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Abstract

This paper proposes a novel non-parametric multidimensional convex regression
estimator which is designed to be robust to adversarial perturbations in the empirical
measure. We minimize over convex functions the maximum (over Wasserstein
perturbations of the empirical measure) of the absolute regression errors. The
inner maximization is solved in closed form resulting in a regularization penalty
involves the norm of the gradient. We show consistency of our estimator and a rate
of convergence of order Õ

(
n−1/d

)
, matching the bounds of alternative estimators

based on square-loss minimization. Contrary to all of the existing results, our
convergence rates hold without imposing compactness on the underlying domain
and with no a priori bounds on the underlying convex function or its gradient
norm.

1 Introduction

Convex regression estimation arises in a wide range of learning applications, for example, when
fitting demand functions, production curves or utility functions, see [15, 23, 24]. Economic theory
often dictates that demand functions are concave, [2]. In financial engineering, stock option prices
often exhibit convexity restrictions [1]. This paper introduces a novel convex regression estimator
which, by design, enjoys enhanced robustness properties. This estimator requires no a priori uniform
bounds on the underlying convex function or its Lipschitz constant, nor does our estimator require
that the domain of the convex function be compact, in contrast to existing convex function estimators
that have known convergence rate guarantees. Furthermore, our numerical experiments show that
our estimator exhibits good empirical performance, in comparison with existing estimators, and is a
promising alternative to existing methods.

Let X be a d-dimensional random vector and let Y be a scalar random variable. Given a sample
(X1, Y1), · · · , (Xn, Yn) of i.i.d. copies of (X,Y ), we adopt the convex regression model

Yi = f∗(Xi) + Ei, (1)

where f∗ : Rd → R is a (unknown) convex function and Ei is a zero-median random variable
independent of Xi, satisfying mild regularity conditions indicated in the sequel. Unlike the existing
literature on convex regression (or, more generally, shape-based regression), we base our estimation
methodology not on minimizing the squared error loss, but on minimizing mean absolute error loss.
We adopt this viewpoint as a means of reducing the sensitivity of our regression estimator to outliers
in the data.
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We further wish to regularize our estimator. One vehicle towards accomplishing this goal in a
principled fashion is to consider a distributionally robust formulation in which we robustify over a
Wasserstein ball around the data, using a diameter that is driven by consistency and convergence rate
considerations. When we do this, we arrive at a computationally tractable formulation of the problem
that can be solved as a linear program. This is to be contrasted against the quadratic program that
arises when minimizing squared error loss. Furthermore, the form of regularization that appears in
this problem involves a novel gradient-based penalization term, to be described in more detail later in
this Introduction.

In order to introduce our Wasserstein-based distributionally robust optimization formulation, we first
recall how the Wasserstein distance is defined.

First, let P(Rm×Rm) be the space of Borel probability measures defined on Rm×Rm. Let Π (µ, ν)
be the subspace of P(Rm × Rm) with fixed marginals given by µ and v, respectively. That is, if
U ∈ Rm, V ∈ Rm are random vectors with joint distribution π ∈ P(Rm × Rm), then π ∈ Π (µ, ν),
if the marginal distribution of U , πU , equals µ and the marginal distribution of V , πV , equals ν. The
Wasserstein distance between µ and ν is given by

D(µ, ν) := inf

{
Eπ [c (U, V )] : π ∈ P(Rm × Rm), πU = µ, πV = ν

}
,

where c : Rm × Rm → [0,∞] is a metric. In our setting, we have m = d+ 1, and we will choose as
our metric

c ((x, y) , (x′, y′)) = ‖x− x′‖1 1 (y = y′) +∞1 (y 6= y′) . (2)

We take the view here that distributional uncertainty is incorporated only in terms of the predictors
and not the responses, since the responses already include a measurement error (in the term E). This
type of cost function has been used in the literature, [6], to exactly recover regularized estimators
such as sqrt-Lasso, among others. It is possible to add distributional uncertainty in the response. The
methods that we propose allow for adding distributional uncertainty in the response with only a small
variation in the form of the estimator and without any change in the learning rates or the assumptions
that we impose. Since the challenge here arises from the multidimensional aspect of the predictor
variable, we decided to mostly impose the distributional robustness on the predictors.

Now, consider a loss function l(y, z) : R× R→ R, which is assumed to be convex and uniformly
Lipschitz. Our distributionally robust convex regression (DRCR) formulation takes the form,

inf
f∈F

sup
P∈P(Rd+1):D(P,Pn)≤δ

EP [l(Y, f(X))] , (3)

where F represents the class of convex and Lipschitz functions (formally defined in Section 2.3), the
parameter δ := δn > 0 is the uncertainty radius. This radius will be judiciously chosen as a function
of n to obtain consistency and suitable rates of convergence. The notation Pn encodes the empirical
distribution of the observations (X1, Y1), · · · , (Xn, Yn), namely,

Pn(dx, dy) :=
1

n

n∑
i=1

δ{(Xi,Yi)}(dx, dy).

Distributionally robust optimization formulations such as (3) have been used in a wide range of
settings in the operations research literature and these formulations have become increasingly popular
in machine learning and statistics.

Our main contributions in this paper are as follows.

i) We provide a tractable formulation of (3), in particular, we will show that

inf
f∈F

sup
P∈P(Rd+1):D(P,Pn)≤δ

EP [l(Y, f(X))] = inf
f∈F
{δL ‖∇f‖∞ + EPn l(Y, f(X))} , (4)

where ‖∇f‖∞ is the largest l∞-norm of all subgradients of f(x) for all x, and similarly, L :=
sup(y,z)∈R×R |∇zl(y, z)| (see Theorem 1). Note the penalty term is expressed in terms of the
norm of the gradient of the estimator. The appearence of the l∞-norm is intimately connected to
the choice of the l1 cost function given in (2).
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ii) Assuming that l (y, f (x)) = |y − f (x)|, we provide statistical guarantees for the rate of conver-
gence of the estimators obtained in (4), improving upon the results obtained using a quadratic loss
. In particular, we show that if ‖X‖γ∞ has a finite moment generating function in a neighborhood
of the origin for some γ > 0 and if δn is chosen to be Õ

(
n−2/d

)
, then, under suitable regularity

conditions on the residuals (see Theorem 2),

f̂n,δn = f∗ + Õ
(
n−1/d

)
,

in a suitable sense, where f̂n,δn ∈ arg inff∈F {δnL ‖∇f‖∞ + EPn l(Y, f(X))} and the notation
Õ
(
n−1/d

)
ignores poly-log factors in n. In contrast to the current results in the literature, our rate

of convergence does not require X to have compact support, nor do we need to build an apriori
bound on the size of the gradient of f into our estimator in order to obtain convergence rate result.

Our contributions have several significant features. First, it is not difficult to see that choosing the
absolute error loss l (y, f (x)) = |y − f (x)| makes (4) equivalent to a linear programming problem.
In fact, since Pn is finitely supported, the problem becomes a finite dimensional linear programming
problem. Hence, this problem is, in principle, easier to solve than the standard quadratic problem that
arises in typical non-parametric convex regression formulations, which arise when minimizing the
squared error loss.

Second, our estimator is naturally endowed with desirable out-of-sample features due to the presence
of the inner maximization, which explores the impact on the loss function due to statistical variations
in the data. This interpretation follows from the left hand side of (4). The right hand side of (4), on
the other hand, shows a direct connection to regularization in terms of the norm of the gradient of f ,
and the resulting norm is the dual transportation cost. This regularization term, as we shall see, allows
us to construct an estimator that are free of a priori bounds imposed on the size of the gradient of
f , which typically are required in order to obtain statistical guarantees. We now provide a literature
review in the scientific areas touched by our contribution, namely, convex regression estimation and
distributionally robust optimization.

1.1 Related Literature

In the context of convex regression, the overwhelming majority of the literature focuses on empirical
least-squares estimators (leading to a quadratic programming formulation of the same size as the
linear programming formulation that we offer). In one dimension, the work of [11] proves the
consistency of the least squares estimator, and provides a rate of convergence of order O(n−2/5) and
an asymptotic distribution for this estimator; a matching upper and lower bounds for the min-max
risk (in terms of quadratic loss) was obtained in [13], also with the same rate of order O(n−2/5) up
to a logarithmic factor. The first consistency results in higher dimensional problems were obtained
in [17, 20]. Associated rates of convergence have only been derived recently, in [3, 14, 16], all of
which assume that the predictor takes values on a compact set. It is shown in these papers that a phase
transition occurs at d = 4. When d ≤ 4, the least squares estimator achieves the convergence rate of
n−2/(d+4), which matches the optimal convergence rate in the non-parametric setting (when f∗ is a
twice continuously differentiable and the data is restricted to lie on a compact set). However, when
d > 4, the convergence rate of the least squares estimator deteriorates to O(n−1/d). Moreover, the
results in [16] and [3] require apriori knowledge on ‖∇f∗‖∞ in the construction of their estimator,
while [14] requires knowledge of ‖f∗‖∞. The work of [14] shows that under additional smoothness
assumptions, the optimal min-max risk is of order n−2/(d+4), although, interestingly, no explicit
estimator was given to recover such a rate in dimensions larger than four.

In connection to optimization, our formulation connects to an area which has been active in operations
research for many years, namely, robust and distributionally robust optimization [5]. Distributionally
robust optimization (DRO) problems informed by optimal transport costs, as in this paper’s formula-
tion, have become popular in recent years not only in operations research but also in the machine
learning community. The work of [21] is the first one to show a connection to regularized estimators,
in the context of logistic regression. The paper [6] provides an exact recovery of sqrt-Lasso and
support vector machines. The work in [6] uses the DRO formulation to define a statistical criterion to
optimally choose the uncertainty size δ. This criterion, when applied to linear regression problems,
recovers the scalings both in dimension and sample size obtained in the high-dimensional statistics
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literature (see, for example, [4]). Applications in training of deep neural networks are given in [22],
and additional representations of other estimators are given in [8, 10, 19], among others. A key step
involved in obtaining these representations involves a duality result, which is given in [7].

1.2 Organization

The rest of this paper is organized as follows. In Section 2.1, we state and prove a strong duality
result for the DRCR formulation in (6). Section 2.2 provides an explicit construction of the DRCR
estimator, and in Section 2.3, we show that the convergence rate of this estimator is at most Õ(n−1/d).
Finally we run a simulation study showing that the DRCR estimator can outperform the standard
LSE or kernel based estimator. The proof of Theorem 2, as well as the main lemmas, is deferred to
the supplementary materials.

2 Main Results

We first discuss our main result corresponding to the first contribution stated in the Introduction.
We later turn to the second contribution. In order to state the strong duality result, we introduce
some notations as follows. Let x = (x1, · · · , xd), denoted by ∂f(x) the subdifferential of f
at x, and we define ∂xif(x) to be the partial subdifferential of f at x with respect to xi. we
define ‖∇f‖∞ := supx∈Rd max {‖g‖∞ : g ∈ ∂f(x)}, and |∇xif(x)| := max {|g| : g ∈ ∂xif(x)}.
Finally, let ∇f(x) denotes one of the solutions in arg max {‖g‖∞ : g ∈ ∂f(x)}.

2.1 Dual formulation of DRCR

In this section, we establish the strong duality result for the DRCR problem (3), which plays an
important role in the construction of our estimator and the analysis of rate of convergence.
Theorem 1 (Strong Duality). Suppose l(y, z) : R× R→ R is a convex and Lipschitz function, such
that l(y, z) = l(−y,−z). Define

L := sup
(y,z)∈R×R

|∇zl(y, z)|.

Then, for any δ ≥ 0,

inf
f∈F

sup
P∈P(Rd+1):D(P,Pn)≤δ

EP [l(Y, f(X))] = inf
f∈F

{
δL‖∇f‖∞ +

1

n

n∑
i=1

l(Yi, f(Xi))

}
.

By the above theorem, we see that the DRCR (3) problem is essentially equivalent to a regularized
empirical loss, where the supremum norm of∇f is penalized.

Proof of Theorem 1. To begin, we invoke the following lemma

Lemma 1 ([7]). Given any probability distribution µ ∈ P(Rd), for any upper semi-continuous
function f ∈ L1(dµ) and any cost function c, the following strong duality holds:

sup
ν∈P(Rd):D(µ,ν)≤δ

Eνf(X) = inf
λ≥0

{
λδ + Eµ

[
sup
y∈Rd

{f(y)− λc(X, y)}

]}
.

As a direct consequence of Lemma 1, we have for any f ∈ F that

sup
P∈Rd+1:D(P,Pn)≤δ

EP [l(Y, f(X))]

= inf
λ≥0

{
λδ + EPn

[
sup

(x,y)∈Rd×R
{l(y, f(x))− λc ((X,Y ), (x, y))}

]}

= inf
λ≥0

{
λδ +

1

n

n∑
i=1

sup
x∈Rd

{l(Yi, f(x))− λ‖x−Xi‖1}

}
. (5)
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For simplicity, let∇if(x) denotes the ith coordinate of∇f(x), (1 ≤ i ≤ d). Suppose λ < L‖∇f‖∞
, then there exists y0 ∈ R, z0 ∈ R, x0 ∈ Rd and i0 ∈ {1, . . . , d}, such that λ < |∇zl(y0, z0)| ·
|∇i0f(x0)|. Without lost of generality, we may assume that ∇zl(y0, z0)∇i0f(x0) > 0. Otherwise,
we consider (−y0,−z0). We may consider the case that both ∇zl(y0, z0),∇i0f(x0) > 0, since the
case in which both of them are negative is similar. Let {ei}di=1 be the canonical basis of Rd, if
xt := x0 + t · ei0 ∈ Rd, then f(xt) is a convex function of t. Moreover, under the above assumptions,
we have f(xt)→ +∞ as t→ +∞. Hence, together with the convexity of l, for t > 0 sufficiently
large,

l(Yi.f(xt))− λ‖xt −Xi‖1
≥ l(y0, f(xt))− λ‖xt − x0‖1 − L0|y0 − Yi| − λ‖x0 −Xi‖
≥ l(y0, z0) +∇zl(y0, z0) · (f(xt)− z0)− λt− L0|y0 − Yi| − λ‖x0 −Xi‖
≥ (∇zl(y0, z0)∇i0f(x0)− λ)t+∇zl(y0, z0) · (f(x0)− z0) + l(y0, z0)− L0|y0 − Yi|
− λ‖x0 −Xi‖,

where L0 := sup(y,z)∈R×R |∇yl(y, z)| <∞. By taking the supremum over t, we have

sup
x∈Rd

{l(Yi, f(x))− λ‖x−Xi‖1} =∞.

On the other hand, if λ ≥ L‖∇f‖∞, we have for any x ∈ Rd that

l(Yi, f(x))− l(Yi, f(Xi)) ≤ L‖∇f‖∞‖x−Xi‖1 ≤ λ‖x−Xi‖1,
where the equality holds if x = Xi. Hence

sup
x∈Rd

{l(Yi, f(x))− λ‖x−Xi‖1} = l(Yi, f(Xi)).

Now, we can rewrite the equation (5) as

sup
ν∈P(Rd):D(µ,ν)≤δ

Eνf(X) = inf
λ≥L‖∇f‖∞

{
λδ +

1

n

n∑
i=1

l(Yi, f(Xi))

}

= δL‖∇f‖∞ +
1

n

n∑
i=1

l(Yi, f(Xi)).

2.2 Construction of the DRCR Estimator

To construct the DRCR estimator, we focus now on the absolute error loss l(y, f(x)) = |y − f(x)|.
Consider the following class of convex and Lipschitz functions:

Fn := {f : f is convex, ‖∇f‖∞ ≤ log n}.
It can be checked directly that the loss function l satisfies the requirements in Theorem 1 with the
constant L = 1, so, we can rewrite the DRCR problem (3) as follows:

inf
f∈Fn

{
δ‖∇f‖∞ +

1

n

n∑
i=1

l(Yi, f(Xi))

}
. (6)

Now we construct an estimator f̂n,δ that solve the problem (6). Consider the following finite
dimensional linear programming (LP)

min
gi,ξi

1

n

n∑
i=1

l(Yi, gi) + δ max
1≤i≤n

‖ξi‖∞.

s.t. gj ≥ gi + 〈ξi, Xj −Xi〉, 1 ≤ i, j ≤ n.
|ξki | ≤ log n, where ξi = (ξ1i , · · · , ξdi ), 1 ≤ i ≤ n.

(7)

Let (ĝ1, ξ̂1), · · · , (ĝn, ξ̂n) be any solution of problem (7). Then, we can define the DRCR estimator
by

f̂n,δ(x) := max
1≤i≤n

(
ĝi + 〈ξ̂i, x−Xi〉

)
, (8)
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where 〈·, ·〉 is the standard inner product. Next, we show that f̂n,δ also solves the problem (6). In fact,
f̂n,δ is a solution to the problem

inf
f∈Fn

{
δ sup
1≤i≤n

‖∇f(Xi)‖∞ +
1

n

n∑
i=1

l(Yi, f(Xi))

}
,

where the objective value certainly serves as a lower bound for that of (6). Moreover, observe that
‖∇f̂n,δ‖∞ = max1≤i≤n ‖ξ̂i‖∞ = sup1≤i≤n ‖∇f(Xi)‖∞, hence f̂n,δ is also a solution of (6).

2.3 Rate of Convergence

In order to state our rate of convergence result, corresponding the second contribution stated in the
Introduction, we need to impose some assumptions and state some definitions.

Let P(Rn) denote the set of all probability measures supported on Rn. Given a metric space
(X , ρ) and any subset G ⊂ X , the ε−covering number M(G, ε; ρ) is defined as the small-
est number of balls with radius ε whose union contains G, and let Aε denotes any corre-
sponding ε-covering set. We say a random variable W is σ-sub-Gaussian if its Orlicz norm
‖W‖ψ2

:= supk≥1 k
−1/2 (E|W − EW |k

)1/k ≤ σ, which is equivalent to the standard defini-
tion of sub-Gaussian random variable, see [25]. Furthermore, we use standard Landau’s asymp-
totic notations as follows: for two non-negative sequences {an} and {bn}, let an = O(bn) iff
lim supn→∞ an/bn < ∞, an = Θ(bn) iff an = O(bn) and bn = O(an), and an = Õ(bn) iff for
some an = O(bn) up to a poly-log factor of bn.

We assume that the data {(Xi, Yi)}ni=1 are i.i.d samples from P . To analyze the asymptotic behavior
of the DRCR estimator, we shall impose the following assumptions on the distribution of X and the
random variable E in (1).
Assumption 1. There exists some α, γ > 0 such that

E exp (α‖X‖γ∞) <∞. (9)
Assumption 2. The distribution of E is σ-sub-Gaussian for some σ > 0, symmetric about zero, and
has a continuous positive density pE(·) in a neighborhood of 0.
Remark 1. Assumption 1 allows the study of random variables (such as Weibull random variables)
exhibiting heavy tail behavior [9].
Remark 2. The assumptions on the symmetry and the density, ensure that 0 is the unique median of
E . As is standard in statistical formulations involving absolute error minimization, this assumption is
needed to guarantee the consistency of our estimator.

In the rest of this section, we study the convergence rate of the DRCR estimator f̂n,δn introduced in
Section 2.2. We consider the general question of convergence rate for robustified estimators of the
form

ĝn,δn(x) ∈ arg min
f∈Fn

{
sup

P∈P(Rd+1):Dc(P,Pn)≤δn
EP [l(Y, f(X))]

}
. (10)

We will show that by a suitable choice of δn, the convergence rate of ĝn,δn to f∗ under the empirical
l1 loss is of order Õ

(
n−1/d

)
, where the empirical l1 loss of any two functions f, g is defined as

l1(f, g) :=
1

n

n∑
i=1

|f(Xi)− g(Xi)|.

Now we state our main theorem. The proof details are deferred to the supplementary materials
(Appendix A).
Theorem 2. If ‖∇f∗‖∞ <∞ and d > 4, and Assumption 1 and 2 hold, we can pick a δn of order
Θ(n−

2
d (log n)1+

3
γ ) so that for any ĝn,δn(·) defined via (10), there exists some constant C > 0 such

that
P
(
l1(ĝn,δn , f∗) > Cn−

1
d (log n)

γ+3
2γ

)
→ 0 as n→∞. (11)

In particular, the DRCR estimator f̂n,δn defined in (8) also enjoys the rate of Õ(n−1/d), which is
the best known rate so far (compare to [3, 14, 16]). In contrast to prior work, the estimation are not
defined in terms of a priori bounds on ‖f∗‖∞ and ‖∇f∗‖∞.
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3 Numerical Experiments

3.1 Synthetic datasets

In this section we investigate the performance of our estimator f̂n,δ, and compare it with the least
squares estimator (LSE) of convex regression in [16], as well as the kernel smoothing estimator.
We conduct the experiments in the following setting. For each d and n, we generate i.i.d. random
variables Xi ∈ Rd, i = 1 . . . n such that each coordinate of Xi are i.i.d. from N(0, 1), or a standard
Student’s t-distribution with 10 degrees of freedom. We include this heavy-tailed specification to
empirically test the impact of Assumption 1 in our estimator. The results suggest that even if such
assumption is violated, our estimator still performs remarkably well.

Let f∗ : Rd → R such that

f∗(x) =

d∑
i=1

|xi|, x = (x1, . . . , xd).

We generate Yi, i = 1 . . . d by Yi = f∗(Xi) + Ei, where the noises Ei are sampled i.i.d. from
N(0, σ2).

We construct our DRCR estimator f̂n,δn by taking δn = n−2/d. For the LSE of convex regression, in
line with the setting in [3, 16], let c be any numerical constant greater than ‖∇f∗‖∞, and we consider
the class of functions

Fc := {f : f is convex, ‖∇f‖∞ ≤ c}.

Let f̂LS
n,c be the least squares convex regression estimator, namely,

f̂LS
n,c = arg min

f∈Fc

{
1

n

n∑
i=1

(Yi − f(Xi))
2

}
.

In [3, 16] it is shown that f̂LS
n,c converges to f∗ for any c > ‖∇f∗‖∞. Given that ‖∇f∗‖∞ = 1, we

set c = 10 or 0.8, since in practice we typically do not have a tight bound for ‖∇f∗‖∞ (we may
overestimate/underestimate ‖∇f∗‖∞).

Next we construct the kernel regression estimator. Although not required to be convex, the
kernel estimator is a good benchmark comparison choice, in the non-parametric setting. For
some bandwidth hn > 0, we define the kernel regression estimator k̂n,hn by k̂n,hn(x) =∑n
i=1 YiK(x−Xihn

)/
∑n
i=1K(x−Xihn

), where K : Rd → R denotes the Gaussian kernel with

K(x) = (2π)−
d
2 e−‖x‖

2/2. We then choose the best bandwidth hn via cross validation. To be
specific, we pick hn = Cn−

1
d+4 , and then optimize the choice C via line search. That is, for each

1 ≤ j ≤ n, let k̂(−j)n,hn
(x) =

∑n
i=1,i6=j YiK(x−Xihn

)/
∑n
i=1,i6=j K(x−Xihn

) and we select C to be the
minimizer of

min
C∈{j/100,1≤j≤100}

n∑
i=1

(
Yi − k̂(−i)n,Cn−1/(d+4)(Xi)

)2
.

Define the empirical l2 loss of any two functions f, g as

l2(f, g) :=

(
1

n

n∑
i=1

|f(Xi)− g(Xi)|2
) 1

2

.

In the experiments, we set d = 5, n ∈ {50, 100, 150, 200, 250, 300, 350} and σ = 0.2. We compare
the performance of f̂n,δn , f̂LS

n,0.8, f̂LS
n,10 and k̂n,hn under both the empirical l1 and l2 losses. For each

choice of n and d, we repeat the simulation 100 times and calculate their average.

We first sample i.i.d. Xi ∼ N(0, Id) for the light tail case that satisfying Assumption 1. To compare,
we also sample i.i.d. heavy tail random variable Xi such that coordinates of Xi are i.i.d. from the
t-distribution with parameter 10. The results of the experiment follow.
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(a) Light tail covariates, l1 loss (b) Light tail covariates, l2 loss

(c) Heavy tail covariates, l1 loss (d) Heavy tail covariates, l2 loss

Figure 1: In the above plots, the blue solid line stands for the estimator f̂n,δ , the black dotted line stands for
f̂LS
n,0.8, the red dash-dot line stands for the estimator f̂LS

n,10, and the green dashed line stands for the kernel
estimator k̂n,hn .

From the Figure 1 in above, we observed that our estimator f̂n,δ outperforms f̂LS
n,0.8, f̂LS

n,10 and k̂n,hn
in both l1 and l2 losses, and the performance of the least squares estimator is highly sensitive to
the choice of the constant c, the a priori bound on ‖∇f∗‖∞. We believe that a key factor in the
performance of our estimator is the regularization penalty introduced in the DRCR formulation.

3.2 Real dataset

We consider a public dataset from United States Environmental Protection Agency, which was
suggested by [18]. The dataset consists of 600 air market data of California in the first quarter of
2019. The response was the amount of heat input with the covariates corresponding to the amounts
of emissions of SO2, NOx, CO2 (in tons) and the NOX rate. Empirical evidence suggests that
relationship between the response and the log transformation of each individual covariate can be
modeled well by a convex fit, so we do the log transformation on covariates and then standardize the
data. Since we never know f∗ in real data, we can not evaluate our method in the same way as the
submitted paper. Instead, we randomly split the dataset into a training set with 400 data and a test set
with 200 data, and we implement three different approaches: DRCR, LSE and LR (linear regression).
We repeat the experiment 10 times and then compare the average training l1 loss and average test l1
error.

Method Training loss Test error

DRCR 0.1238 0.1294

LSE 0.1485 0.1516

LR 0.1691 0.1692

We summarize the results in the above table. It is clear that our method outperforms both LSE and
LR.
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Appendix A. Proof of Theorem 2.

In this section we present the full proof of Theorem 2. To begin, we introduce the following lemmas.
Their proofs are deferred to Appendix B.
Lemma 2. Under Assumption 1,

P
(

sup
1≤i≤n

‖Xi‖∞ <
1

2
(log n)

3
γ

)
→ 1,

as n→∞.

In the arguments below, we define Pn to be the conditional probability P(·|X1, · · · , Xn), and En to
be the conditional expectation E(·|X1, · · · , Xn).
Lemma 3. If

Γ0 =

{
ĝn,δn(Xi) > sup

1≤i≤n
|f∗(Xi)|+ 1, ∀i ∈ [n]

}
∪
{
ĝn,δn(Xi) < − sup

1≤i≤n
|f∗(Xi)| − 1, ∀i ∈ [n]

}
then

P(Γ0) ≤ 2e−2n(
1
2−p)

2

,

where p := P(Ei ≥ 1).

Now we define the set of interest

Ln :=

f : f is convex, ‖∇f‖∞ ≤ log n, ‖f‖∞ ≤ 1 + sup

‖x‖∞≤(logn)
3
γ

|f∗(x)|+ (log n)1+
3
γ

 .

By Lemma 2 and Lemma 3, we see that

P (ĝn,δn ∈ Ln)→ 1. (12)

For each function f ∈ Ln, denoted by

Zn(f) =
1

n

n∑
i=1

En (|f∗(Xi)− f(Xi) + Ei| − |Ei|) ,

and

Yn(f) =
1

n

n∑
i=1

(|f∗(Xi)− f(Xi) + Ei| − |Ei|)− Zn(f).

We need two basic properties of Zn(f) and Yn(f). The proofs can be found in Appendix B.
Lemma 4. For any functions f, g ∈ Ln and all t ≥ 0,

Pn (Yn(f)− Yn(g) ≥ t) ∨ Pn (Yn(f)− Yn(g) ≤ −t)

≤ exp

(
− cnt2

1
n

∑n
i=1 |f(Xi)− g(Xi)|2 ∧ (16σ2)

)
.

Where σ is the sub-Gaussian parameter of E , and c is some numerical constant (independent of f, g
and n).
Lemma 5. There exists a constant c0 > 0, such that for each f with l1(f, f∗) > σn, we have that

Zn(f) ≥ c0σ2
n.

By the definition of ĝn,δn , we have

δn‖∇ĝn,δn‖∞ +
1

n

n∑
i=1

l(Yi, ĝn,δn(Xi)) ≤ δn‖∇f∗‖∞ +
1

n

n∑
i=1

l(Yi, f∗(Xi)),
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which implies
Yn (ĝn,δn) + Zn (ĝn,δn) + δn(‖∇ĝn,δn‖∞ − ‖∇f∗‖∞) ≤ 0.

Together with (12), it suffices to show that

Pn
(

inf
f∈L:l1(f,f∗)>σn

Yn (f) + Zn (f) + δn(‖∇f‖∞ − ‖∇f∗‖∞) ≤ 0

)
→ 0, as n→∞, (13)

where σn is chosen as

σn =

√
2δn (‖∇f∗‖∞ ∨ 1)

c0
, (14)

and δn to be determined later. Given the choice of σn, we may assume ‖∇f∗‖∞ ≥ 1 in the rest of
the proof. To carefully bound (13), we apply the following covering lemma.
Lemma 6 ([12]). Let C([a, b]d, B, L) denotes the class of real-valued convex functions defined on
[a, b]d that are uniformly bounded in absolute value by B and uniformly Lipschitz with constant L,
then

M
(
C([a, b]d, B, L), ε; ρ

)
≤ exp

(
c1

(
ε

B + L(b− a)

)−d/2)
,

where c1 is a constant independent of a, b, B, L and ε.

Denote by ρn the metric such that
ρn(f, g) := sup

‖x‖∞≤(logn)
3
γ

|f(x)− g(x)|.

By Lemma 6, together with the fact that sup‖x‖∞≤(logn)3/γ ‖f∗‖ is of order ‖∇f∗‖∞(log n)
3
γ , we

have for n large enough, given any ε > 0, there exists an ε-covering Aε of the set Ln under metric
ρn, such that

|Aε| ≤ exp

c1( ε

1 + sup |f∗(x)1(‖x‖∞ ≤ (log n)
3
γ )|+ 3(log n)1+3/γ

)− d2
≤ exp

(
c1

(
ε

4(log n)1+3/γ

)− d2)
.

holds for n is sufficiently large. For each j ≥ 0, define
εj = 2−jε0. (15)

where ε0 > 0 to be determined later. For any N ≥ 1, we have the following decomposition

Yn(f) = Yn(f0) +

N−1∑
i=0

(Yn(fi+1)− Yn(fi)) + (Yn(f)− Yn(fN ))

holds for all fi ∈ Aεi (0 ≤ i ≤ N ). In particular, we can choose fi+1 ∈ Aεi+1 such that
ρ(fi+1, f) < εi+1 for all i ≥ 1. By the choice of σn in (14), together with Lemma 5 as well as the
union bound, we conclude that

Pn
(

inf
f∈L:l1(f,f∗)>σn

Yn (f) + Zn (f) + δn(‖∇f‖∞ − ‖∇f∗‖∞) ≤ 0

)
≤ Pn

(
inf

f∈L:l1(f,f∗)>σn
Yn(f) + δn‖∇f∗‖∞ ≤ 0

)
≤

∑
f0∈Aε0

Pn
(
Yn(f0) ≤ −δn‖∇f∗‖∞

3

)

+

N−1∑
j=0

∑
fj∈Aεj ,fj+1∈Aεj+1

,

ρ(fj ,fj+1)<2εj

Pn (Yn(fj+1)− Yn(fj) ≤ −tj)

+
∑

fN∈AεN

Pn
(

inf
f :ρ(f,fN )<εN

Yn(f)− Yn(fN ) ≤ −δn‖∇f∗‖∞
3

)
:= I1 + I2 + I3. (16)
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where tj > 0 will be chosen later so that

N−1∑
j=0

tj ≤
δn‖∇f∗‖∞

3
. (17)

Next we show that (16) goes to zero. Let us begin with a proper choice of ε0, N , tj(0 ≤ j ≤ N − 1)
and δn. Let ε0 satisfy

c1

(
ε0

4(log n)1+
3
γ

)− d2
=
cn (δn‖∇f∗‖∞)

2

288σ2
,

so that,

ε0 = 4

(
288c1σ

2

c‖∇f∗‖2∞

) 2
d

(log n)1+
3
γ δ
− 4
d

n n−
2
d .

Furthermore, we define tj so that

2c1

(
εj+1

4(log n)1+
3
γ

)− d2
=
cnt2j
8ε2j

,

that is,
tj = 4c

1
2
1 c
− 1

2 8
d
4 ε

1− d4
j (log n)

d
4 (1+

3
γ )n−

1
2 .

Finally, we set

δn = 96
(c1
c

) 2
d

(log n)
1+ 3

γ n−
2
d .

and define

Nn = inf

{
N ≥ 0 : ε02−N <

δn‖∇f∗‖∞
6

}
.

Now we are able to bound I1, I2 and I3 in (16) accordingly.

1.Upper bound for I1. The choice of ε0, together with Lemmas 4 and 6, implies that

I1 ≤ exp

c1( ε0

4(log n)1+
3
γ

)− d2
− cn (δn‖∇f∗‖∞)

2

144σ2


= exp

(
−cn (δn‖∇f∗‖∞)

2

288σ2

)
. (18)

2. Upper bound for I3. We first check that Nn > 1 when n sufficiently large. To see this, note that
the definition of Nn implies that

ε0 >
δn‖∇f∗‖∞

6
,

that is,

4

(
288c1σ

2

c‖∇f∗‖2∞

) 2
d

(log n)1+
3
γ δ
− 4
d

n n−
2
d >

δn‖∇f∗‖∞
6

which is equivalent to

24
d
2 288c1σ

2

c‖∇f∗‖2+
d
2

n
4
d (log n)

(γ+3)d
2γ −(2+ d

2 )(1+
3
γ ) > 1.

The above inequality holds trivially for sufficiently large n. Note that for any f such that ρ(f, fNn) <
εNn , we have

|Yn(f)− Yn(fNn)| ≤ 2εNn <
δn‖∇f∗‖∞

3
.

Hence

inf
f :ρ(f,fNn )<εNn

Yn(f)− Yn(fNn) > −δn‖∇f∗‖∞
3

.

13



which simply makes I3 = 0.

3.Upper bound for I2. For any 1 ≤ j ≤ Nn − 1, the choice of the fj’s implies that

1

n

n∑
i=1

|fj(Xi)− fj+1(Xi)|2 ∧ (4σ)2 ≤ 1

n

n∑
i=1

|fj(Xi)− fj+1(Xi)|2 ≤ 4ε2j .

By the choice of the tj’s, together with Lemmas 4 and 6, we have

I2 ≤
Nn−1∑
j=0

exp

2c1

(
εj+1

4(log n)1+
3
γ

)− d2
−
cnt2j
4ε2j


=

Nn−1∑
j=1

exp

−2c1

(
εj+1

4(log n)1+
3
γ

)− d2
=

Nn−1∑
j=1

exp

−2c1

(
ε0

4(log n)1+
3
γ

)− d2
2

(j+1)d
2


=

Nn−1∑
j=1

exp

(
−cn (δn‖∇f∗‖∞)

2

144σ2
2

(j+1)d
2

)
(19)

Next, we verify that (17) holds. Note that tj = t02(
d
4−1)j for all 0 ≤ j ≤ Nn − 1. Hence

Nn−1∑
j=0

tj = t0
2(

d
4−1)Nn − 1

2
d
4−1 − 1

≤ t0
2(

d
4−1)Nn

2
d
4−1 − 1

= 4
(c1
c

) 1
2

8
d
4

(
ε02−Nn

)1− d4 (log n)
d
4 (1+

3
γ )n−

1
2 . (20)

By definition of Nn (note that Nn > 1), we have ε02−Nn > 1
12δn‖∇f∗‖∞. By substituting this into

(20), it suffices to check that

4
(c1
c

) 1
2

8
d
4

(
δn‖∇f∗‖∞

12

)1− d4
a
d
4
n (log n)

3d
4γ∗ n−

1
2 ≤ δn‖∇f∗‖∞

3
,

which is equivalent to

δn‖∇f∗‖∞ ≥ 96
(c1
c

) 2
d

(log n)
1+ 3

γ n−
2
d . (21)

The above holds because of our choice of δn. (Note that we already assume ‖∇f∗‖∞ ≥ 1, without
loss of generality).

Finally, we bound the sum of I1, I2 and I3 in (16). By (18), (19) and the fact that I3 = 0, we have

I1 + I2 + I3 ≤ exp

(
−cn (δn‖∇f∗‖∞)

2

288σ2

)
+

Nn−1∑
j=0

exp

(
−cn (δn‖∇f∗‖∞)

2

144σ2
2

(j+1)d
2

)
.

≤
∞∑
j=0

exp

(
−cn (δn‖∇f∗‖∞)

2

288σ2
2
jd
2

)
. (22)

Note that for any t > log 2,

∞∑
j=0

exp
(
−t2

jd
2

)
≤
∞∑
j=0

exp (−t(j + 1)) ≤ 2 exp (−t) . (23)
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By our choice of δn, we have that

cn (δn‖∇f∗‖∞)
2

288σ2
= 32c1−

4
d c

4
d
1 σ
−2‖∇f∗‖2∞ (log n)

2+ 6
γ n1−

4
d . (24)

Since d > 4, when n is large enough, the above term is certainly greater than log 2. Hence, for

σn =

√
2δn(‖∇f∗‖∞∨1)

c0
= Θ

(
n−

1
d (log n)1+

3
γ

)
, and (16) is bounded by

Pn
(

inf
f∈L:l1(f,f∗)>σn

Yn(f) + δn‖∇f∗‖∞ ≤ 0

)
≤ 2 exp

(
−32c1−

4
d c

4
d
1 σ
−2‖∇f∗‖2∞ (log n)

2+ 6
γ n1−

4
d

)
,

which goes to zero as n→∞.
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Appendix B. Proofs of Lemmas.

In this section, we prove Lemmas 2, 3, 4 and 5 accordingly.

Proof of Lemma 2. Since Xi’s are i.i.d, Assumption 1 implies that

P
(

sup
1≤i≤n

‖Xi‖∞ <
1

2
(log n)

3
γ

)
=

n∏
i=1

P
(
‖Xi‖∞ <

1

2
(log n)

3
γ

)

=

n∏
i=1

[
1− P

(
‖Xi‖∞ ≥

1

2
(log n)

3
γ

)]
≥ 1− nP

(
‖X‖∞ ≥

1

2
(log n)

3
γ

)
≥ 1− n exp

(
− α

2γ
(log n)

3
)
E exp (α‖X‖γ∞) .

Then for n ≥ exp (2γ/α) we have

1− n exp
(
− α

2γ
(log n)

3
)
E exp (α‖X‖γ∞) ≥ 1− n exp

(
− (log n)

2
)
E exp (α‖X‖γ∞)

≥ 1− n

nlogn
E exp (α‖X‖γ∞)

→ 1,

which complete the proof.

Proof of Lemma 3. By the definition of ĝn,δn(Xi) we see that

n∑
i=1

|Yi − ĝn,δn(Xi)| = min
a∈R

{
n∑
i=1

|Yi − ĝn,δn(Xi)− a|

}
,

which implies
#{i : Yi ≥ f̂n,δn(Xi)} ≥

n

2
.

Otherwise, we can shift the ĝn,δn(Xi) by a constant to obtain a smaller objective value, which
contradicts the definition of ĝn,δn(Xi). As a result,

P
(
ĝn,δn(Xi) > sup

1≤i≤n
|f∗(Xi)|+ 1, ∀i ∈ [n]

)
≤ P

(
#{i : Yi ≥ sup

1≤i≤n
|f∗(Xi)|+ 1} ≥ n

2

)
≤ P

(
n∑
i=1

1{Ei≥1} ≥
n

2

)
.

Since Ei’s are i.i.d, we have that the 1{Ei≥1}’s are i.i.d Bernoulli(p). By the symmetry of E , we see
that

p := P(Ei ≥ 1) <
1

2
,

and hence by the Hoeffding’s inequality we have that

P

(
n∑
i=1

1{Ei≥1} ≥
n

2

)
≤ e−2n( 1

2−p)
2

.

Using the same argument, we get the same bound for

P
(
ĝn,δn(Xi) < − sup

1≤i≤n
|f∗(Xi)| − 1, ∀i ∈ [n]

)
,

which complete the proof.
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Proof of Lemma 4. Define

hE(x) := |x+ E| − |E| − E (|x+ E| − |E|) ,
lE(x) := |x+ E| − |x|.

Now we rewrite Yn(f)− Yn(g) by

Yn(f)− Yn(g) =
1

n

n∑
i=1

[hEi (f∗(Xi)− f(Xi))− hEi (f∗(Xi)− g(Xi))] (25)

Note that the summands in (25) are i.i.d, and ‖Y ‖ψ2
≤M implies logE exp(t(Y −EY )) = O(t2M2)

for all t ≥ 0. It suffices to show that

‖hEi (f∗(Xi)− f(Xi))− hEi (f∗(Xi)− g(Xi)) ‖ψ2
≤ |f(Xi)− g(Xi)| ∧ 4σ.

Observe that the absolute value of the random variable |f∗(Xi)−f(Xi)+εi|−|f∗(Xi)−g(Xi)+εi|
is bounded by |f(Xi)−g(Xi)|, so its Orlicz norm is also bounded by |f(Xi)−g(Xi)|, which implies

‖hεi (f∗(Xi)− f(Xi))− hεi (f∗(Xi)− g(Xi)) ‖ψ2
≤ |f(Xi)− g(Xi)|.

On the other hand,

hEi (f∗(Xi)− f(Xi))− hEi (f∗(Xi)− g(Xi)) = lEi (f∗(Xi)− f(Xi))− lEi (f∗(Xi)− g(Xi))

−En [lEi (f∗(Xi)− f(Xi))− lEi (f∗(Xi)− g(Xi))] .

Note that |lEi (f∗(Xi)− f(Xi)) − lEi (f∗(Xi)− g(Xi)) | ≤ 2|Ei| and E|Y − EY |k ≤ 2kEY k for
any random variable Y . We therefore have

‖hEi (f∗(Xi)− f(Xi))− hEi (f∗(Xi)− g(Xi)) ‖ψ2

= sup
k≥1

k−1/2
(
En|hEi (f∗(Xi)− f(Xi))− hEi (f∗(Xi)− g(Xi)) |k

)1/k
≤ sup

k≥1
k−1/2

(
En|lEi (f∗(Xi)− f(Xi))− lEi (f∗(Xi)− g(Xi)) |k

)1/k
≤ sup

k≥1
k−1/22

(
E|2E|k

)1/k ≤ 4σ.

Proof of Lemma 5. Define T : R→ R such that for any x ∈ R,

T (x) := E |x+ E| − E |E| .

By basic calculus, T ′(x) = P(−x ≤ E ≤ x), and T ′′(x) = pE(x) + pE(−x) > 0 holds for x
sufficiently small. Hence T (x) is increasing and convex. In particular, we have

T ′(0) = 0, T ′′(0) = 2pE(0).

Note that pE(x) is continuous around zero, then for x sufficiently small, we have T ′′(x) = pE(x) +
pE(−x) > pE(0). Now we pick c0 = 1

2pE(0). Then, Taylor’s expansion yields

T (x) = T (0) + T ′(0)x+
1

2
T ′′(ηx)x2 ≥ c0x2

where ηx ∈ (0, x) is some real number. Finally, by the monotonicity and convexity of T ,

Zn(f) =
1

n

n∑
i=1

T (|f∗(Xi)− f(Xi)|) ≥ T

(
1

n

n∑
i=1

|f∗(Xi)− f(Xi)|

)
≥ T (σn) ≥ c0σ2

n.
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