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Abstract

Recent work has discussed the limitations of counterfactual explanations to recom-
mend actions for algorithmic recourse, and argued for the need of taking causal
relationships between features into consideration. Unfortunately, in practice, the
true underlying structural causal model is generally unknown. In this work, we first
show that it is impossible to guarantee recourse without access to the true structural
equations. To address this limitation, we propose two probabilistic approaches to
select optimal actions that achieve recourse with high probability given limited
causal knowledge (e.g., only the causal graph). The first captures uncertainty
over structural equations under additive Gaussian noise, and uses Bayesian model
averaging to estimate the counterfactual distribution. The second removes any
assumptions on the structural equations by instead computing the average effect of
recourse actions on individuals similar to the person who seeks recourse, leading
to a novel subpopulation-based interventional notion of recourse. We then derive a
gradient-based procedure for selecting optimal recourse actions, and empirically
show that the proposed approaches lead to more reliable recommendations under
imperfect causal knowledge than non-probabilistic baselines.

1 Introduction

As machine learning algorithms are increasingly used to assist consequential decision making in a
wide range of real-world settings [36, 41], providing explanations for the decision of these black-box
models becomes crucial [7, 58]. A popular approach is that of (nearest) counterfactual explanations,
which refer to the closest feature instantiations that would have resulted in a changed prediction [59].
While providing some insight (explanation) into the underlying black-box classifier, such coun-
terfactual explanations do not directly translate into actionable recommendations to individuals
for obtaining a more favourable prediction[22, 5]—a related task referred to as algorithmic re-

course [54, 55, 19, 21]. Importantly, prior work on both counterfactual explanations and algorithmic
recourse treats features as independently manipulable inputs, thus ignoring the causal relationships

between features.

In this context, recent work [22] has argued for the need of taking into account the causal structure
between features to find a minimal set of actions (in the form of interventions) that guarantees
recourse. However, while this approach is theoretically sound, it involves computing counterfactuals
in the true underlying structural causal model (SCM) [35], and thus relies on strong impractical
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assumptions; specifically, it requires complete knowledge of the true structural equations. While for
many applications it is possible to draw a causal diagram from expert knowledge, assumptions about
the form of structural equations are, in general, not testable and may thus not hold in practice [38].
As a result, counterfactuals computed using a misspecified causal model may be inaccurate and
recommend actions that are sub-optimal or, even worse, ineffective to achieve recourse.

In this work, we focus on the problem of algorithmic recourse when only limited causal knowledge is
available (as it is generally the case). To this end, we propose two probabilistic approaches which
allow to relax the strong assumption of a fully-specified SCM made in [22]. In the first approach, we
assume that, while the underlying SCM is unknown, it belongs to the family of additive Gaussian
noise models [16, 37]. We then make use of Gaussian processes (GPs) [62] to average predictions
over a whole family of SCMs and thus to obtain a distribution over counterfactual outcomes which
forms the basis for individualised algorithmic recourse. The second approach considers a different
subpopulation-based notion of algorithmic recourse by estimating the effect of interventions for
individuals similar to the one for which we aim to achieve recourse. It thus addresses a different
(rung 2) target quantity than the counterfactual/individualised (rung 3) approach which allows us to
further relax our assumptions by removing any assumptions on the form of the structural equations.
This approach is based on the idea of the conditional average treatment effect (CATE) [1], and relies
on conditional variational autoencoders (CVAEs) [48] to estimate the interventional distribution. In
both cases, we assume that the causal graph is known or can be postulated from expert knowledge, as
without such an assumption causal reasoning from observational data is not possible [38, Prop. 4.1].

In more detail, we first demonstrate as a motivating negative result that recourse guarantees are
only possible if the true SCM is known (§3). Then, we introduce two probabilistic approaches
for handling different levels of uncertainty in the structural equations (§4 and §5), and propose a
gradient-based method to find a set of actions that achieves recourse with a given probability at
minimum cost (§6). Our experiments (§7) on synthetic and semi-synthetic loan approval data, show
the need for probabilistic approaches to achieve algorithmic recourse in practice, as point estimates
of the underlying true SCM often propose invalid recommendations or achieve recourse only at higher
cost. Importantly, our results also show that subpopulation-based recourse is the right approach
to adopt when assumptions such as additive noise do not hold. A user-friendly implementation of
all methods that only requires specification of the causal graph and a training set is available at
https://github.com/amirhk/recourse.

2 Background and related work

Causality: structural causal models, interventions, and counterfactuals. To reason formally
about causal relations between features X = {X1, ..., Xd}, we adopt the structural causal model

(SCM) framework [35].2 Specifically, we assume that the data-generating process of X is described
by an (unknown) underlying SCM M of the general form

M = (S, PU), S = {Xr := fr(Xpa(r), Ur)}dr=1, PU = PU1 ⇥ . . .⇥ PUd , (1)

where the structural equations S are a set of assignments generating each observed variable Xr as a
deterministic function fr of its causal parents Xpa(r) ✓ X \Xr and an unobserved noise variable
Ur. The assumption of mutually independent noises (i.e., a fully factorised PU) entails that there
is no hidden confounding and is referred to as causal sufficiency. An SCM is often illustrated by its
associated causal graph G, which is obtained by drawing a directed edge from each node in Xpa(r)
to Xr for r 2 [d] := {1, . . . , d}, see Fig. 1b and 1c for an example. We assume throughout that G
is acyclic. In this case, M implies a unique observational distribution PX, which factorises over G,
defined as the push-forward of PU via S.3

Importantly, the SCM framework also entails interventional distributions describing a situation in
which some variables are manipulated externally. E.g., using the do-operator, an intervention which
fixes XI to ✓ (where I ✓ [d]) is denoted by do(XI = ✓). The corresponding distribution of the
remaining variables X�I can be computed by replacing the structural equations for XI in S to obtain

2Also known as non-parametric structural equation model with independent errors (NPSEM-IE).
3I.e., for r 2 [d], PXr|Xpa(r)(Xr|Xpa(r)) := PUr (f

�1
r (Xr|Xpa(r))), where f�1

r (Xr|Xpa(r)) denotes the
pre-image of Xr given Xpa(r) under fr , i.e., f�1

r (Xr|Xpa(r)) := {u 2 Ur : fr(Xpa(r), u) = Xr}.
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Figure 1: A view commonly adopted for counterfactual explanations (a) treats features as indepen-
dently manipulable inputs to a given fixed and deterministic classifier h. In the causal approach to
algorithmic recourse taken in this work, we instead view variables as causally related to each other by
a structural causal model (SCM) M (b) with associated causal graph G (c).

the new set of equations Sdo(XI=✓). The interventional distribution PX�I |do(XI=✓) is then given by
the observational distribution implied by the manipulated SCM

�
Sdo(XI=✓), PU

�
.

Similarly, an SCM also implies distributions over counterfactuals—statements about a world in which
a hypothetical intervention was performed all else being equal. For example, given observation xF we
can ask what would have happened if XI had instead taken the value ✓. We denote the counterfactual
variable by X(do(XI = ✓))|xF, whose distribution can be computed in three steps [35]:

1. Abduction: compute the posterior distribution over background variables given xF, PU|xF ;
2. Action: perform the intervention to obtain the new structural equations Sdo(XI=✓); and,
3. Prediction: PX(do(XI=✓))|xF is the distribution induced by the resulting SCM

�
Sdo(XI=✓), PU|xF

�
.

Explainable ML: “counterfactual” explanations and (causal) algorithmic recourse. Assume
that we are given a binary probabilistic classifier h : X ! [0, 1] trained to make decisions about
i.i.d. samples from the data distribution PX.4 For ease of illustration, we adopt the setting of loan
approval as a running example, i.e., h(x) � 0.5 denotes that a loan is granted and h(x) < 0.5 that
it is denied. For a given individual xF that was denied a loan, h(xF) < 0.5, we aim to answer the
following questions: “Why did individual xF not get the loan?” and “What would they have to
change, preferably with minimal effort, to increase their chances for a future application?”.

A popular approach to this task is to find so-called (nearest) counterfactual explanations [59],
where the term “counterfactual” is meant in the sense of the closest possible world with a different
outcome [30]. Translating this idea to our setting, a counterfactual explanation xCE for an individual
xF is given by a solution to the following optimisation problem:

xCE 2 argminx2X dist(x,xF) subject to h(x) � 0.5, (2)

where dist(·, ·) is a similarity metric on X , and additional constraints may be added to reflect
plausibility, feasibility, or diversity of the obtained counterfactual explanations [19, 20, 32, 33, 39, 44].

Importantly, while xCE signifies the most similar individual to xF that would receive the loan, it does
not inform xF on the actions they should perform to become xCE. To address this limitation, the
recently proposed framework of algorithmic recourse focuses instead on the actions an individual can
perform to achieve a more favourable outcome [54]. The emphasis is thus shifted from minimising a
distance as in (2) to optimising a personalised cost function costF(·) over a set of actions AF which
individual xF can perform. However, most prior work on both counterfactual explanations and
algorithmic recourse considers features as independently manipulable inputs to the classifier h (see
Fig. 1a), and therefore, ignores the potentially rich causal structure over X (see Fig. 1c). A number
of authors have argued for the need to consider causal relations between variables when generative
counterfactual explanations [59, 54, 20, 33, 32], however, the resulting counterfactuals fail to imply
feasible and optimal recourse actions [22].

In the most relevant work to the current [22], the authors approach the algorithmic recourse problem
from a causal perspective within the SCM framework and propose to view recourse actions a 2 AF

as interventions of the form do(XI = ✓). For the class of invertible SCMs, such as additive noise

4Following the related literature, we consider a binary classification task by convention; most of our
considerations extend to multi-class classification or regression settings as well though.

3



models (ANM) [16], where the structural equations S are of the form
S = {Xr := fr(Xpa(r)) + Ur}dr=1 =) uFr = xFr � fr(xF

pa(r)), r 2 [d], (3)

they propose to use the three steps of structural counterfactuals in [35] to assign a single counterfactual
xSCF(a) := x(a)|xF to each action a = do(XI = ✓) 2 AF, and solve the optimisation problem,

aF = argmina=do(XI=✓)2AF costF(a) subject to h(xSCF(a)) � 0.5. (4)

3 Negative result: no recourse guarantees for unknown structural equations

In practice, the structural counterfactual xSCF(a) can only be computed using an approximate (and
likely imperfect) SCM M = (S, PU), which is estimated from data assuming a particular form of
the structural equation as in (3). However, assumptions on the form of S? are generally untestable—
not even with a randomised experiment—since there exist multiple SCMs which imply the same
observational and interventional distributions, but entail different structural counterfactuals.
Example 1 (adapted from 6.19 in [38]). Consider the following two SCMs MA and MB

which arise from the general form in Figure 1b by choosing U1, U2 ⇠ Bernoulli(0.5) and

U3 ⇠ Uniform({0, . . . ,K}) independently in both MA and MB , with structural equations

X1 := U1, in {MA,MB},
X2 := X1(1� U2), in {MA,MB},
X3 := IX1 6=X2(IU3>0X1 + IU3=0X2) + IX1=X2U3, in MA,

X3 := IX1 6=X2(IU3>0X1 + IU3=0X2) + IX1=X2(K � U3), in MB .

Then MA and MB both imply exactly the same observational and interventional distributions, and

thus are indistinguishable from empirical data. However, having observed xF = (1, 0, 0), they predict

different counterfactuals had X1 been 0, i.e., xSCF(X1 = 0) = (0, 0, 0) and (0, 0,K), respectively.
5

Confirming or refuting an assumed form of S? would thus require counterfactual data which is, by
definition, never available. Thus, example 1 proves the following proposition by contradiction.
Proposition 2 (Lack of recourse guarantees). Unless the set of descendants of intervened-upon

variables is empty, algorithmic recourse can, in general, be guaranteed only if the true structural

equations are known, irrespective of the amount and type of available data.

Remark 3. The converse of Proposition 2 does not hold. E.g., given xF = (1, 0, 1) in Example 1,

abduction in either model yields U3 > 0, so the counterfactual of X3 cannot be predicted exactly.

Building on the framework in [22], we next present two novel approaches for causal algorithmic
recourse under unknown structural equations. The first approach in §4 aims to estimate the counter-
factual distribution under the assumption of ANMs (3) with Gaussian noise for the structural equations.
The second approach in §5 makes no assumptions about the structural equations, and instead of
approximating the structural equations, it considers the effect of interventions on a sub-population
similar to xF. We recall that the causal graph is assumed to be known throughout.

4 Individualised algorithmic recourse via (probabilistic) counterfactuals

Since the true SCM M? is unknown, one approach to solving (4) is to learn an approximate SCM M
within a given model class from training data {xi}ni=1. For example, for an ANM (3) with zero-mean
noise, the functions fr can be learned via linear or kernel (ridge) regression of Xr given Xpa(r) as
input. We refer to these approaches as MLIN and MKR, respectively. M can then be used in place
of M? to infer the noise values as in (3), and subsequently to predict a single-point counterfactual

xSCF(a) to be used in (4). However, the learned causal model M may be imperfect, and thus lead to
wrong counterfactuals due to, e.g., the finite sample of the observed data, or more importantly, due to
model misspecification (i.e., assuming a wrong parametric form for the structural equations).

To solve such limitation, we adopt a Bayesian approach to account for the uncertainty in the estimation
of the structural equations. Specifically, we assume additive Gaussian noise and rely on probabilistic
regression using a Gaussian process (GP) prior over the functions fr [62].

5This follows from abduction on xF = (1, 0, 0) which for both MA and MB implies U3 = 0.
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Definition 4 (GP-SCM). A Gaussian process SCM (GP-SCM) over X refers to the model

Xr := fr(Xpa(r)) + Ur, fr ⇠ GP(0, kr), Ur ⇠ N (0,�2
r), r 2 [d], (5)

with covariance functions kr : Xpa(r) ⇥ Xpa(r) ! R, e.g., RBF kernels for continuous Xpa(r).

While GPs have previously been studied in a causal context for structure learning [13, 56], estimating
treatment effects [2, 43], or learning SCMs with latent variables and measurement error [47], our goal
here is to account for the uncertainty over fr in the computation of the posterior over Ur, and thus to
obtain a counterfactual distribution, as summarised in the following propositions.

Proposition 5 (GP-SCM noise posterior). Let {xi}ni=1 be an observational sample from (5). For

each r 2 [d] with non empty parent set |pa(r)| > 0, the posterior distribution of the noise vector

ur = (u1
r, ..., u

n
r ), conditioned on xr = (x1

r, ..., x
n
r ) and Xpa(r) = (x1

pa(r), ...,x
n
pa(r)), is given by

ur|Xpa(r),xr ⇠ N
�
�2
r(K+ �2

rI)
�1xr,�

2
r

�
I� �2

r(K+ �2
rI)

�1
��

, (6)

where K :=
�
kr
�
xi

pa(r),x
j
pa(r)

��
ij

denotes the Gram matrix.

Next, in order to compute counterfactual distributions, we rely on ancestral sampling (according to
the causal graph) of the descendants of the intervention targets XI using the noise posterior of (6).
The counterfactual distribution of each descendant Xr is given by the following proposition.

Proposition 6 (GP-SCM counterfactual distribution). Let {xi}ni=1 be an observational sample

from (5). Then, for r 2 [d] with |pa(r)| > 0, the counterfactual distribution over Xr had Xpa(r) been

x̃pa(r) (instead of xF
pa(r)) for individual xF 2 {xi}ni=1 is given by

Xr(Xpa(r) = x̃pa(r))|xF, {xi}ni=1 ⇠ N
�
µF
r+ k̃T (K+�2

rI)
�1xr, s

F
r+ k̃� k̃T (K+�2

rI)
�1k̃

�
, (7)

where k̃ := kr(x̃pa(r), x̃pa(r)), k̃ :=
�
kr(x̃pa(r),x

1
pa(r)), . . . , kr(x̃pa(r),x

n
pa(r))

�
, xr and K as defined

in Proposition 5, and µF
r and sFr are the posterior mean and variance of uFr given by (6).

All proofs can be found in Appendix A. We can now generalise the recourse problem (4) to our
probabilistic setting by replacing the single-point counterfactual xSCF(a) with the counterfactual
random variable XSCF(a) := X(a)|xF. As a consequence, it no longer makes sense to consider a
hard constraint of the form h(xSCF(a)) > 0.5, i.e., that the prediction needs to change. Instead, we
can reason about the expected classifier output under the counterfactual distribution, leading to the
following probabilistic version of the individualised recourse optimisation problem:

mina=do(XI=✓)2AF costF(a) subject to EXSCF(a) [h (X
SCF(a))] � thresh(a). (8)

Note that the threshold thresh(a) is allowed to depend on a. For example, an intuitive choice is

thresh(a) = 0.5 + �LCB

p
VarXSCF(a) [h (XSCF(a))] (9)

which has the interpretation of the lower-confidence bound crossing the decision boundary of 0.5.
Note that larger values of the hyperparameter �LCB lead to a more conservative approach to recourse,
while for �LCB = 0 merely crossing the decision boundary with � 50% chance suffices.

5 Subpopulation-based algorithmic recourse via interventions and CATEs

The GP-SCM approach in §4 allows us to average over an infinite number of (non-)linear structural
equations, under the assumption of additive Gaussian noise. However, this assumption may still
not hold under the true SCM, leading to sub-optimal or inefficient solutions to the recourse problem.
Next, we remove any assumptions about the structural equations, and propose a second approach that
does not aim to approximate an individualised counterfactual distribution, but instead considers the
effect of interventions on a subpopulation defined by certain shared characteristics with the given
(factual) individual xF. The key idea behind this approach resembles the notion of conditional average
treatment effects (CATE) [1] (illustrated in Fig. 2a) and is based on the fact that any intervention
do(XI = ✓) only influences the descendants d(I) of the intervened-upon variables, while the
non-descendants nd(I) remain unaffected. Thus, when evaluating an intervention, we can condition
on Xnd(I) = xF

nd(I), thus selecting a subpopulation of individuals similar to the factual subject.

5
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Figure 2: (a) Illustration of point- and subpopulation-based recourse approaches. (b) Assumed causal
graph for the semi-synthetic loan approval dataset. (c) Trade-off between validity and cost which can
be controlled via �LCB for the probabilistic recourse methods.

Specifically, we propose to solve the following subpopulation-based recourse optimisation problem

min
a2AF

costF(a) subject to EXd(I)|do(XI=✓),xF
nd(I)

⇥
h
�
xF

nd(I),✓,Xd(I)
�⇤

� thresh(a), (10)

where, in contrast to (8), the expectation is taken over the corresponding interventional distribution.

In general, this interventional distribution does not match the conditional distribution, i.e.,
PXd(I)|do(XI=✓),xF

nd(I)
6= PXd(I)|XI=✓,xF

nd(I)
, because some spurious correlations in the observa-

tional distribution do not transfer to the interventional setting. For example, in Fig. 1c we have that
PX2|do(X1=x1,X3=x3) = PX2|X1=x1

6= PX2|X1=x1,X3=x3
. Fortunately, the interventional distribu-

tion can still be identified from the observational one, as stated in the following proposition.
Proposition 7. Subject to causal sufficiency, PXd(I)|do(XI=✓),xF

nd(I)
is observationally identifiable:

p
�
Xd(I)|do(XI = ✓),xF

nd(I)
�
=

Q
r2d(I) p

�
Xr|Xpa(r)

����
XI=✓,Xnd(I)=xF

nd(I)

. (11)

As evident from Proposition 7, tackling the optimisation problem in (10) in the general case (i.e., for
arbitrary graphs and intervention sets I) requires estimating the stable conditionals PXr|Xpa(r) (a.k.a.
causal Markov kernels) in order to compute the interventional expectation via (11). For convenience
(see §6 for details), here we opt for latent-variable implicit density models, but other conditional
density estimation approaches may be also be used [e.g., 6, 8, 53]. Specifically, we model each
conditional p(xr|xpa(r)) with a conditional variational autoencoder (CVAE) [48] as:

p(xr|xpa(r)) ⇡ p r (xr|xpa(r)) =
Z
p r (xr|xpa(r), zr)p(zr)dzr, p(zr) := N (0, I). (12)

To facilitate sampling xr (and in analogy to the deterministic mechanisms fr in SCMs), we opt for
deterministic decoders in the form of neural nets Dr parametrised by  r, i.e., p r (xr|xpa(r), zr) :=
�
�
xr �Dr(xpa(r), zr; r)

�
, and rely on variational inference [60], amortised with approximate

posteriors q�r (zr|xr,xpa(r)) parametrised by encoders in the form of neural nets with parameters �r.
We learn both the encoder and decoder parameters by maximising the evidence lower bound (ELBO)
using stochastic gradient descend [9, 26, 27, 40]. For further details, we refer to Appendix D.
Remark 8. The collection of CVAEs can be interpreted as learning an approximate SCM of the form

MCVAE : S = {Xr := Dr(Xpa(r), zr; r)}dr=1, zr ⇠ N (0, I) 8r 2 [d] (13)

However, this family of SCMs may not allow to identify the true SCM (provided it can be expressed

as above) from data without additional assumptions. Moreover, exact posterior inference over zr
given xF

is intractable, and we need to resort to approximations instead. It is thus unclear whether

sampling from q�r (zr|xFr,xF
pa(r)) instead of from p(zr) in (12) can be interpreted as a counterfactual

within (13). For further discussion on such “pseudo-counterfactuals” we refer to Appendix C.
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6 Solving the probabilistic-recourse optimisation problems

We now discuss how to solve the resulting optimisation problems in (8) and (10). First, note that both
problems differ only on the distribution over which the expectation in the constraint is taken: in (8)
this is the counterfactual distribution of the descendants given in Proposition 6; and in (10) it is the
interventional distribution identified in Proposition 7. In either case, computing the expectation for an
arbitrary classifier h is intractable. Here, we approximate these integrals via Monte Carlo by sampling
x(m)

d(I) from the interventional or counterfactual distributions resulting from a = do(XI = ✓), i.e.,

EXd(I)|✓ ,
⇥
h
�
xF

nd(I),✓,Xd(I)
�⇤

⇡ 1
M

PM
m=1 h

�
xF

nd(I),✓,x
(m)
d(I)

�
.

Brute-force approach. A way to solve (8) and (10) is to (i) iterate over a 2 AF, with AF being a
finite set of feasible actions (possibly as a result of discretising in the case of a continuous search
space); (ii) approximately evaluate the constraint via Monte Carlo; and (iii) select a minimum cost ac-
tion amongst all evaluated candidates satisfying the constraint. However, this may be computationally
prohibitive and yield suboptimal interventions due to discretisation.

Gradient-based approach. Recall that, for actions of the form a = do(XI = ✓), we need to
optimise over both the intervention targets I and the intervention values ✓. Selecting targets is a
hard combinatorial optimisation problem, as there are 2d

0
possible choices for d0  d actionable

features, with a potentially infinite number of intervention values. We therefore consider different
choices of targets I in parallel, and propose a gradient-based approach suitable for differentiable
classifiers to efficiently find an optimal ✓ for a given intervention set I .6 In particular, we first rewrite
the constrained optimisation problem in unconstrained form with Lagrangian [23, 28]:

L(✓,�) := costF(a) + �
�
thresh(a)� EXd(I)|✓

⇥
h
�
xF

nd(I),✓,Xd(I)
�⇤�

. (14)

We then solve the saddle point problem min✓ max� L(✓,�) arising from (14) with stochastic gradient
descent [9, 26]. Since both the GP-SCM counterfactual (7) and the CVAE interventional distribu-
tions (12) admit a reparametrisation trick [27, 40], we can differentiate through the constraint:

r✓EXd(I)

⇥
h
�
xF

nd(I),✓,Xd(I)
�⇤

= Ez⇠N (0,I)

⇥
r✓h

�
xF

nd(I),✓,xd(I)(z)
�⇤
. (15)

Here, xd(I)(z) is obtained by iteratively computing all descendants in topological order: either
substituting z together with the other parents into the decoders Dr for the CVAEs, or by using the
Gaussian reparametrisation xr(z) = µ+ �z with µ and � given by (7) for the GP-SCM. A similar
gradient estimator for the variance which enters thresh(a) for �LCB 6= 0 is derived in Appendix F.

7 Experimental results

In our experiments, we compare different approaches for causal algorithmic recourse on synthetic
and semi-synthetic data sets. Additional results can be found in Apendix B.

Compared methods. We compare the naive point-based recourse approaches MLIN and MKR

mentioned at the beginning of §4 as baselines with the proposed counterfactual GP-SCM MGP and the
CVAE approach for sub-population-based recourse (CATECVAE). For completeness, we also consider a
CATEGP approach as a GP can also be seen as modelling each conditional as a Gaussian,7 and also
evaluate the “pseudo-counterfactual” MCVAE approach discussed in Remark 8. Finally, we report
oracle performance for individualised M? and sub-population-based recourse methods CATE? by
sampling counterfactuals and interventions from the true underlying SCM. We note that a comparison
with non-causal recourse approaches that assume independent features [54, 44] or consider causal
relations to generate counterfactual explanations but not recourse actions [19, 32] is neither natural
nor straight-forward, because it is unclear whether descendant variables should be allowed to change,
whether keeping their value constant should incur a cost, and, if so, how much, c.f. [22].

6For large d when enumerating all I becomes computationally prohibitive, we can upper-bound the allowed
number of variables to be intervened on simultaneously (e.g., |I|  3), or choose a greedy approach to select I.

7Sampling from the noise prior instead of the posterior in (6) leads to an interventional distribution in (7).
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Table 1: Experimental results for the gradient-based approach on different 3-variable SCMs. We show
average performance ±1 standard deviation for Nruns = 100, NMC-samples = 100, and �LCB = 2.

Method LINEAR SCM NON-LINEAR ANM NON-ADDITIVE SCM

Valid? (%) LCB Cost (%) Valid? (%) LCB Cost (%) Valid? (%) LCB Cost (%)

M? 100 - 10.9±7.9 100 - 20.1±12.3 100 - 13.2±11.0
MLIN 100 - 11.0±7.0 54 - 20.6±11.0 98 - 14.0±13.5
MKR 90 - 10.7±6.5 91 - 20.6±12.5 70 - 13.2±11.6
MGP 100 .55±.04 12.2±8.3 100 .54±.03 21.9±12.9 95 .52±.04 13.4±12.8
MCVAE 100 .55±.07 11.8±7.7 97 .54±.05 22.6±12.3 95 .51±.01 13.4±12.2
CATE? 90 .56±.07 11.9±9.2 97 .55±.05 26.3±21.4 100 .52±.02 13.5±13.0
CATEGP 93 .56±.05 12.2±8.4 94 .55±.06 25.0±14.8 94 .52±.03 13.2±13.1
CATECVAE 89 .56±.08 12.1±8.9 98 .54±.05 26.0±14.3 100 .52±.05 13.6±12.9

Metrics. We compare recourse actions recommended by the different methods in terms of cost,
computed as the L2-norm between the intervention ✓I and the factual value xF

I , normalised by the
range of each feature r 2 I observed in the training data; and validity, computed as the percentage
of individuals for which the recommended actions result in a favourable prediction under the true
(oracle) SCM. For our probabilistic recourse methods, we also report the lower confidence bound
LCB := E[h]� �LCB

p
Var[h] of the selected action under the given method.

Synthetic 3-variable SCMs under different assumptions. In our first set of experiments, we
consider three classes of SCMs over three variables with the same causal graph as in Fig. 1c. To test
robustness of the different methods to assumptions about the form of the true structural equations, we
consider a linear SCM, a non-linear ANM, and a more general, multi-modal SCM with non-additive
noise. For further details on the exact form we refer to Appendix E.

Results are shown in Table 1. We observe that the point-based recourse approaches perform (relatively)
well in terms of both validity and cost, when their underlying assumptions are met (i.e., MLIN on the
linear SCM and MKR on the nonlinear ANM). Otherwise, validity significantly drops as expected (see,
e.g., the results of MLIN on the non-linear ANM, or of MKR on the non-additive SCM). Moreover,
we note that the inferior performance of MKR compared to MLIN on the linear SCM suggests an
overfitting problem, which does not occur for its more conservative probabilistic counterpart MGP.
Generally, the individualised approaches MGP and MCVAE perform very competitively in terms of
cost and validity, especially on the linear and nonlinear ANMs. The subpopulation-based CATE
approaches on the other hand, perform particularly well on the challenging non-additive SCM (on
which the assumptions of GP approaches are violated) where CATECVAE achieves perfect validity as
the only non-oracle method. As expected, the subpopulation-based approaches generally lead to
higher cost than the individualised ones, since the latter only aim to achieve recourse only for a given
individual while the former do it for an entire group (see Fig. 2a).

Semi-synthetic 7-variable SCM for loan-approval. We also test our methods on a larger semi-
synthetic SCM inspired by the German Credit UCI dataset [34]. We consider the variables age A,
gender G, education-level E, loan amount L, duration D, income I , and savings S with causal graph
shown in Fig. 2b. We model age A, gender G and loan duration D as non-actionable variables, but
consider D to be mutable, i.e., it cannot be manipulated directly but is allowed to change (e.g., as a
consequence of an intervention on L). The SCM includes linear and non-linear relationships, as well
as different types of variables and noise distributions, and is described in more detail in Appendix E.

The results are summarised in Table 2, where we observe that the insights discussed above similarly
apply for data generated from a more complex SCM, and for different classifiers. Finally, we show the
influence of �LCB on the performance of the proposed probabilistic approaches in Fig. 2c. We observe
that lower values of �LCB lead to lower validity (and cost), especially for the CATE approaches. As
�LCB increases validity approaches the corresponding oracles M? and CATE?, outperforming the
point-based recourse approaches. In summary, our probabilistic recourse approaches are not only
more robust, but also allow controlling the trade-off between validity and cost using �LCB.
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Table 2: Experimental results for the 7-variable SCM for loan-approval. We show average performance
±1 standard deviation for Nruns = 100, NMC-samples = 100, and �LCB = 2.5. For linear and non-
linear logistic regression as classifiers, we use the gradient-based approach, whereas for the non-
differentiable random forest classifier we rely on the brute-force approach (with 10 discretised bins
per dimension) to solve the recourse optimisation problems.

Method LINEAR LOG. REGR. NON-LIN. LOG. REGR. (MLP) RANDOM FOREST(BRUTE-FORCE)

Valid? (%) LCB Cost (%) Valid? (%) LCB Cost (%) Valid? (%) LCB Cost (%)

M? 100 - 15.8± 7.6 100 - 11.0±7.0 100 - 15.2±7.5
MLIN 19 - 15.4± 7.4 80 - 11.0±6.9 94 - 15.6±7.6
MKR 41 - 15.6± 7.5 87 - 11.1±7.0 92 - 15.1±7.4
MGP 100 .50±.00 18.0± 7.7 100 .52±.04 11.7±7.3 100 .66±.14 16.3±7.4
MCVAE 100 .50±.00 16.6± 7.6 99 .51±.01 11.3±6.9 100 .66±.14 15.9±7.4
CATE? 93 .50±.01 22.0± 9.4 95 .52±.05 12.0±7.7 98 .66±.15 17.0±7.3
CATEGP 93 .50±.02 21.7± 9.2 93 .51±.06 12.0±7.4 100 .67±.15 17.1±7.4
CATECVAE 94 .49±.01 23.7±11.3 95 .51±.03 12.0±7.8 100 .68±.15 17.9±7.4

8 Discussion

Assumptions, limitations, and extensions. Throughout the paper, we have assumed a known
causal graph and causal sufficiency. While this may not hold for all settings, it is the minimal necessary
set of assumptions for causal reasoning from observational data alone. Access to instrumental
variables or experimental data may help further relax these assumptions [3, 11, 50]. Moreover, if only
a partial graph is available or some relations are known to be confounded, one will need to restrict
recourse actions to the subset of interventions that are still identifiable [45, 46, 51]. An alternative
approach could address causal sufficiency violations by relying on latent variable models to estimate
confounders from multiple causes [61] or proxy variables [31], or to work with bounds on causal
effects instead [4, 49]. We relegate the investigation of these settings to future work.

On the counterfactual vs interventional nature of recourse. Given that we address two different
notions of recourse—counterfactual/individualised (rung 3) vs. interventional/subpopulation-based
(rung 2)—one may ask which framing is more appropriate. Since the main difference is whether the
background variables U are assumed fixed (counterfactual) or not (interventional) when reasoning
about actions, we believe that this question is best addressed by thinking about the type of environment
and interpretation of U: if the environment is static, or if U (mostly) captures unobserved information
about the individual, the counterfactual notion seems to be the right one; if, on the other hand, U
also captures environmental factors which may change, e.g., between consecutive loan applications,
then the interventional notion of recourse may be more appropriate. In practice, both notions may
be present (for different variables), and the proposed approaches can be combined depending on
the available domain knowledge since each parent-child causal relation is treated separately. We
emphasise that the subpopulation-based approach is also practically motivated by a reluctance to
make (parametric) assumptions about the structural equations which are untestable but necessary for
counterfactual reasoning. It may therefore be useful to avoid problems of misspecification, even for
counterfactual recourse, as demonstrated experimentally for the non-additive SCM.

9 Conclusion

In this work, we studied the problem of algorithmic recourse from a causal perspective. As negative
result, we first showed that algorithmic recourse cannot be guaranteed in the absence of perfect
knowledge about the underlying SCM governing the world, which unfortunately is not available in
practice. To address this limitation, we proposed two probabilistic approaches to achieve recourse
under more realistic assumptions. In particular, we derived i) an individual-level recourse approach
based on GPs that approximates the counterfactual distribution by averaging over the family of
additive Gaussian SCMs; and ii) a subpopulation-based approach, which assumes that only the causal
graph is known and makes use of CVAEs to estimate the conditional average treatment effect of an
intervention on a subpopulation similar to the individual seeking recourse. Our experiments showed
that the proposed probabilistic approaches not only result in more robust recourse interventions than
approaches based on point estimates of the SCM, but also allows to trade-off validity and cost.
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Broader Impact

Our work falls into the domain of explainable AI, which—given the increasing use of often intranspar-
ent (“blackbox”) machine learning models in consequential decision making—is of rapidly-growing
societal importance. In particular, we consider the task of enabling and facilitating algorithmic

recourse, which aims to provide individuals with guidance and recommendations on how best (i.e.,
efficiently and ideally at low cost) to recover from unfavourable decisions made by an automated
system. To address this task, we build on the framework of causal modelling, which constitutes a
principled and mathematically rigorous way to reason about the downstream effects of actions. Since
correlation does not imply causation, this requires to make additional assumptions based on a general
understanding of the domain at hand. While this may perhaps seem restrictive at first, we point out
that other approaches to explainability also make implicit assumptions of a causal nature (e.g., that all
features can be changed at will without affecting others in the case of “counterfactual” explanations),
without explicitly and clearly stating such assumptions. The advantage of phrasing assumptions about
relations between features in the form of a causal graph is that the latter is transparent and intuitive to
understand and can thus be challenged by decision makers and individuals alike.

While theoretically sound from a causal perspective, at the same time, our method is aimed at
being practical by not making further assumptions beyond the causal graph which would be hard
or impossible to test or challenge empirically—in contrast to the assumed known specification of
the full SCM in [22]. We start from the position that the model is only partially known, and use
this to motivate probabilistic approaches to causal algorithmic recourse which take uncertainty into
account. Our approaches are more robust to misspeficiation than naive point-based recourse methods
(as demonstrated experimentally): “system-failure” is thus fundamentally baked in to our methods.
Moreover, the interpretable “conservativeness parameter” �LCB can be used trade-off the desired level
of robustness against the effort an individual is willing to put into achieving recourse.

The importance of causal reasoning for an ethical and socially beneficial use of ML-assisted tech-
nology has also been stressed in a number of recent works in the field of explainability and fair
algorithmic decision making [29, 42, 24, 63, 64, 10, 57, 15]. We thus hope that some of the proba-
bilistic approaches for causal reasoning under imperfect knowledge proposed in this work may also
prove useful for related tasks such as fairness, accountability, transparency. To this end, we have
created a user-friendly implementation of all the approaches proposed in this work that we will make
publicly available to be scrutinised, re-used, and further improved by the community. The code is
highly flexible and only requires the specification of a causal graph, as well as a labelled training
dataset.

Since our work considers the classifier as given, it is possible that it is explicitly discriminatory or
reproduces biases in the data. While not directly addressing this problem, our work aims to enable
individuals to overcome a potentially unfairly obtained decision with minimal effort. If successful
recourse examples are included in future training data, this may help de-bias a system over time; we
consider the intersection of our work with fair decision making in the context of a classifier evolving
over time as the result of further data collection [25] a fruitful and important direction for future
research. In addition, observing that certain minority groups consistently receive more costly recourse
recommendations may be a way to reveal bias in the underlying decision making system.

While our framework is intended to help individuals increase their chances for a more favourable
prediction given that they were, e.g., denied a loan or bail, we cannot rule out a priori, that the same
approach could also be used by foes in unintended ways, e.g., to “game” a spam filter or similar
system built to protect society from harm. However, since our framework requires the specification
of a causal graph which usually requires an understanding of the domain and the causal influences at
play, it is unlikely that it could be abused by a purely virtual system without a human in the loop.
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