \frac{B_2}{C_1} \sum_{k=k_0}^{\infty} \sum_{j=0}^{N(d,k)} \frac{1}{B_2} k^d \alpha_{k,j}^2 < \infty,$$

implying that $\|f\|_{\mathcal{H}^{\mathrm{FC}_{\beta}(2)}}^2 < \infty$, and so $\mathcal{H}^{\mathrm{Lap}} \subseteq \mathcal{H}^{\mathrm{FC}_{\beta}(2)}$. Similar arguments can be used to show that $\mathcal{H}^{\mathrm{FC}_{\beta}(2)} \subseteq \mathcal{H}^{\mathrm{Lap}}$, proving that $\mathcal{H}^{\mathrm{FC}_{\beta}(2)} = \mathcal{H}^{\mathrm{Lap}}$. Finally, following the inclusion relation (8) the theorem is proved.

D NTK in \mathbb{R}^d

In this section we denote $r_x = ||\mathbf{x}||$, $r_z = ||\mathbf{z}||$ and by $\hat{\mathbf{x}} = \mathbf{x}/r_x$, $\hat{\mathbf{z}} = \mathbf{z}/r_z$. We first prove Theorem 4 and as a consequence Lemma 7 is proved.

Theorem 4. Let $\mathbf{k}^{\mathrm{FC_0(L)}}(\mathbf{x}, \mathbf{z}), \mathbf{k}^{\mathrm{FC_\beta(L)}}(\mathbf{x}, \mathbf{z}), \mathbf{x}, \mathbf{z} \in \mathbb{R}^d$, denote the NTK kernel with L layers without bias and with bias initialized at zero, respectively. It holds that (1) Bias-free $\mathbf{k}^{\mathrm{FC_0(L)}}$ is homogeneous of order 1. (2) Let $\mathbf{k}^{\mathrm{Bias(L)}} = \mathbf{k}^{\mathrm{FC_\beta(L)}} - \mathbf{k}^{\mathrm{FC_0(L)}}$. Then, $\mathbf{k}^{\mathrm{Bias(L)}}$ is homogeneous of order 0.

Lemma 7. Let $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z})$, $\mathbf{x}, \mathbf{z} \in \mathbb{S}^{d-1}$, denote the NTK kernels for FC networks with $L \geq 2$ layers, possibly with bias initialized with zero. This kernel is zonal, i.e., $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}, \mathbf{z}) = \mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})}(\mathbf{x}^T\mathbf{z})$.

To that end, we first prove the following supporting Lemma.

Lemma 8. For $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$ it holds that

$$\Theta^{(L)}(\mathbf{x}, \mathbf{z}) = r_x r_z \Theta^{(L)}(\hat{\mathbf{x}}, \hat{\mathbf{z}}) = r_x r_z \Theta^{(L)}(\hat{\mathbf{x}}^T \hat{\mathbf{z}}),$$

where $\Theta^{(L)} = \mathbf{k}^{FC_0(L+1)}$, as defined in Appendix A.

Proof. We prove this by induction over the recursive definition of $k^{FC_0(L+1)} = \Theta^{(L)}(\mathbf{x}, \mathbf{z})$. Let $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$, then by definition

$$\Theta^{(0)}(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} = r_x r_z \Theta^{(0)}(\hat{\mathbf{x}}, \hat{\mathbf{z}}) = r_x r_z \Theta^{(0)}(\hat{\mathbf{x}}^T \hat{\mathbf{z}})$$

and

$$\Sigma^{(0)}(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} = r_x r_z \Sigma^{(0)} \left(\hat{\mathbf{x}}, \hat{\mathbf{z}} \right) = r_x r_z \Sigma^{(0)} \left(\hat{\mathbf{x}}^T \mathbf{z} \right)$$

Assuming the induction hypothesis holds for l, i.e.,

$$\Theta^{(l)}(\mathbf{x}, \mathbf{z}) = r_x r_z \Theta^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}}) = r_x r_z \Theta^{(l)}(\hat{\mathbf{x}}^T \mathbf{z})$$

and

$$\Sigma^{(l)}(\mathbf{x}, \mathbf{z}) = r_x r_z \Sigma^{(l)} \left(\hat{\mathbf{x}}, \hat{\mathbf{z}} \right) = r_x r_z \Sigma^{(l)} \left(\hat{\mathbf{x}}^T \hat{\mathbf{z}} \right)$$

we prove that those equalities are also true for l+1.

By the definition of $\lambda^{(l)}$ (2) and the induction hypothesis for $\Sigma^{(l)}$ we have that

$$\lambda^{(l)}(\mathbf{x}, \mathbf{z}) = \frac{\Sigma^{(l)}(\mathbf{x}, \mathbf{z})}{\sqrt{\Sigma^{(l)}(\mathbf{x}, \mathbf{x})\Sigma^{(l)}(\mathbf{z}, \mathbf{z})}} = \frac{\Sigma^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}})}{\sqrt{\Sigma^{(l)}(\hat{\mathbf{x}}_i, \hat{\mathbf{x}})\Sigma^{(l)}(\hat{\mathbf{z}}, \hat{\mathbf{z}})}} = \lambda^{(l)}(\hat{\mathbf{x}}, \hat{\mathbf{z}}) = \lambda^{(l)}(\hat{\mathbf{x}}^T\hat{\mathbf{z}})$$

Plugging this result in the definitions of Σ (3) and $\dot{\Sigma}$ (4), using the induction hypothesis we obtain

$$\Sigma^{(l+1)}(\mathbf{x}, \mathbf{z}) = r_x r_z \Sigma^{(l+1)} \left(\hat{\mathbf{x}}, \hat{\mathbf{z}} \right) = r_x r_z \Sigma^{(l+1)} \left(\hat{\mathbf{x}}^T \hat{\mathbf{z}} \right)$$

$$\dot{\Sigma}^{(l+1)}(\mathbf{x}, \mathbf{z}) = \dot{\Sigma}^{(l+1)} \left(\hat{\mathbf{x}}, \hat{\mathbf{z}} \right) = \dot{\Sigma}^{(l+1)} \left(\hat{\mathbf{x}}^T \hat{\mathbf{z}} \right)$$
(15)

Finally, using the recursion formula (1) ($\beta = 0$) and the induction hypothesis for $\Theta^{(l)}$, we obtain

$$\Theta^{(l+1)}(\mathbf{x}, \mathbf{z}) = r_x r_z \Theta^{(l+1)}(\hat{\mathbf{x}}, \hat{\mathbf{z}}) = r_x r_z \Theta^{(l+1)}(\hat{\mathbf{x}}^T \hat{\mathbf{z}})$$

A corollary of this Lemma is that $k^{\text{FC}_0(L)}$ is homogeneous of order 1 in \mathbb{R}^d , proving the first part of Theorem 4. Also, it is homogeneous of order 0 in \mathbb{S}^{d-1} , proving Lemma 7 for $\beta=0$.

We next turn to proving the second part of Theorem 4, i.e., that $\mathbf{k}^{\text{Bias}(L)} = \mathbf{k}^{\text{FC}_{\beta}(L)} - \mathbf{k}^{\text{FC}_{0}(L)}$ is homogeneous of order 0 in \mathbb{R}^{d} . By rewriting the recursive definition of $\mathbf{k}^{\text{FC}_{\beta}(L)}$, shown in Appendix A, we can express $\mathbf{k}^{\text{Bias}(L)}$ in the following recursive manner $\mathbf{k}^{\text{Bias}(1)} = \beta^2$, and $\mathbf{k}^{\text{Bias}(1+1)} = \mathbf{k}^{\text{Bias}(1)}\dot{\Sigma} + \beta^2$. Therefore, $\mathbf{k}^{\text{Bias}(L)}$ is homogeneous of order zero, since it depends only on $\dot{\Sigma}$, which is by itself homogeneous of order zero (15). This concludes Theorem 4.

Finally, Lemma 7 is proved, since $\mathbf{k}^{\mathrm{FC}_{\beta}(\mathrm{L})} = \mathbf{k}^{\mathrm{FC}_{0}(\mathrm{L})} + \mathbf{k}^{\mathrm{Bias}(\mathrm{L})}$, and when restricted to \mathbb{S}^{d-1} both components are homogeneous of order 0.

Theorem 5. Let p(r) be a decaying density on $[0,\infty)$ such that $0<\int_0^\infty p(r)r^2dr<\infty$ and $\mathbf{x},\mathbf{z}\in\mathbb{R}^d$.

1. Let $\mathbf{k}_0(\mathbf{x}, \mathbf{z})$ be homogeneous of order 1 such that $\mathbf{k}_0(\mathbf{x}, \mathbf{z}) = r_x r_z \hat{\mathbf{k}}_0(\hat{\mathbf{x}}^T \hat{\mathbf{z}})$. Then its eigenfunctions with respect to $p(r_x)$ are given by $\Psi_{k,j} = ar_x Y_{k,j}(\hat{\mathbf{x}})$, where $Y_{k,j}$ are the spherical harmonics in \mathbb{S}^{d-1} and $a \in \mathbb{R}$.

2. Let $\mathbf{k}(\mathbf{x}, \mathbf{z}) = \mathbf{k}_0(\mathbf{x}, \mathbf{z}) + \mathbf{k}_1(\mathbf{x}, \mathbf{z})$ so that \mathbf{k}_0 as in 1 and \mathbf{k}_1 is homogeneous of order 0. Then the eigenfunctions of \mathbf{k} are of the form $\Psi_{k,j} = (ar_x + b) Y_{k,j}(\hat{\mathbf{x}})$.

Proof. 1. Since \hat{k}_0 is zonal, its Mercer's representation reads

$$\hat{\boldsymbol{k}}_0(\hat{\mathbf{x}}, \hat{\mathbf{z}}) = \sum_{k=0}^{\infty} \lambda_k \sum_{j=1}^{N(d,k)} Y_{k,j}(\hat{\mathbf{x}}) Y_{k,j}(\hat{\mathbf{z}}),$$

where the spherical harmonics $Y_{k,j}$ are the eigenfunctions of \hat{k}_0 . Consequently, as noted also in [5],

$$\mathbf{k}_0(\mathbf{x}, \mathbf{z}) = a^2 \sum_{k=0}^{\infty} \lambda_k \sum_{j=1}^{N(d,k)} r_x Y_{k,j}(\hat{\mathbf{x}}) r_z Y_{k,j}(\hat{\mathbf{z}}).$$

The orthogonality of the eigenfunctions $\Psi_{k,j}(\mathbf{x}) = ar_x Y_{k,j}(\hat{\mathbf{x}})$ is verified as follows. Let $\bar{p}(\mathbf{x})$ denote a probability density on \mathbb{R}^d such that $\bar{p}(\mathbf{x}) = p(r_x)/A(r_x)$, where $A(r_x)$ denotes the surface area of a sphere of radius r_x in \mathbb{R}^d . Then,

$$\int_{\mathbb{R}^d} \Psi_{k,j}(\mathbf{x}) \Psi_{k',j'}(\mathbf{x}) \bar{p}(\mathbf{x}) d\mathbf{x} = a^2 \int_0^\infty \frac{r_x^{d+1} p(r_x)}{A(r_x)} dr_x \int_{\mathbb{S}^{d-1}} Y_{k,j}(\hat{\mathbf{x}}) Y_{k',j'}(\hat{\mathbf{x}}) d\hat{\mathbf{x}} = \delta_{k,k'} \delta_{j,j'},$$

where the rightmost equality is due to the orthogonality of the spherical harmonics and by setting

$$a^2 = \left(\int_0^\infty \frac{r_x^{d+1} p(r_x)}{A(r_x)} dr_x\right)^{-1}.$$

Clearly this integral is positive, and the conditions of the theorem guarantee that it is finite.

2. By the conditions of the theorem we can write

$$\mathbf{k}(\mathbf{x}, \mathbf{z}) = r_x r_z \hat{\mathbf{k}}_0(\hat{\mathbf{x}}^T \hat{\mathbf{z}}) + \hat{\mathbf{k}}_1(\hat{\mathbf{x}}^T \hat{\mathbf{z}}),$$

where $\hat{\mathbf{x}}, \hat{\mathbf{z}} \in \mathbb{S}^{d-1}$. On the hypersphere the spherical harmonics are the eigenfunctions of \mathbf{k}_0 and \mathbf{k}_1 . Denote their eigenvalues respectively by λ_k and μ_k , so that

$$\int_{\mathbb{S}^{d-1}} \mathbf{k}_0(\hat{\mathbf{x}}^T \hat{\mathbf{z}}) \bar{Y}_k(\hat{\mathbf{z}}) d\hat{\mathbf{z}} = \lambda_k \bar{Y}_k(\hat{\mathbf{x}})$$
(16)

$$\int_{\mathbb{S}^{d-1}} \mathbf{k}_1(\hat{\mathbf{x}}^T \hat{\mathbf{z}}) \bar{Y}_k(\hat{\mathbf{z}}) d\hat{\mathbf{z}} = \mu_k \bar{Y}_k(\hat{\mathbf{x}}), \tag{17}$$

where $\bar{Y}_k(\hat{\mathbf{x}})$ denote the zonal spherical harmonics. We next show that the space spanned by the functions $r_x \bar{Y}_k(\mathbf{x})$ and $\bar{Y}_k(\mathbf{x})$ is fixed under the following integral transform

$$\int_{\mathbb{R}^d} \mathbf{k}(\mathbf{x}, \mathbf{z}) (\alpha r_z + \beta) \bar{Y}_k(\hat{\mathbf{z}}) \bar{p}(\mathbf{z}) d\mathbf{z} = (ar_x + b) \bar{Y}_k(\hat{\mathbf{x}}),$$
(18)

 $\alpha, \beta, a, b \in \mathbb{R}$ are constants. The left hand side can be written as the application of an integral operator $T(\mathbf{x}, \mathbf{z})$ to a function $\Phi^k_{\alpha,\beta}(\mathbf{z}) = (\alpha r_z + \beta) \bar{Y}_k(\hat{\mathbf{z}})$. Expressing this operator application in spherical coordinates yields

$$T(\mathbf{x}, \mathbf{z})\Phi_{\alpha,\beta}^{k}(\mathbf{z}) = \int_{0}^{\infty} \frac{p(r_z)r_z^{d-1}}{A(r_z)} dr_z \int_{\hat{\mathbf{z}} \in \mathbb{S}^{d-1}} (r_x r_z \mathbf{k}_0(\hat{\mathbf{x}}^T \hat{\mathbf{z}}) + \mathbf{k}_1(\hat{\mathbf{x}}^T \hat{\mathbf{z}})) (\alpha r_z + \beta) \bar{Y}_k(\hat{\mathbf{z}}) d\hat{\mathbf{z}}.$$

We use (16) and (17) to substitute for the inner integral, obtaining

$$T(\mathbf{x}, \mathbf{z})\Phi_{\alpha,\beta}^{k}(\mathbf{z}) = \int_{0}^{\infty} \frac{p(r_z)r_z^{d-1}}{A(r_z)} (\lambda_k r_x r_z + \mu_k)(\alpha r_z + \beta) \bar{Y}_k(\hat{\mathbf{x}}) dr_z.$$

Together with (18), this can be written as

$$T(\mathbf{x}, \mathbf{z})\Phi_{\alpha,\beta}(\mathbf{z}) = \Phi_{a,b}(\mathbf{x}),$$

where

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \lambda_k & 0 \\ 0 & \mu_k \end{pmatrix} \begin{pmatrix} M_2 & M_1 \\ M_1 & M_0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

where $M_q = \int_0^\infty \frac{r_z^{q+d-1}p(r_z)}{A(r_z)} dr_z$, $0 \le q \le 2$. By the conditions of the theorem these moments are finite. This proves that the space spanned by $\{r_x \bar{Y}(\hat{\mathbf{x}}), \bar{Y}(\hat{\mathbf{x}})\}$ is fixed under $T(\mathbf{x}, \mathbf{z})$, and therefore the eigenfunctions of $\mathbf{k}^{\mathrm{FC}_\beta(\mathrm{L})}(\mathbf{x}, \mathbf{z})$ take the form $(\bar{a}r_x + \bar{b})\bar{Y}(\hat{\mathbf{x}})$ for some constants \bar{a}, \bar{b} .

П

The implication of Theorem 5 is that the eigenvectors of $\boldsymbol{k}^{\mathrm{FC}_0(\mathrm{L})}$ are the spherical harmonic functions, scaled by the norm of their arguments. With bias, $\boldsymbol{k}^{\mathrm{FC}_\beta(\mathrm{L})}$ has up to 2N(d,k) eigenfunctions for every frequency k, of the general form $(ar_x+b)Y_{k,j}(\hat{\mathbf{x}})$ where a,b are constants that differ from one eigenfunction to the next.

E Experimental Details

E.1 The UCI dataSet

In this section, we provide experimental details for the UCI dataset. We use precisely the same pre-processed datasets, and follow the same performance comparison protocol as in [2].

NTK Specifications We reproduced the results of [2] using the publicly available code¹, and followed the same protocol as in [2]. The total number of kernels evaluated in [2] are 15 and the SVM cost value parameter C is tuned from 10^{-2} to 10^4 by powers of 10. Hence, the total number of hyper-parameter combinations searched using cross-validation is $105 (15 \times 7)$.

Exponential Kernels Specifications For the Laplace and Gaussian kernels, we searched for 10 kernel width values (1/c) from $2^{-2} \times \nu$ to ν in the log space with base 2, where ν is chosen heuristically as the median of pairwise l_2 distances between data points (known as the *median* trick [7]). So, the total number of kernel evaluations is 10. For γ -exponential, we searched through 5 equally spaced values of γ from 0.5 to 2. Since we wanted to keep the number of the kernel evaluations the same as for NTK in [2], we searched through only three kernel bandwidth values (1/c) which are $1, \nu$ and #features (default value in the **sklearn** package²). So, the total number of kernel evaluations is $15 (5 \times 3)$.

For a fair comparison with [2], we swept the same range of SVM cost value parameter C as in [2], i.e., from 10^{-2} to 10^4 by powers of 10. Hence, the total number of hyper-parameter search using cross-validation is $70~(10\times7)$ for Laplace and $105~(15\times7)$ for γ -exponential which is the same as for NTK in [2].

E.2 Large scale datasets

We used the experimental setup mentioned in [14] and the publicly available code ³. [14] solves kernel ridge regression (KRR [16]) using the FALKON algorithm, which solves the following linear system

$$(K_{nn} + \lambda nI) \alpha = \hat{\mathbf{y}},$$

where K is an $n \times n$ kernel matrix defined by $(K)_{ij} = K(x_i, x_j)$, $\hat{\mathbf{y}} = (y_1, \dots, y_n)^T$, and λ is the regularization parameter. Refer to [14] for more details.

In Table 1, we provide the hyper parameters chosen with cross validation.

https://github.com/LeoYu/neural-tangent-kernel-UCI

²https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.rbf_ kernel.html

³https://github.com/LCSL/FALKON_paper

	MillionSongs [4]	SUSY [13]	HIGGS [13]
H-γ-exp. H-Laplace NTK H-Gaussian	$ \begin{vmatrix} \gamma = 1.4, \sigma = 5, \lambda = 1e^{-6} \\ \sigma = 3, \lambda = 1e^{-6} \\ L = 9, \lambda = 1e^{-9} \\ \sigma = 8, \lambda = 1e^{-6} \end{vmatrix} $	$ \begin{vmatrix} \gamma = 1.8, \sigma = 5, \lambda = 1e^{-7} \\ \sigma = 4, \lambda = 1e^{-7} \\ L = 3, \lambda = 1e^{-8} \\ \sigma = 3, \lambda = 1e^{-7} \end{vmatrix} $	$ \begin{array}{c} \gamma = 1.6, \sigma = 8, \lambda = 1e^{-8} \\ \sigma = 8, \lambda = 1e^{-8} \\ L = 3, \lambda = 1e^{-6} \\ \sigma = 8, \lambda = 1e^{-8} \end{array} $

Table 1: Hyper-parameters chosen with cross validation for the different kernels.

E.3 C-Exp: Convolutional Exponential Kernels

Let $\mathbf{x}=(x_1,...,x_d)^T$ and $\mathbf{z}=(z_1,...,z_d)^T$ denote two vectorized images. Let P denote a window function (we used 3×3 windows). Our hierarchical exponential kernels are defined by $\bar{\Theta}(\mathbf{x},\mathbf{z})$ as follows:

$$\Theta_{ij}^{[0]}(\mathbf{x}, \mathbf{z}) = x_i z_j
s_{ij}^{[h]}(\mathbf{x}, \mathbf{z}) = \sum_{m \in P} \Theta^{[h]}(x_{i+m}, z_{j+m}) + \beta^2
\Theta_{ij}^{[h+1]}(\mathbf{x}, \mathbf{z}) = K(s_{ij}^{[h]}(\mathbf{x}, \mathbf{z}), s_{ii}^{[h]}(\mathbf{x}, \mathbf{x}), s_{jj}^{[h]}(\mathbf{z}, \mathbf{z}))
\bar{\Theta}(\mathbf{x}, \mathbf{z}) = \sum_{i} \Theta_{ii}^{[L]}(\mathbf{x}, \mathbf{z})$$

where $\beta \geq 0$ denotes the bias and the last step is analogous to a fully connected layer in networks, and we set

$$K(s_{ij}, s_{ii}, s_{jj}) = \sqrt{s_{ii}s_{jj}} \, \boldsymbol{k} \left(\frac{s_{ij}}{\sqrt{s_{ii}s_{jj}}} \right)$$

where k can be any kernel defined on the sphere. In the experiments we applied this scheme to the three exponential kernels, Laplace, Gaussian and γ -exponential.

Technical details We used the following four kernels:

CNTK [1] L = 6, $\beta = 3$.

C-Exp Laplace. $L=3, \beta=3, k(\mathbf{x}^T\mathbf{z})=a+be^{-c\sqrt{2-2\mathbf{x}^T\mathbf{z}}}$ with a=-11.491, b=12.606, c=0.048.

C-Exp γ -exponential. $L = 8, \beta = 3, k(\mathbf{x}^T \mathbf{z}) = a + be^{-c(2-2\mathbf{x}^T \mathbf{z})^{\gamma/2}}$ with $a = -0.276, b = 1.236, c = 0.424, \gamma = 1.888$.

C-Exp Gaussian. $L=12, \beta=3, k(\mathbf{x}^T\mathbf{z})=a+be^{-c(2-2\mathbf{x}^T\mathbf{z})}$ with a=-0.22, b=1.166, c=0.435

We set β in these experiments with cross validation in $\{1,...,10\}$. For each kernel k above, the parameters a,b,c and γ were chosen using non-linear least squares optimization with the objective $\sum_{u\in U}(k(u)-k^{\mathrm{FC}_{\beta}(2)}(u))^2$, where $k^{\mathrm{FC}_{\beta}(2)}$ is the NTK for a two-layer network defined in (5) with bias $\beta=1$, and the set U included (inner products between) pairs of normalized $3\times 3\times 3$ patches drawn uniformly from the CIFAR images. The number of layers L is chosen by cross validation.

For the training phase we used 1-hot vectors from which we subtracted 0.1, as in [12]. For the classification phase, as in [10], we normalized the kernel matrices such that all the diagonal elements are ones. To avoid ill conditioned kernel matrices we applied ridge regression with a regularization factor of $\lambda = 5 \cdot 10^{-5}$. Finally, to reduce overall running times, we parallelized the kernel computations on NVIDIA Tesla V100 GPUs.

References

- [1] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In *Advances in Neural Information Processing Systems*, pages 8139–8148, 2019.
- [2] Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In *International Conference on Learning Representations*, 2020.

- [3] Francis Bach. Breaking the curse of dimensionality with convex neural networks. *The Journal of Machine Learning Research*, 18(1):629–681, 2017.
- [4] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song dataset. In *Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR)*, 2011.
- [5] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In *Advances in Neural Information Processing Systems*, pages 12873–12884, 2019.
- [6] Youngmin Cho and Lawrence K Saul. Analysis and extension of arc-cosine kernels for large margin classification. arXiv preprint arXiv:1112.3712, 2011.
- [7] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and Le Song. Scalable kernel methods via doubly stochastic gradients. In *Advances in Neural Information Processing Systems*, pages 3041–3049, 2014.
- [8] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. In *Advances In Neural Information Processing Systems*, pages 2253–2261, 2016.
- [9] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in neural information processing systems*, pages 8571–8580, 2018.
- [10] Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019.
- [11] Francis J Narcowich and Joseph D Ward. Scattered data interpolation on spheres: error estimates and locally supported basis functions. *SIAM Journal on Mathematical Analysis*, 33(6):1393–1410, 2002.
- [12] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian processes. arXiv preprint arXiv:1810.05148, 2018.
- [13] Peter Sadowski Pierre Baldi and Daniel Whiteson. Searching for exotic particles in high-energy physics with deep learning. *Nature communications*, 5, 2014.
- [14] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. In Advances in Neural Information Processing Systems, pages 3888–3898, 2017.
- [15] Saburou Saitoh and Yoshihiro Sawano. Theory of reproducing kernels and applications. Springer, 2016.
- [16] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2001.
- [17] Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces (PMS-32), volume 32. Princeton university press, 2016.
- [18] George Neville Watson. A treatise on the theory of Bessel functions. Cambridge university press, 1966.