A Full Proofs

A.1 Proof for Lemma 1

Lemma. Let \((F, W(\cdot))\) be a given discrete integration instance such that \(W(x_i) = \frac{q_i}{p_i}\) and \(W(-x_i) = 1\) for every \(i\). Let \(m_i = \lfloor \max(\log_2 p_i, \log_2 (q_i - p_i)) \rfloor\) and let \(\tilde{F} = F \land \Omega\), where \(\Omega = \Lambda((x_i \rightarrow \varphi_{p_i, m_i}) \land (-x_i \rightarrow \varphi_{q_i - p_i, m_i}))\). Denote \(C_W = \prod_{x_i} q_i\). Then \(W(\tilde{F}) = \frac{|R_p|}{CW}\).

Proof. Note that if \(W(x_i) = p_i/q_i\) then \(W(-x_i) = (q_i - p_i)/q_i\). Let \(W'(\cdot)\) be a new weight function, defined over the literals of \(X\) as follows. \(W'(x_i) = p_i\) and \(W'(-x_i) = q_i - p_i\). Note that \(W'(\cdot)\) is different from the typical weight functions considered in this paper as \(W'(x_i)\) and \(W'(-x_i)\) are non negative integers. By extending the definition of \(W'(\cdot)\) in a natural way (as was done for \(W(\cdot)\)) to assignments, sets of assignments and formulas, it is easy to see that \(W(\tilde{F}) = W'(F)/C_W\).

Next, for every assignment \(\sigma\) of variables in \(X\), we have that \(W'(\sigma) = \prod_{i \in \sigma^+} p_i \prod_{i \in \sigma^-} (q_i - p_i)\). Let \(\tilde{\sigma}\) be an assignment of variables appearing in \(\tilde{F}\). We say that \(\tilde{\sigma}\) is compatible with \(\sigma\) if for all variables \(x_i\) in the original set of variables \(X\), we have \(\tilde{\sigma}(x_i) = \sigma(x_i)\). Observe that \(\tilde{\sigma}\) is compatible with exactly one assignment of variables in \(X\). For every assignment \(\sigma\) for \(F\), let \(S_\sigma\) denote the set of all satisfying assignments of \(\tilde{F}\) that are compatible with \(\sigma\). Then \(\{S_\sigma | \sigma \in R_F\}\) is a partition of \(R_x\). From the chain-formula properties, we know that there are \(p_i\) witnesses of \(\varphi_{p_i, m_i}\) and \(q_i - p_i\) witnesses of \(\varphi_{q_i - p_i, m_i}\). Since the representative formulas of every weighted variable use a fresh set of variables, and since there is no assignment that can make both a variable and its negation to become true, we have from the structure of \(\tilde{F}\) that if \(\sigma\) is a witness of \(F\), then \(|S_\sigma| = \prod_{i \in \sigma^+} p_i \prod_{i \in \sigma^-} (q_i - p_i)\). Therefore \(|S_\sigma| = W'(\sigma)\). Note that if \(\sigma\) is not a witness of \(F\), then there are no compatible satisfying assignments of \(\tilde{F}\); hence \(S_\sigma = \emptyset\) in this case. Overall, this gives

\[
|R_p| = \sum_{\sigma \in R_F} |S_\sigma| + \sum_{\sigma \in R_F} |S^\prime_\sigma| = \sum_{\sigma \in R_F} |S_\sigma| + 0 = W'(F).
\]

It follows that \(W(F) = \frac{W(F)}{C_W} = \frac{|R_p|}{C_W}\).

We note that the number \(m_i\) is picked, only so the truth table of \(\varphi_{p_i, m_i}\) can store \(p_i\) assignments, and that the truth table of \(\varphi_{q_i - p_i, m_i}\) can store \(q_i - p_i\) assignments.

A.2 Proof for Theorem 1

Theorem. The return value of \(A(F, \varepsilon, \delta)\) is an \((\varepsilon, \delta)\) estimate of \(W(F)\). Furthermore, \(A\) makes \(O\left(\frac{\log(n + \sum_i m_i)}{\varepsilon^2} \log(1/\delta)\right)\) calls to an NP oracle, where \(m_i = \lfloor \max(\log_2 p_i, \log_2 (q_i - p_i)) \rfloor\).

Proof. Denote the return value that the approximated model counter \(B\) returns by \(v\). Then we have that \(\Pr\left[\frac{|R_p|}{C_W} \leq v \leq (1 + \varepsilon)\frac{|R_p|}{C_W}\right] \geq 1 - \delta\). By dividing the returned value \(v\) by the factor \(C_W\) we then have that \(\Pr\left[\frac{|R_p|}{C_W + \varepsilon} \leq \frac{v}{C_W} \leq (1 + \varepsilon)\frac{|R_p|}{C_W}\right] \geq 1 - \delta\). Recall that from Lemma 1 we have that \(W(F) = \frac{|R_p|}{C_W}\). Then since \(A(F, \varepsilon, \delta)\) returns \(v' = v/C_W\), we all in have that \(\Pr\left[\frac{W(F)}{1 + \varepsilon} \leq v' \leq (1 + \varepsilon)\frac{W(F)}{1 + \varepsilon}\right] \geq 1 - \delta\). That is, the return value \(A(F, \varepsilon, \delta)\) is an \((\varepsilon, \delta)\) estimate of \(W(F)\) as required.

The number of NP oracle calls made by Algorithm \(A\) follows from Theorem 4 of [11], and the fact that \(\tilde{F}\) has \(n + \sum_i m_i\) variables (\(n\) from the original formula and \(\sum_i m_i\) added in the chain formulas).

A.3 Handling projected formulation

For the sake of clarity, we presented our techniques without considering projection. However, since the underlying model counter that we use, ApproxMC [10, 11, 43], handles projected model counting, the technical framework described in this paper can be easily extended to the projected formulation.
To see that, note that the formulation of a projected weighted Boolean formula F is (F, P, W) where P is a projected set, and the weight function W is defined only over the variables of P. Our algorithm A reduces (F, P, W) using the chain formula reduction of Lemma 1, to a projected unweighted Boolean formula $(F, P \cup Y)$, where Y denotes the set of fresh variables used for the chain formulas. $(\hat{F}, P \cup Y)$ is then fed to ApproxMC that supports projected model counting. The result value v that ApproxMC returns is an (ε, δ) estimate to $(\hat{F}, P \cup Y)$. It follows that A returns v/C_W as an (ε, δ) estimate to (F, P, W).

A.4 Proof for Theorem 2

As shorthand, in this section we use $\text{bin}(a)$ to denote the binary representation of a and $|\text{bin}(a)|$ to denote the number of bits that are needed to describe a (i.e., $\lceil \log_2(a) \rceil$).

Theorem. Algorithm 1 with initial arguments (p, q), $(a_1, b_1) = (0, 1)$ and $(a_2, b_2) = (1, 1)$ finds a nearest m-bit fraction to p/q.

Proof. First note that since the required p and $q - p$ are of size m bits at most, the denominator of a potential nearest m-bits fraction is no bigger than $k = 2^m - 2$. Therefore, the required p/q is contained in the Farey Sequence F_k, that is the sequence of all irreducible fractions (in increasing order) with denominator of at most size k.

A way to construct the entire Farey sequence F_i from F_{i-1} is as follows: Initially set $F_1 = F_{i-1}$. Then iteratively go over the members of F_i in an increasing order, and for every $a_1/b_1 < a_2/b_2$ neighbors in F_{i-1}, construct $(a_1 + a_2)/(b_1 + b_2)$. It turns out that $(a_1 + a_2)/(b_1 + b_2)$ is an irreducible fraction and that $a_1/b_1 < (a_1 + a_2)/(b_1 + b_2) < a_2/b_2$. Now, if $b_1 + b_2 = i$, add $(a_1 + a_2)/(b_1 + b_2)$ to F_i, otherwise skip. Finally arrange F_i in an increasing order. The initial sequence is $F_1 = (0/1, 1/1)$. Then for example $F_2 = (0/1, 1/1, 2/1)$, $F_3 = (0/1, 1/3, 1/2, 3/1, 1/1)$ and so on.

The algorithm ApproxFraction follows the Farey sequence construction by setting at every call $a = a_1 + a_2$, $b = b_1 + b_2$, and evaluating a/b. Assume that both $|\text{bin}(a)|$ and $|\text{bin}(b - a)|$ are at most m. Then a/b is a candidate for the nearest m-bit fraction to p/q, where Lines 7-10 check whether $|a/b - p/q| < |a_1/b_1 - p/q|$ or $|a/b - p/q| < |a_2/b_2 - p/q|$, and makes the recursive call replacing either a_1/b_1 with either a/b if a/b is m-bit nearer from the bottom or either replacing a_2/b_2 with a/b if a/b is m-bit nearer from the top.

Algorithm ApproxFraction bounds to stop as the denominator always increases (i.e. $b_1 + b_2 > b_1$ and $b_1 + b_2 > b_2$). It is left to see that when the algorithm stops, the value of $\min\{(a_1/b_1), (a_2/b_2)\}$ is the m-nearest fraction to p/q. First, if either a_1/b_1, a_2/b_2 or a/b is equal to p/q, then the algorithm returns p/q in Line 4 which is obviously the m-bits nearest fraction. Next, assume that either $|\text{bin}(a)|$ or $|\text{bin}(b - a)|$ are bigger than m as the stopping condition in Line 5 indicates. Consider the interval $(a_1/b_1, a_2/b_2)$. Since the nearest m-bits fractions are members of F_k, these must be found via the Farey sequence construction above. Since for every i, only consecutive fractions of F_i are used to generate members of F_{i-1}, it follows that the the nearest m-bits fraction must be generated, as in the Farey sequence construction, by using only fractions from the interval $(a_1/b_1, a_2/b_2)$. We show by induction that for every i, there are no m-bit fractions in $F_i \cap (a_1/b_1, a_2/b_2)$. First set F_i to be the Farey sequence for which both $a_1/b_1,a_2/b_2 \in F_j \setminus F_{j-1}$ Then $a_1/b_1,a_2/b_2$ are consecutive in F_j, therefore $F_i \cap (a_1/b_1, a_2/b_2)$ is empty. Assume by induction that for every $i \geq i$, $F_i \cap (a_1/b_1, a_2/b_2)$ does not contain m-bits fraction. Now, observe that $F_{i+1} \cap (a_1/b_1, a_2/b_2)$ is generated from consecutive fractions in $F_i \cap (a_1/b_1, a_2/b_2)$. This can be done only if the two fractions are $a_1/b_1,a_2/b_2$, and then we had that the fraction $a/b = (a_1 + a_2)/(b_1 + b_2)$ is not an m-bit fraction, or otherwise at least one of the fractions belongs to $F_i \cap (a_1/b_1, a_2/b_2)$, hence is not an m-bits fraction. The following lemma shows that in this case as well, the result is not an m-bit fraction, hence all in all $F_{i+1} \cap (a_1/b_1, a_2/b_2)$ is empty as well. As such, the nearest m-bits fractions from bottom and top are (a_1/b_1) and (a_2/b_2) respectively and algorithm returns $\min\{(a_1/b_1), (a_2/b_2)\}$, which is the nearest m-bits fraction as required.

Lemma 2. Let a/b, x/y be a fraction where $0 < a < b$, $0 < x < y$ and either $|\text{bin}(a)|$ or $|\text{bin}(b - a)|$ are bigger than n. Consider the fraction $(a + x)/(b + y)$. Then either $\text{bin}(a + x) > m$ or $\text{bin}(b + y - (a + x)) > m$.

\[\square\]
Proof. Obviously for every two numbers i, j, $i < j \iff \text{bin}(i) < \text{bin}(j) \iff |\text{bin}(i)| < |\text{bin}(j)|$. Assume $|\text{bin}(a)| > m$. Then since x is positive then $(a + x) > a$. Thus $|\text{bin}(a + x)| > m$. Next, assume $|\text{bin}(b - a)| > m$. Then since $y - x > 0$ then $(b + y) - (a + x) = (b - a) + (y - x) > (b - a)$, so $|\text{bin}((b + y) - (a + x))| > m$.

Finally from the analysis above of the stopping conditions of ApproxFraction, we have that the maximal running time of ApproxFraction is $2^{2m} - 2$. The following example shows that this can also be a worst case. Consider any input $1/q$ where $q > 2^m$ and m is the number of the required bits. In such case at every step we have that $a_1/b_1 = 0/1$, and so $a/b = a_2/b_2 + 1$. This gives an overall running time of $2^{2m} - 2$.