
A Supplementary material

A.1 Detailed architecture

ResBlockG 512→512
Upsample x2

Linear
Reshape 512x8x8

ResBlockG 512→256

Upsample x2

ResBlockG 256→256
Upsample x2

ResBlockG 256→64
Conv2d, 5x5, 64→3

64d (+64d)

8x8

16x16

32x32

(ResBlockG 256→256)

(Upsample x2)

ResBlockG 256→128
Upsample x2

ResBlockG 128→64
Conv2d, 5x5, 64→3

Tanh

64x64

128x128

256x256

Displacement map

Conv2d 3x3, in→out
CBN

Conv2d 3x3, out→out
CBN

ResBlockG

Parameter-free
BatchNorm2d

Linear

Linear

Conditional BatchNorm (CBN)

ResBlockG 128→128

Upsample x2

512x512

32x32

(AttnBlock)

L x 256d

512x512

Texture

256d

EncBlock 5x5, 4→64

Linear, 64x8x8→256
BatchNorm1d, ReLU

8x8

Linear, 256→1024
BatchNorm1d, ReLU

Flatten

Reshape 256x4x4
Linear, 1024→256x4x4

ResBlockR 256→512
Upsample x2

(Conv2d 1x1, in→out)

Conv2d 3x3, in→in
BatchNorm2d

Conv2d 3x3, in→out
BatchNorm2d

ResBlockR

(Conv2d 1x1, in→out)

Leaky ReLU 0.2

Leaky ReLU 0.2

ReLU

ReLU

Conv2d, in→out, /2
BatchNorm2d

ReLU

EncBlock 3x3, 64→128
EncBlock 3x3, 128→256
EncBlock 3x3, 256→512
EncBlock 3x3, 512→64

4x4

ResBlockR 512→256
Upsample x2

ResBlockR 256→256
Upsample x2

8x8

16x16

ResBlockR 256→256
Upsample x2

ResBlockR 256→128
Upsample x2

ResBlockR 128→64

ResBlockR 256→64
Conv2d, 5x5, 64→3

Tanh

EncBlock

32x32

64x64

128x128

Conv2d, 5x5, 64→3

256x256

128x128

Mesh estimation
model

Generator
model

Figure 8: Generator architecture (left) and mesh estimation model (right). Green blocks comprise
learnable parameters, whereas white ones are parameter-free. Dashed lines and blocks in parentheses
represent optional connections which depend on the specific setting. We indicate the feature map
resolution in a given position next to arrows (e.g. 128×128). 512→ 256 denotes “512 input channels,
256 output channels”. “/2” in convolutional layers denotes “stride 2”; it is one if not indicated.

Generator. Fig. 8 (left) shows the detailed architecture of the generator of our GAN. As mentioned
in sec. 4.2, the random vector z is fed to every conditional batch normalization (CBN) layer as well
as to the input layer, which matches the strategy adopted by many state-of-the-art GANs for 2D
image generation [35, 65, 4]. A CBN layer consists of a parameter-free batch normalization (i.e.
without a learned affine transformation) followed by a gain γ and bias β conditioned upon z via a
learned linear layer. In settings conditioned on class labels, we concatenate a learned embedding c
to z, which is shared among all layers. The network follows a ResNet architecture where feature
maps are progressively upsampled using nearest-neighbor interpolation after each residual block
ResBlockG. This block consists of two convolutional layers wrapped by a skip-connection. If the
number of input channels differs from the number of output channels, the skip-connection is learned.
To accommodate for the varying output resolutions for mesh and texture, the generator branches
out at 32×32 resolution. While the figure shows the architecture for 512×512 textures, to generate
textures at 256×256 we simply remove one 256→256 ResBlockG block. For presentation purposes,
we report square resolutions (e.g. 512×512), but in practice we only need to generate half of the
feature map (e.g. 256×512) since we enforce symmetry across the x axis as mentioned in sec. 4.2.
The output textures and displacement maps are then simply padded with their reflection. On the other
hand, the discriminator always observes full textures as pseudo-ground-truth textures are asymmetric.

14

Attention mechanism. If the model is conditioned on text using an attention mechanism, we add
an attention block right before the texture/mesh branch, so that the module influences both mesh
and texture. We adopt a dot-product formulation similar to [59], in which the attention weights are
computed as softmax(QKT). The queries Q correspond to the flattened convolutional feature map
from the generator, and the keys K are obtained by passing each RNN hidden state hl (l ∈ {1..L},
where L is the sentence length) through a learned linear layer. The RNN is the pretrained bidirectional
LSTM encoder from [59], and hidden states are 256-dimensional.

Mesh estimation model. Fig. 8 (right) shows the detailed architecture of the mesh estimation model
that we use for differentiable rendering (the first step of our algorithm as described in Fig. 1). The
natural image is concatenated to the segmentation mask (3+1 channels) and fed to a convolutional
encoder. The representation is then flattened to a dense representation and passed through a series of
linear layers. Finally, it is passed through a ResNet decoder whose architecture resembles that of the
GAN generator. Since we are not interested in producing high-quality textures in this step as they are
discarded, the texture resolution in this model is only 128×128, which results in faster training.

Concatenate

Conv2d, 5x5, nc→64
Leaky ReLU 0.2

Conv2d, 4x4, 64→128, /2
Leaky ReLU 0.2

Conv2d, 4x4, 128→256, /2
Leaky ReLU 0.2

Conv2d, 5x5, 256→1

(Embed)

(Dot product)

(AttnBlock)

L x 256d

256d256d
Only one

32x32

32x32

16x16

8x8

8x8

Concatenate

Conv2d, 5x5, nc→64
Leaky ReLU 0.2

Conv2d, 4x4, 64→128, /2
Leaky ReLU 0.2

Conv2d, 4x4, 256→512, /2
Leaky ReLU 0.2

Conv2d, 5x5, 512→1

(Embed)

(Dot product)

(AttnBlock)

L x 256d

512d512d
Only one

Conv2d, 4x4, 128→256, /2
Leaky ReLU 0.2

Concatenate

Conv2d, 4x4, nc→64, /2
Leaky ReLU 0.2

Conv2d, 4x4, 64→128, /2
Leaky ReLU 0.2

Conv2d, 4x4, 256→512, /2
Leaky ReLU 0.2

Conv2d, 5x5, 512→1

(Embed)

(Dot product)

(AttnBlock)

L x 256d

512d512d
Only one

Conv2d, 4x4, 128→256, /2
Leaky ReLU 0.2

128x128

128x128

64x64

32x32

16x16

16x16

512x512

256x256

128x128

64x64

32x32

32x32

32x32
128x128 512x512

Figure 9: Multi-scale discriminator architecture for our biggest model (512×512 texture resolution).
Only D1 discriminates the mesh, while D2 and D3 are texture discriminators. Dashed lines describe
the optional connections for projection discrimination [35] in conditional settings, where feature
maps are combined either with a learned embedding (for settings conditioned on classes or attributes)
or with the values of an attention block (for settings conditioned on text), not both.

Discriminator. The architecture of our multi-scale discriminator is depicted in Fig. 9. In the most
complex setting (used by the CUB model at 512×512), textures are discriminated at three scales:
32×32 (D1), 128×128 (D2), and 512×512 (D3). The smallest discriminator D1 is also a mesh
discriminator. Following the general strategy of patch-based discriminators [22], our discriminators
are relatively simple as they only consist of a series of spectrally-normalized convolutional layers.
GANs have been shown to produce checkerboard artifacts [39] depending on the choice of kernel
sizes and strides in the discriminator. While humans do not perceive these to be particularly severe
in images, checkerboard artifacts in the displacement map must be avoided as they might lead to no-
ticeable mesh distortions. The generator already uses upsampling instead of transposed convolutions
(which mitigates this issue), but we also carefully design the discriminator such that the kernel size
of convolutions is divisible by the stride, ensuring that the gradient norms are uniform across pixels
(see [39] for further details). To this end, we use 5×5 convolutions in layers with stride 1, and 4×4
convolutions in layers with stride 2. D1 consists of 4 layers and has a relatively small receptive field.
We explored a varying number of layers and different strides, but they always led to worse results.
D2 and D3 consist of 5 layers and are identical except for the stride of the first layer, which is 1 for
D2 and 2 for D3. In the experiments with a texture resolution of 256×256, we only use D1 and D2,
where the latter directly discriminates at 256×256. For Pascal3D+ at 512×512, we found a small
empirical advantage in dropping D2 and doubling the weight of D3’s loss. Finally, to incorporate
conditional information, we use projection discrimination [35], in which we compute a pixel-wise dot

15

product between the last feature map and a learned class embedding (a vector), and add it to the output.
If the model is conditioned on text, we replace the class embedding with the output of an attention
block. Each discriminator learns its own set of weights for the embeddings or the attention block.

Model complexity. Table 2 summarizes the complexity of our models in different settings, expressed
as the number of learnable parameters. Since the semantic alignment of our pose-independent
representation facilitates the modeling task, our approach can successfully work with relatively small
models (≈10M generator parameters). We also found it beneficial to adopt simple discriminators
compared to the generator (which is more powerful).

Table 2: Number of learnable parameters for different variants of our model.

Model Resolution G D1 D2 D3 D Total RNN

Unconditional 512x512 11.58M 0.68M 2.77M 2.77M 6.22M -
256x256 10.33M - 3.45M -

CUB conditional 512x512 13.06M 0.73M 2.88M 2.88M 6.49M -
256x256 11.75M - 3.61M -

CUB text 512x512 11.64M 0.75M 2.91M 2.91M 6.57M 2.08M

P3D conditional 512x512 13.05M 0.69M 2.79M 2.79M 6.27M -
256x256 11.74M - 3.48M -

A.2 Additional implementation details

Mesh estimation. Since our convolutional mesh representation already encourages meshes to be
smooth, our reconstruction model requires less regularization than similar frameworks based on
fully-connected networks. We only found it beneficial to regularize the model with a smoothness loss
Lflat [27] at a very low strength α = 0.00005, and no Laplacian regularization [46] (unlike [27, 24, 5]
which all use this form of regularization). Lflat encourages the normals of neighboring faces to have
similar directions, and is defined as follows:

Lflat = α
1

|E|
∑
i,j∈E

(1− cos θij)
2

where E is the set of all edges and cos θij is the cosine similarity between the normals of the faces i
and j. In practice this is implemented by computing the dot product between the two normals.

We additionally observe that the initialization strategy of this model as well as early training iterations
have a significant impact on the final result. Bad configurations such as self-intersecting meshes
or vertices outside the camera frustum can cause the model to get stuck in bad local minima from
which it cannot easily recover. This is especially the case for typical Gaussian initialization schemes
in neural networks, which cause the mesh to start in an already self-intersected state for a spherical
mesh template with radius 1 (our case). To ensure convergence and generate smooth meshes without
self-intersections, we found it helpful to (i) zero-initialize the final layer of the mesh branch, which
ensures that the first iteration starts with a smooth sphere, and (ii) adopt a warm-up phase where
Lflat starts at a moderate strength α = 0.0005 and linearly decays for 100 iterations, settling at the
low-strength value mentioned above. In the GAN generator we also zero-initialize the final layer of
the mesh head, but Lflat only uses a fixed α = 0.0001 and no warm-up.

In sec. 3, we mention that our camera projection model is a weak-perspective model. This model is a
good approximation for photographs shot with high levels of zoom or that depict small objects, which
is the case for birds (CUB dataset). However, we observed that the weak-perspective assumption is not
a good fit for Pascal3D+, since most images are shot from a close range and present a significant degree
of perspective distortion due to cars having elongated shapes. Therefore, for Pascal3D+ we augment
the camera model with a learnable perspective correction term z0, without however advancing to a full
perspective model as we do not have enough information. z0 is a scalar that describes the distance from
the camera to the center of the object, and assumes that the object is centered. The x, y coordinates of
each vertex in camera space are then multiplied with a factor (z0 + z/2)/(z0 − z/2), where z is the
depth of the vertex. Note that, as z0 approaches infinity, the factor approaches 1 and the camera model
reverts back to a weak-perspective model. This term is learned for every image in the dataset and is
parameterized as z0 = 1 + ew (w is a learnable parameter), which ensures (i) positivity, and (ii) that
the transformed vertices lie inside the camera frame. While this aspect is not central to our approach,
we found it helpful as it can slightly improve qualitative results even with approximate estimates.

16

Generated mesh and
texture (Full FID)

Generated texture
only (Texture FID)

Generated mesh only
(Mesh FID) Real image Generated mesh and

texture (Full FID)
Generated texture
only (Texture FID)

Generated mesh only
(Mesh FID) Real image

Figure 10: Examples of images on which we compute FID scores. Images are rendered from the
viewpoint corresponding to Real image (a randomly-selected image from the training set). In the
Mesh FID scenario, we render the generated mesh using the pseudo-ground-truth texture from the
real image. In the Texture FID, the “real” mesh is textured using the generated texture. In the Full
FID and Mesh FID of the top-left van we can observe that the silhouette of the mesh looks fine but
straight lines and stripes present a “wobbling” effect caused by the underlying mesh, while in the
Texture FID (which does not use generated meshes) the lines appear more straight.

Construction of the pose-independent representation. In sec. 3 we mention that we use the
gradient from the differentiable renderer to produce the UV visibility mask which is used for masking
projected textures. In practice, deep learning frameworks do not compute full Jacobians but only
gradients of scalars (i.e. Jacobian-vector multiplication). However, the Jacobian of the rendering
operation w.r.t. the texture has a structure such that it is zero for all texels that are not visible in the
rendered image (i.e. are occluded) and non-zero elsewhere3. Based on this observation, it suffices to
compute the average or sum of rendered pixels to reduce the image to a scalar which can then be
differentiated with respect to a dummy texture. The same result can also be achieved by computing a
Jacobian-vector multiplication with a vector of ones, which is what we do in our implementation.

FID evaluation. To give more context to sec. 4.1, where we introduce our evaluation methodology,
in Fig. 10 we show some actual examples of rendered images on which we compute FID scores. The
Full FID (our main metric) is computed on generated meshes coupled with generated textures, and
evaluates the generation quality as a whole. However, it is also interesting to propose variations of
this metric that can evaluate mesh and texture quality separately. Therefore, in the Mesh FID we use
the pseudo-ground-truth texture from the image corresponding to the random viewpoint we choose
for rendering, which makes the evaluation independent of generated textures. Likewise, in the Texture
FID we use meshes estimated using the differentiable renderer instead of the ones generated by our
GAN. In all experiments, we generate as many images as there are in the set we compare to, since the
FID is sensitive to the number of generated images. Finally, to evaluate text conditioning on CUB,
we sample a random caption (out of 10 captions) for each image we generate.

Pascal3D+ annotations. To demonstrate conditional generation on P3D, we collected shape and
color annotations for the ImageNet subset of this dataset (i.e. the one we use to train our GAN).
Although ImageNet images are already identified by their synsets, we found these to be unreliable and
opted instead for collecting our own annotations. The set of labels and corresponding frequencies are
summarized in Table 3. For consistency, all labels were collected by one annotator. Some categories
(e.g. F1, convertible, and oldtimer) comprise a very low number of samples, which leads to unsatisfac-
tory results on these classes in conditional settings. Nonetheless, this issue can be mitigated by collect-
ing more data. Finally, although the ImageNet subset consists of ≈5.5k images, only 4.7k are usable
as some are filtered out by the structure-from-motion routine of [24] due to unreliable pose estimates.

Table 3: Relevant statistics for the P3D annotations we collected.
Class Sedan Hatchback SUV Station wagon Van Pickup Coupé City F1 Convertible Oldtimer Total
images 1137 851 814 691 674 649 295 193 119 39 13 5475
Color Gray Black Red White Blue Green Yellow Orange Brown Purple Pink Total
images 1534 863 833 832 697 252 231 126 52 30 25 5475

3This property holds for DIB-R [5] but may not hold for all differentiable renderers.

17

Gray Black Red White Purple Green Orange

Se
da
n

SU
V

Va
n

C
ou
pé

Figure 11: Generation on P3D with one varying factor at a time (color and shape) and a fixed random
vector z. As can be seen, representations are relatively disentangled. In the bottom row, the class
coupé is often associated with race cars, which causes stickers to appear on the body.

A.3 Additional results

Disentanglement. Compared to a generative model for 2D images, a 3D generative model naturally
disentangles pose and appearance. Furthermore, the use of triangle meshes with UV-mapped textures
ensures that shape is disentangled from color, essentially allowing for texture transfer between
meshes (we use this property for our Texture FID and Mesh FID evaluation, as shown in Fig. 10).
Another interesting observation is that conditional models enable further disentanglement of aspects
of variation. For instance, on P3D we can control shape and color separately as shown in Fig. 11,
and the latent space is structured enough to allow for interpolation of these aspects (Fig. 5). In this
setting, the random vector z can be used to control the style of the object.

Additional qualitative results. In Fig. 12, we show additional qualitative results grouped by type
of conditioning. Our approach successfully generates meshes in both conditional and unconditional
settings. In the figure, we additionally show untextured (i.e. wireframe) meshes, which highlights the
smoothness of our convolutional mesh representation.

Demo video. The supplementary material includes a video where we show more results, including
latent space interpolation, disentangled generation, generation from text, and visualization of the
attention mechanism on models conditioned on text.

18

Figure 12: Qualitative results for all settings, on both P3D (left) and CUB (right). First row = texture;
second row = wireframe mesh; third and fourth rows = textured object from two random views.

19

